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Abstract

We consider heteroclinic attractor networks motivated by models of competition between
neural populations during binocular rivalry. We show that Gamma distributions of domi-
nance times observed experimentally in binocular rivalry and other forms of bistable per-
ception, commonly explained by means of noise in the models, can be achieved with quasi-
periodic perturbations. For this purpose, we present a methodology based on the separatrix
map to model the dynamics close to heteroclinic networks with quasi-periodic perturba-
tions. Our methodology unifies two different approaches, one based on Melnikov integrals
and another one based on variational equations. We apply it to two models: first, to
the Duffing equation, which comes from the perturbation of a Hamiltonian system and,
second, to a heteroclinic attractor network for binocular rivalry, for which we develop a
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suitable method based on Melnikov integrals for non-Hamiltonian systems. In both mod-
els, the perturbed system shows chaotic behavior while dominance times achieve good
agreement with Gamma distributions. Moreover, the separatrix map provides a new (dis-
crete) model for bistable perception which, in addition, replaces the numerical integration
of time-continuous models and, consequently, reduces the computational cost and avoids
numerical instabilities.

Manuscript significance

We study the dynamics resulting from quasi-periodic perturbations of hete-
roclinic attractor networks. This is a novelty with respect to previous studies
which only consider periodic perturbations. We compute explicitly a map that
describes the perturbed dynamics close to the heteroclinic cycle and show that
there exist chaotic orbits. From a modelling point of view, the study of het-
eroclinic attractor networks was motivated by models of competition between
neural populations during binocular rivalry. We have proved that important
features attributed to psychophysical experiments of bistable perception can
be reproduced by quasi-periodic perturbations with two or more non-resonant
frequencies. This fact was known for noisy perturbations but not for determin-
istic ones. Our methodology, based on the separatrix map, unifies two different
approaches, one based on Melnikov integrals and another one on variational
equations. Moreover, we present an extension of the Melnikov approach to
compute the separatrix map for non-Hamiltonian systems. Our results provide
a new (discrete) model for bistable perception, which, in addition, replaces the
numerical integration of a time-continuous model.

1 Introduction

Heteroclinic networks consist of the union of several heteroclinic cycles, that is, a chain of
separatrix connections between saddle points, see [7] for a more general and precise defini-
tion. The mathematical interest on heteroclinic cycles and networks boosted in the late 80’s
(see [21], [5], [26], [10], [29], [28] and [6] among others), and soon it emerged as a suitable
approach to model physical phenomena, mostly in ecology/population dynamics (see, for
instance, [23], [24], [4], [3]) and more recently in neuroscience: generation and reshaping of
sequences in neural systems [36], transient cognitive dynamics, metastability and decision
making [37], decision making with memory [9], sequential memory or binding dynamics [1]
and central pattern generators [43]. Here, we focus on a specific application to cognitive
neuroscience, namely, the phenomenon of bistable perception (see [8]), as a paradigmatic
example to understand the effect of quasi-periodic perturbations on heteroclinic networks.

Bistable perception consists of spontaneous alternances of sensory percepts. In humans,
data is mainly obtained from psychophysical experiments that provide perceptual traces
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whose statistics help to understand the operating regimes of the involved brain areas. In
particular, the distribution of dominance times (periods of time when a unique percept
is detected, here called Tdom) is believed to encode switching mechanisms. As reported
along the literature, see for instance [19, 41, 31] and subsequent works, such distribution
of dominance times typically follows a Gamma distribution.

Models of bistable perception (see [25] for a review) have two main ingredients: the
presence of two states in the phase space that represent the two percepts, plus a mechanism
allowing to switch from one state to another, which can be either a negative feedback
(endogenous) or noise. To account for the two states, the most well-known paradigms are
oscillations [31, 44] and the existence of two (cross-inhibiting) point-attractors [30, 32, 39].
Ashwin and Lavric in [8] proposed a heteroclinic attractor network model for binocular
rivalry (HBR, from now on) as another paradigm to account for the switching mechanism,
inspired on previous models of winnerless competition for neural processes, see for instance
[36, 35, 37]. In these heteroclinic networks the dominance time corresponds to the time
spent nearby each saddle of the heteroclinic cycle. On the other hand, in all models noise is
believed to play a more dominant role than negative feedback in shaping the trajectories of
the models to fit the statistical distribution of dominance times (see [32, 33]). In particular,
in [8], the authors show that noisy perturbations lead to a Gamma-like distribution of
dominance times Tdom for the heteroclinic attractor network.

In this paper, we use heteroclinic attractor network models to focus on the nature of the
perturbations. As explained above, models in the literature whose output fits to Gamma
distributions employ noisy perturbations. To delve into this issue, we decided to explore
a minimal perturbation scheme leading to Gamma distributions of dominance times; in
particular, we consider the effects of quasi-periodic perturbations with a finite number
of (non-resonant) frequencies and use appropriate tools from dynamical systems theory to
study them. Besides being of mathematical interest, this issue has also a modeling relevance
since it impinges onto the question of how many inputs are necessary for a specific brain
area to make a perceptual decision (see also the discussion in Section 4).

We study heteroclinic attractor network models with periodic and, as a novelty, quasi-
periodic perturbations with up to three frequencies. Our goal is to describe the dynamics
of the heteroclinic attractor network around the heteroclinic connections by means of a
composition of maps between specific Poincaré sections: a concatenation of local maps
close to the saddle points together with global maps that describe the dynamics close to
the heteroclinic connections. This concatenated map, known as the separatrix map [11,
18, 38, 45, 34, 2], is presented here as an alternative discrete model for bistable perception.
For this map, we carry out a thorough study of the dynamics around the heteroclinic cycle,
explore the existence of chaos by means of the computation of Lyapunov exponents and
monitor the dominance (passage) times of the chaotic trajectories. Of course, studying a
map avoids numerically unstable computations and increases simulation speed.

We present a methodology that (i) introduces the separatrix map as a model close to
heteroclinic networks, (ii) incorporates quasi-periodic perturbations, and (iii) unifies two
different approaches, one based on Melnikov integrals and another one based on variational
equations.
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We first apply our methodology to a classical model, the Duffing equation [22], which
has a single saddle and a double homoclinic loop. We use this model as a benchmark
since it can be considered as the simplest version of a heteroclinic network. Once the
mathematical methodology has been settled down in the benchmarking model, we extend
it to the HBR model introduced in [8]. For the Duffing equation, the unperturbed problem
is Hamiltonian. Thus, we provide the separatrix map analytically by means of Melnikov
theory in appropriate action-angle variables, and numerically from the variational equations
in the original variables. For the HBR model, the unperturbed problem does not come from
a Hamiltonian system, but we take advantage of the exact knowledge of the heteroclinic
connections to define a substitute of the action variable, and develop a suitable method
of Melnikov integrals for non-Hamiltonian systems. Again, as in the Duffing equation,
we also compute the separatrix map by means of variational equations and compare both
approaches, which show good agreement.

In both cases, we develop the separatrix map for quasi-periodic perturbations and
perform a numerical study of the dynamics around the perturbed separatrices for specific
choices of the set of frequencies. For these quasi-periodic perturbations, we show that
the system exhibits chaotic behaviour around the separatrices and, remarkably, Gamma
distributions of dominance times, thus showing that noise is not essential to explain such
statistics.

The contents of the manuscript is organized as follows. In Section 2, we present the
main concepts and tools by means of the Duffing equation. The Poincaré sections for
this model are defined in Section 2.1. In Section 2.2 we construct the local maps nearby
the saddles, whereas global maps are computed in Section 2.3. By composing local and
global maps, in Section 2.4 we then obtain two equivalent separatrix maps as a first-order
approximation of the dynamics of the system around the perturbed separatrices. In Section
2.5 we perform a numerical study of the dynamics of the separatrix map for a specific choice
of the parameters. In Section 3 we carry out the same study for the HBR model introduced
in [8]. In Section 3.1, we compute the separatrix map using variational equations and in
Section 3.2 we develop the adapted Melnikov theory. Section 3.3 is devoted to numerical
study. We include three appendices with some technical details: the development of the
variational equations for the Duffing system in Appendix A, the optimal choice of Poincaré
sections in Appendix B and values of histogram fittings in Appendix C.

2 Dissipative separatrix map for the Duffing equation

We use the Duffing equation as a benchmark to obtain the separatrix map both using
Melnikov integrals and variational equations. Both methods use the linear local approxi-
mation, but they differ in the way to compute a global map that will be explained in detail
for each case. The Duffing equation is obtained, see [22], from the Hamiltonian

H(x, y) =
y2

2
− x2

2
+
x4

4
, (1)
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where (x, y) ∈ R2 and can be written as the system{
ẋ = y,
ẏ = x− x3.

(2)

The flow of system (2) is organized around the double-loop separatrix Γ0 given by
H(x, y) = 0, see Figure 1(a). The level sets {H(x, y) = h} of every energy value h ∈ R can
be parameterized as

Γh = Γ−h ∪ Γ+
h =

⋃
σ=±

{(xσ(s, h), yσ(s, h)), s ∈ [−Th, Th]}, (3)

with
(xσ(0, h), yσ(0, h)) ∈ J c := {(−∞,−1) ∪ (1,+∞)} × {0},

Th > 0 and T0 = ∞. For h > 0, Γh is a connected curve surrounding Γ0, while for h < 0,
Γ−h and Γ+

h are two disjoint closed curves lying in different connected components of the
bounded region defined by Γ0, see again Figure 1(a). For h = 0, the double-loop Γ0 can be
explicitly parameterized as

xσ(s, 0) = σ

√
2

cosh(s)
, yσ(s, 0) = ẋσ(s, 0) = −σ

√
2 sinh(s)

cosh2(s)
, σ = ±. (4)

We will focus on a perturbed version of the Duffing equation:
ẋ = y,
ẏ = x− x3 − γy + βx2y + ε

∑n
i=1 ai cos(θi),

θ̇ = ω,
(5)

where (x, y) ∈ R2, θ = (θ1, . . . , θn) ∈ Tn, ω = (ω1, . . . , ωn) ∈ Rn, ai ∈ R, for i = 1, . . . , n,
and ε, β, γ ≥ 0 are small parameters.

Observe that the perturbation has two parts, one autonomous (depending on x and y)
and another non-autonomous (depending on θ), which will play different roles in our study.
In fact, the autonomous part has been extensively treated in the literature, see for instance
[22]. In particular, for ε = 0, the point (x, y) = (0, 0) is a saddle point with eigenvalues
λ± = (−γ ±

√
γ2 + 4)/2 and the bifurcation diagram in the (γ, β) parameter space has a

curve of (dissipative) homoclinic connections of the form β = 5/4 γ +O(γ2), see [22, Sect.
7.3] and Remark 2.3.

2.1 Poincaré sections for the separatrix map

The separatrix map was first introduced in [11, 18, 38, 45] as a powerful method of analysis
to describe the dynamics close to a homoclinic/heteroclinic loop. It is a singular Poincaré
map (see [42, Ch. 4]) defined on a Poincaré section near the saddle points.

In this section we describe how to construct the separatrix map for the perturbed
Duffing equation (5). The separatrix map consists of the composition of two maps: the
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local map that describes the dynamics in a neighbourhood of the saddle points and the
global map that describes the dynamics in the vicinity of the homoclinic loop.

We first introduce a new coordinate system (u, v) such that the linearized system around
the saddle point (0, 0) becomes diagonal. Let λ− and λ+ be the negative and positive
eigenvalues of the saddle point, respectively, and let v− = 1/

√
1 + λ2

− (1, λ−) = µ− (−λ+, 1)

and v+ = 1/
√

1 + λ2
+ (1, λ+) = µ+ (−λ−, 1) be a pair of corresponding eigenvectors, where

µ+ := λ+/
√

1 + λ2
+ and µ− := λ−/

√
1 + λ2

− (notice that we have used that λ+λ− = −1).
Then, the coordinate change(

x
y

)
= C

(
u
v

)
, where C =

(
−µ− λ+ −µ+λ−
µ− µ+

)
, (6)

transforms system (5) into
u̇ = F u(u, v, θ, ε) = λ−u+ fu(u, v) + ε

λ−
µ− (λ− − λ+)

∑n
i=1 ai cos(θi),

v̇ = F v(u, v, θ, ε) = λ+v + f v(u, v)− ε λ+

µ+ (λ− − λ+)

∑n
i=1 ai cos(θi),

θ̇ = ω,

(7)

where (fu(u, v), f v(u, v)) is the transformation of the perturbation (0,−x3 + βx2y) under
the change of variables (6) and so, it consists of a pair of homogeneous polynomials of
degree 3.

We then consider four segments J inσ and Joutσ , σ ∈ {+,−}, in a neighbourhood of the
saddle point, which are transversal to the unperturbed separatrix Γ0 and located close to
the saddle point (see Figure 1(b) and (c)). If we consider the angular variable θ ∈ Tn, we
denote by Σin,out

σ = J in,outσ × Tn the corresponding sections in the extended phase space.
Mathematically,

Σin
σ = {(u = σu∗, v, θ)} = {(σ, s = s∗0(h), h, θ)},

Σout
σ = {(u, v = σv∗, θ)} = {(σ, s = −s∗1(h), h, θ)}. (8)

The relationship between u∗, v∗ and s∗0(h), s∗1(h) is given by(
u∗

−

)
= C−1

(
x+(s∗0(h), h)
y+(s∗0(h), h)

)
and

(
−
v∗

)
= C−1

(
x+(−s∗1(h), h)
y+(−s∗1(h), h)

)
.

Remark 2.1 For the sake of clarity we will omit the sign σ in the derivation of the sepa-
ratrix map.

2.2 The local map

The local map describes the dynamics from section Σin := Σin
+ ∪ Σin

− to section Σout :=
Σout

+ ∪ Σout
− by approximating it by the linearized dynamics around the saddle point (0, 0)

of (7) for ε = 0. Thus,

v∗ = eλ+T v+O(ε, γ, |u|3+|v|3), u = eλ−T u∗+O(ε, γ, |u|3+|v|3) and T =
1

λ+

ln

∣∣∣∣v∗v
∣∣∣∣ .
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Assuming that |u|, |v|, ε and γ are small, we can neglect the terms O(ε, γ, |u|3 + |v|3) and
write the local map in the variables (u, v, θ) as:

TL : Σin → Σout

(v, θ) 7→ (ū, θ̄)

with
ū

u∗
=

∣∣∣ v
v∗

∣∣∣ν ,
θ̄ = θ +

ω

λ+

ln

∣∣∣∣v∗v
∣∣∣∣ , (9)

where ν = −λ−/λ+ > 0.
Equivalently, using the global variable h = 2µ+ µ− u v + γO2(u, v), the local map in

the variables (h, θ) is given up to first order in (u, v) by

TL : Σin → Σout

(h, θ) 7→ (h̄, θ̄)

where
h̄

2µ+ µ− u∗v∗
=

(
h

2µ+ µ− u∗v∗

)ν

θ̄ = θ +
ω

λ+

ln

∣∣∣∣2µ+ µ− u
∗v∗

h

∣∣∣∣ ,
(10)

where we have used that h and h̄ are given in first order in (u, v) by h = 2µ+ µ− u
∗v and

h̄ = 2µ+ µ− ūv
∗.

2.3 The global map

The global map describes the dynamics from section Σout to section Σin by means of the
linearized dynamics around the separatrix. In this section we will discuss two different
approaches to compute it. In one case, we will use variational equations to describe the
dynamics around the separatrix for β = 5/4 γ +O(γ2) and γ ≥ 0 and considering ε as the
perturbation parameter. In the other case, we will use Melnikov integrals to describe the
dynamics around the unperturbed separatrix assuming that both ε and γ (and β) are the
perturbation parameters.

2.3.1 The global map via variational equations

In this section we will compute the global map in the variables (u, v, θ) using variational
equations. In these variables the global map is defined as

TG : Σout → Σin

(u, θ) 7→ (v̄, θ̄)
(11)

7



where (u∗, v̄, θ̄) = ϕ(τ ∗(u, v∗, θ);u, v∗, θ) and ϕ(t; w0) is the solution of system (7) with
initial condition w0.

In order to obtain an approximation of the global map, we consider the local dynamics
around the separatrix Γ that exists for β = 5/4 γ + O(γ2) and ε = 0. Thus, we now
consider the parameter ε as a variable (i.e. ε̇ = 0) and denote by ϕ̂(t;u, v, θ, ε) the flow
of the extended system (7) adding ε̇ = 0, and T̂G the extended global map. Moreover, let
us consider the point ws := (us, v∗, θs, ε = 0) where us is the u-coordinate of the point
p = {Jout ∩ Γ}, and θs ∈ Tn. The image of this point under the extended global map is
the point (u∗, vs, θs + ωT ∗, 0) where vs is the v-coordinate of the point q = {J in ∩ Γ} and

T ∗ = τ ∗(ws), where ws = (us, v∗, θs, 0), (12)

which is independent of θs when ε = 0. Thus, for any point of the form (u, v∗, θ, ε) =
(us + ∆u, v∗, θs + ∆θ, ε) its image for T̂G is given by

T̂G(u, v∗, θ, ε) = T̂G(ws) +DT̂G(ws) ·∆ +O(∆2),

= (u∗, vs, θs + ωT ∗, 0) +DT̂G(ws) ·∆ +O(∆2),

where ∆ = (∆u, 0,∆θ, ε). Notice that

DT̂G(ws) = Dϕ̂(τ ∗(ws); ws)

= Dwϕ̂(τ ∗(ws); ws) +
∂ϕ̂

∂t
(τ ∗(ws); ws)Dwτ

∗(ws),

where w = (u, v, θ, ε). Of course, Dwϕ̂ can be computed by means of solving variational
equations and Dwτ

∗ can be obtained from

ϕ̂u(τ ∗(w); w) = u∗,

where ϕ̂u denotes the u-coordinate of the extended flow ϕ̂. Thus, we have

Dwτ
∗ = −

(
∂ϕ̂u

∂t

)−1

Dwϕ̂
u.

Working out the details (see Appendix A) we obtain that

T̂G(u, v∗, θ, ε) = (u∗, vs, θs + ωT ∗, 0) + (0, αv∆u+ ερv(θ), αθ∆u+ ∆θ+ ερθ(θ), ε) +O(∆2),
(13)

with

αv = ϕ̂vu −
F v

F u
ϕ̂uu, ρv(θ) = ϕ̂vε −

F v

F u
ϕ̂uε ,

αθ = −ω ϕ̂
u
u

F u
, ρθ(θ) = −ω ϕ̂

u
ε

F u
,

(14)

where F u and F v are given in (7); the subindex in ϕ̂ denotes derivation with respect
to that variable and the superindex denotes the corresponding coordinate. Moreover,
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they are obtained by means of solving variational equations (see Appendix A). Using that
∆θ = θ − θs and ∆u = u − us, and disregarding the terms of O(∆2) in (13), the global
map TG describing the dynamics from Σout to Σin is given by

TG : Σout → Σin

(u, θ) 7→ (v̄, θ̄)

where
v̄ = vs + αv(u− us) + ερv(θ),
θ̄ = θ + ωT ∗ + αθ(u− us) + ερθ(θ).

(15)

Since u− us and ε are assumed to be small, the contribution of the terms αθ(u− us) and
ερθ is negligible compared to the finite term ωT ∗. Moreover, one can see that the terms us

and vs are O2(u∗, v∗). Therefore, considering only the dominant terms, we can write the
global map as

v̄ = αu+ ερ(θ),
θ̄ = θ + ωT ∗, (16)

where α = αv and ρ = ρv(θ) are defined in (14) and T ∗ is defined in (12). Notice that we
have removed the subscript v from α and ρ.

Remark 2.2 In the literature, the parameter α is taken to be α = 1 (see [2, 20]). In this
paper, we do not assume it to be 1 but we will compute it explicitly for some examples (see
Section 2.5).

2.3.2 The global map via Melnikov integrals

In this section we will compute the global map using the (h, s) variables by means of
the Melnikov integral. Taking advantage of the fact that the unperturbed system (2) is
Hamiltonian, we have that

ḣ = Hy q,
ṡ = 1 + sy q,

θ̇ = ω,

where H is the Hamiltonian function in (1) and q(x, y, θ) = −γy+βx2y+ ε
∑n

i=1 ai cos(θi)
is the perturbation in (5). All the functions of the above expression are evaluated on
x = x(s, h) and y = y(s, h), introduced in (3).

Therefore, the global map describing the dynamics from Σout to Σin is defined as:

TG : Σout → Σin

(h, θ) 7→ (h̄, θ̄)

where, using that s∗i (h) = s∗i (0) +O(h), for i = 0, 1, we have

h̄− h =
∫ s∗0
−s∗1

Hy q = M(θ) + (γ + β + ε)O(u∗, v∗, |h|, ε, γ, β)

θ̄ − θ = ω(s∗0 + s∗1) +O(|h|, γ, ε, β),
(17)

9



where s∗i denotes s∗i (0) and M(θ) is the Melnikov integral for system (5) on the level curve
H(x, y) = h = 0.

We compute the Melnikov integral on the positive branch of the level curve H(x, y) = 0,
i.e. M(θ) = M+(θ) (the case for the negative branch is analogous). Let us denote x0(t) =
x+(t, 0) and y0(t) = ẋ0(t) = y+(t, 0) the parameterization of Γ+

0 given in equation (4).
Then,

M(θ) =

∫ ∞
−∞

∂H

∂y
(x0(t), y0(t)) q(x0(t), y0(t), θ + ωt)dt

=

∫ ∞
−∞

ẋ0(t)

(
−γẋ0(t) + βx2

0(t)ẋ0(t) + ε

n∑
i=1

ai cos(θi + ωit)

)
dt

= −γ
∫ ∞
−∞

ẋ2
0(t) dt+ β

∫ ∞
−∞

x2
0(t)ẋ2

0(t) dt− ε
n∑
i=1

ai sin(θi)

∫ ∞
−∞

ẋ0(t) sin(ωit)dt,

where in the last term we have used that the integral on (−∞,∞) of an odd function is
zero.

We compute each integral separately. Thus,∫ ∞
−∞

ẋ2
0(t)dt = 2

∫ ∞
−∞

sinh2(t)

cosh4(t)
dt =

4

3
,

∫ ∞
−∞

x2
0(t)ẋ2

0(t)dt = 4

∫ ∞
−∞

sinh2(t)

cosh6(t)
dt =

16

15
,

and ∫ ∞
−∞

sin(ωit)ẋ0(t)dt = sin(ωit)x0(t)]∞−∞ − ωi
∫ ∞
−∞

cos(ωit)x0(t)dt

= −ωi
√

2

∫ ∞
−∞

cos(ωit)

cosh(t)
dt = −

√
2ωiπ

cosh(πωi/2)
,

where the last integral has been computed by the Residue Theorem (see [15]). Thus, the
Melnikov integral has the form

M(θ) = M+(θ) = −4

3
γ +

16

15
β +
√

2πε
n∑
i=1

aiωi sin(θi)

cosh(πωi/2)
. (18)

Remark 2.3 Note that M(θ) = 0 for ε = 0 and β = 5/4 γ. Therefore system (5) has a
homoclinic orbit for ε = 0 and β = 5/4 γ +O(γ2), see also [22, Sect. 7.3].

2.4 The separatrix map

We describe how to construct the separatrix map for the perturbed Duffing equation (5)
both via variational equations and Melnikov integrals.
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2.4.1 The separatrix map via variational equations

We combine the local and global maps given in (9) and (16), respectively, to obtain explicit
formulas for the separatrix map in the variables (u, θ).

Notice that when v > 0, the local map takes points from Σin to Σout
+ , but when v < 0,

the local map takes points from Σin to Σout
− . Recovering the variable σ in (8), we can write

the separatrix map as

S := TL ◦ TG : Σout → Σout

(u, θ, σ) 7→ (ū, θ̄, σ̄)

where
ū

u∗
= σ|v∗|−ν |αu+ ερ(θ)|ν ,

θ̄ = θ + ωT ∗ +
ω

λ+

ln

∣∣∣∣ v∗

αu+ ερ(θ)

∣∣∣∣ mod 2π,

σ̄ = sign(αu+ ερ(θ)).

(19)

By scaling the variables u and v by u∗ and v∗, respectively, i.e. u := u/u∗ and v := v/v∗,
the global map becomes

ū = |α̃u+ ερ̃(θ)|ν ,

θ̄ = θ + ωT ∗ +
ω

λ+

ln

∣∣∣∣ 1

α̃u+ ερ̃(θ)

∣∣∣∣ mod 2π,

σ̄ = sign(α̃u+ ερ̃(θ)),

where ρ̃(θ) =
1

v∗
ρ(θ) and α̃ :=

u∗

v∗
α. Notice that if we choose u∗ = v∗ then α̃ = α.

2.4.2 The separatrix map via Melnikov integrals

We combine the local and global maps given in (10) and (17), respectively, to obtain explicit
formulas for the separatrix map in the variables (h, θ).

Notice first that the local map takes points from Σin
+ (resp. Σin

− ) to Σout
+ or Σout

− de-
pending on the value of h at the section Σin

+ (resp. Σin
− ). Thus, recovering the variable σ in

(8) and using the dominant terms given in (10) and (17) we can write the separatrix map
as

S := TL ◦ TG : Σout → Σout

(h, θ, σ) 7→ (h̄, θ̄, σ̄)

where
h̄

2µ+ µ− u∗v∗
=

(
h+Mσ(θ)

2µ+ µ− u∗v∗

)ν
,

θ̄ = θ + ω(s∗0 + s∗1) +
ω

λ+

ln

∣∣∣∣2µ+ µ− u
∗v∗

h+Mσ(θ)

∣∣∣∣ ,
σ̄ = −σ sign(h+Mσ(θ)).

(20)
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By scaling the variable h and redefining h := h/(2µ+µ−u
∗v∗) the global map can be

simply written as

h̄ =
(
h+ M̃σ(θ

)ν
,

θ̄ = θ + ω(s∗0 + s∗1) +
ω

λ+

ln

∣∣∣∣∣ 1

h+ M̃σ(θ)

∣∣∣∣∣ ,
σ̄ = −σ sign(h+ M̃σ(θ)),

where M̃σ(θ) :=
1

2µ+ µ− u∗v∗
Mσ(θ).

2.5 Numerical computations

We compute numerically the separatrix map for the perturbed Duffing equation using
variational equations and we refer to Section 2.5.1 for the differences between the separatrix
map obtained using this approach and the one obtained via Melnikov integrals.

We consider a quasi-periodic perturbation consisting of at most 3 frequencies given by
ω1 = 1, ω2 =

√
5−1
2

and ω3 =
√

769−27. We choose them in order to pick three frequencies

that are as much incongruent as possible. Indeed, ω3 =
√

769− 27 is the real number that
provides the best constant C = C(ω3) ≈ 0.233126 . . . in the inequalities

|k0 + k1ω2 + k2ω3| ≥ C(|k0|+ |k1|+ |k2|)−2, (21)

for all integers satisfying |k1|, |k2| ≤ K := 220, k0 ∈ Z, amongst all numbers ω3 that are
the decimal part of numbers of the form

√
p, with p being a prime number smaller than

1000 [40]. An alternative to these frequencies is to choose ω2 = Ω, where Ω is “the cubic
golden number”, i.e. the real cubic root of x3 + x − 1 = 0, Ω ≈ 0.6823 and ω3 = Ω2. In
this case, C = 2(5 + Ω + 4Ω2)/31 ≈ 0.4867 in the expression (21) [14]. Simulations with
these frequencies do not show significant differences (results not shown).

We first compute the separatrix map for two orders of magnitude of γ (and β, since
β is chosen as β = 5/4 γ + O(γ2) so that the map for ε = 0 has a homoclinic orbit, see
remark 2.3). In both cases, we introduce the parameter r such that u∗ = v∗ = r and we
chose r = 0.1 (see Appendix B for a justification). The coefficients of the map (16) are
computed according to the formulas given in (14), which involve solving numerically the
variational equations around the separatrix (see Appendix A). For the numerical integration
we have used a Runge-Kutta method of order 7/8 with a fixed tolerance of 10−12.

For γ = 0.008, the map (19) is given by

ū = sr1−ν |αu+ ερ(θ)|ν ,
θ̄i = θi + ωi 7.3752858056 + ωi/0.9960080000 ln(r/|v|), for i = 1, 2, 3,
σ̄ = sign(v),

(22)

where α = 0.9733201532, r = 0.1 and

ρ(θ) = a1(9.7591847996 cos(θ1) + 15.6872106985 sin(θ1))
+a2(−13.2851558002 cos(θ2) + 11.5920512181 sin(θ2))
+a3(−7.9272168789 cos(θ3) + 16.9623679354 sin(θ3)),
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with θ = (θ1, θ2, θ3) ∈ T3 and a1, a2, a3 ∈ R.
For γ = 0.08, the same value as in [41], the map is given by

ū = sr1−ν |αu+ ερ(θ)|ν ,
θ̄i = θi + ωi 7.3784656185 + ωi/0.9607996803 ln(r/|v|), for i = 1, 2, 3,
σ̄ = sign(v),

(23)

where α = 0.7629736972, r = 0.1 and

ρ(θ) = a1(9.9901759770 cos(θ1) + 13.0767449862 sin(θ1))
+a2(−10.9333035475 cos(θ2) + 11.2761757850 sin(θ2))
+a3(−5.7535147048 cos(θ3) + 15.6518248196 sin(θ3)),

with θ = (θ1, θ2, θ3) ∈ T3 and a1, a2, a3 ∈ R. Notice that the coefficient α in (22) for
γ = 0.008 is larger than in (23) for γ = 0.08, showing that the separatrix becomes more
contractive as γ increases (see Section 2.5.1).

In order to understand the dynamics of these maps we have carried out a numerical
exploration of the Lyapunov exponents for different orbits of the system with different initial
conditions. We run the MEGNO program [12, 13] to compute the maximal Lyapunov
exponent for the maps (22) and (23) with ε = 0.001 and three different perturbations:
a periodic perturbation (a1 = 1, a2 = 0, a3 = 0), a quasi-periodic perturbation with 2
frequencies (a1 = 1, a2 = 1, a3 = 0) and a quasi-periodic perturbation with 3 frequencies
(a1 = 1, a2 = 1, a3 = 1). Results for the maximal Lyapunov exponent for different initial
conditions are shown in Figure 2. For the case of a periodic perturbation (1 frequency),
the Lyapunov exponent is negative and both maps show non-chaotic behaviour for all the
initial conditions tested (see Figure 2(a)). Indeed the orbits of the system tend to a periodic
orbit, and in the case of the map with γ = 0.008, we observed several limiting periodic
orbits (results not shown) for different initial conditions. This explains why the range of
the Lyapunov exponents computed for γ = 0.008 is larger than the one for γ = 0.08. For
the case of quasi-periodic perturbations with 2 or 3 frequencies, the Lyapunov exponent is
positive for all the initial conditions tested for the map with γ = 0.08 and a large domain
of the initial conditions tested for the map γ = 0.008, thus showing chaotic behaviour (see
Figure 2(b) and (c)). Notice that there is a small area of initial conditions for which the
map corresponding to γ = 0.008 and a quasi-periodic perturbation with two frequencies
shows non-chaotic behaviour (see Figure 2(b) top). The iterates for an initial condition in
this non-chaotic region are shown in Figure 3, where the numerical exploration shows the
existence of an attracting invariant curve.

In the cases for which we detected chaotic behaviour for the orbits of the system, we
explored the distribution of the dominance times Tdom corresponding to the time intervals
between impacts on sections Σout

± . Mathematically, Tdom = (θ̄i − θi)/ωi, which is indepen-
dent of i. In addition, we also computed the distribution of impacts on the sections Σout

±
(given by the values of u along the orbit). In particular, we considered initial conditions
u = 0, θi = 0, for i = 1, 2, 3 and σ = +1 and computed the corresponding iterates for both
separatrix maps (22) and (23) and the three different perturbations. In Figures 4 and 5 we
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show the corresponding histograms of the dominance times and the impacts on the section
Σout. Notice that for the cases where we observed chaotic behaviour the histograms show
a log-normal or Gamma distribution for time differences Tdom and a normal distribution
for impacts (see Figures 4 and 5, (b) and (c)), while for the case of one frequency the
histograms are just a delta function for both distributions (see Figures 4(a) and 5(a)).

We compare the results for histograms with those obtained with a perturbation con-
sisting of white noise instead of a periodic or quasi-periodic function. Thus, we consider
the following system of stochastic differential equations:

du = λ−u+ fu(u, v)du+ εudWu,
dv = λ+v + f v(u, v)dv + εvdWv,

(24)

where fu, f v are defined in (7) and dWu, dWv are zero mean, independent Wiener processes.
We computed the values of u and Tdom on the section Σout and obtained the histograms
shown in Figure 6. Considering a noisy perturbation in the original variables (x, y) leads to
similar results (not shown), see also [41]. Notice that the shape of histograms follows a log-
normal or Gamma distribution for time histograms and a normal distribution for impacts
(see Figure 6). Notice also that, as observed for the case of a quasi-periodic perturbation,
the case γ = 0.008 contracts in a weaker way. In order to properly compare the histograms
with the ones obtained with quasi-periodic perturbations, we fit the histograms with a
log-normal and Gamma distribution (see Appendix C). We show the fittings to a log-
normal distribution altogether in Figure 7. The same fittings are obtained for a Gamma
distribution. We clearly see that for 2 and 3 frequencies, the histograms are similar to the
ones obtained with noise.

2.5.1 Comparison between separatrix maps for the Duffing equation

Using Melnikov integrals we have obtained the separatrix map given in (20) which has
an analytical expression, while using variational equations about the perturbed separatrix
(γ 6= 0, β = 5/4 γ + O(γ2)) we have obtained the separatrix map (19) which requires
numerical computations. We want to compare the results obtained numerically with those
obtained analytically by means of two different methods. We know that both maps are
equivalent up to O(γ).

Let us express the map (19) in terms of h. Disregarding higher order terms in (u, v) we
have h = µuv∗, where µ = 2µ+µ− = −1/(λ+ − λ−), and replacing u by h/(µv∗) in system
(19) we have

h̄

µu∗v∗
=

(
α(u∗/v∗)h+ εµu∗ρ(θ)

µu∗v∗

)ν
,

θ̄ = θ + ωT ∗ +
ω

λ+

ln

∣∣∣∣ µv∗u∗

α(u∗/v∗)h+ εµu∗ρ(θ)

∣∣∣∣ ,
σ̄ = −σsign(h+ εµρ(θ)),

(25)

where in the last expression we have used that the sign of v is the same as (resp. the
opposite of) the sign of h in Σin

− (resp. Σin
+ ).
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Now we are going to compare the map in the variables (h, θ) given in (20) with equations
(25). First notice that to obtain the map (20) using the Melnikov integral, we assumed
that at t = 0, the separatrix Γ+

0 intersects section J c (see definition given in (3)), while
using the variational equations, at t = 0, the separatrix intersects the section Jout. Thus,
let us take s = s∗1 as the time it takes to go from Jout to J c along the separatrix Γ+

0 . Then,
we replace M(θ) given in (18) by M̃(θ) = M(θ + ωs) in the map (20).

Comparing the map (20) with M̃(θ) instead of M(θ) with expressions (25) we have that
the following equalities must be satisfied:

T ∗ = s∗0 + s∗1,
αu∗/v∗ = 1,

εµu∗ρ(θ) = M̃(θ).
(26)

Next, we will show that these equalities are satisfied up to O(γ, u∗, v∗). The first line
can be checked straightforwardly and for the second line, since we have that α = 1 +O(γ)
(see Figure 8(a)), thus assuming that u∗ = v∗, we have that there is agreement between
both maps up to O(γ).

The third line must be checked numerically, and since we have chosen β = 5/4 γ, M̃ is
just a trigonometric polynomial in θ, so we need to compare the coefficients of the function
M̃(θ) with those of ρ(θ). Indeed, ρ(θ) is a function of the form ρ(θ) =

∑
iAi cos(ωiθ) +

Bi sin(ωiθ), where Ai and Bi satisfy Ai = Ci sin(ωiφi) and Bi = Ci cos(ωiφ), with φi =
1/ωi arctan(Ai/Bi). Thus, we can write

ρ(θ) =
n∑
i=1

Ci sin(θ + ωiφi)

where Ci = Ai/ sin(ωiφi), and clearly both functions ρ(θ) and M̃(θ) = M(θ + ωs) given
in (18) have the same harmonics if φi = s for all i. This is true when γ = 0 (results not
shown) and for this case coefficients of µu∗ρ(θ) and ε−1M̃(θ) coincide up to an error which
is O(r). In Figure 8(b) we show the comparison between both functions using the L1-norm
for different values of γ and r. Clearly the error grows with γ and r.

3 Heteroclinic network model for binocular rivalry

(HBR model)

In this section we want to apply the technique of the separatrix map explored in Section 2
for the Duffing equation to study models of bistable perception. We will consider a model
of a specific phenomenon of bistable perception, namely, binocular rivalry. In binocular
rivalry two different images are presented to the two eyes simultaneously, and perception
alternates between these two images [25]. For this purpose we consider the model proposed
by Ashwin and Lavric in [8] that we will refer to as HBR model:
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ṗ = h(p) + x2(1− p) + y2(−1− p),
ẋ = f(p, x, y) + Ixx+ εηx,
ẏ = g(p, x, y) + Iyy + εηy,

(27)

where h(p) = −p(p− 1)(p + 1), f(p, x, y) = ((0.5− p)(p + 1)− x2 − y2)x and g(p, x, y) =
f(−p, y, x). The variable p represents the activity in the “arbitration” component, where
p = 1 (p = −1, respectively) represents perception of the left (resp., right) eye stimulus,
and x and y represent the activity pattern associated with stimulus to the left and to the
right eye, respectively. The quantities Ix, Iy ≥ 0 represent external inputs to the system
for x and y, respectively.

The model has three equilibria for ε = 0, namely (p, x, y) = (1, 0, 0) which corresponds
to the left dominant (LD) resting state, (p, x, y) = (−1, 0, 0), which corresponds to the right
dominant resting state (RD) and (p, x, y) = (0, 0, 0), which corresponds to a neutral state.
The neutral state is asymptotically unstable with eigenvalues (1, 0.5+Ix, 0.5+Iy), while the
LD and RD states are saddle points with eigenvalues (−2,−1+Ix, Iy) and (−2, Ix,−1+Iy),
respectively, for Ix, Iy > 0. For the three equilibria, the associated eigenvectors are the
canonical basis. Moreover, x = 0 and y = 0 are invariant subspaces. The system has two
heteroclinic orbits (by symmetry) Γ±LD→RD from the LD to the RD saddle points lying on
the plane x = 0 and two heteroclinic orbits (again by symmetry) Γ±RD→LD from the RD to
the LD saddle points lying on the plane y = 0 (see Figure 9(a)).

As for the Duffing equation, we are going to consider a quasi-periodic perturbation
representing external input to the system for x and y, i.e.

ηx(θ) = ηy(θ) =
n∑
i=1

ai cos(θi), with θ̇ = ω, (28)

where θ = (θ1, . . . , θn) ∈ Tn, ω = (ω1, . . . , ωn) ∈ Rn and ai ∈ R for i = 1, . . . , n.
In order to study the dynamics of system (27)-(28) close to the heteroclinic cycles,

we will compute the separatrix map. As for the Duffing equation, in Section 3.1 we will
provide details of the computation of the separatrix map using variational equations along
the heteroclinic cycles for ε = 0 and Ix, Iy > 0. In Section 3.2 we will provide details of
the computation of the separatrix map via Melnikov integrals, which for this model will be
computed numerically.

Finally, we will compare the results with the case of a noisy perturbation,

ηx = ηy = dW, (29)

where dW is a zero mean Wiener process. We have also considered ηx = εx dWx and
ηy = εy dWy, for two zero mean independent Wiener process dWx and dWy as in [8], and
numerical simulations (results not shown) show qualitatively the same features.

3.1 Derivation of the separatrix map via variational equations

We consider system (27) with perturbation (28) and compute the return map using vari-
ational equations as in Section 2.3.1. Here we have one more state variable, say p, but
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the procedure is analogous. First, we define 2-dimensional sections close to the LD saddle
point with p = 1 and to the RD saddle point with p = −1, both transversal to the flow of
system (27) for ε = 0 (see also Figure 9(b) and (c)):

Jout+σ = {(p = 1 + q, x, σy∗)},
J in+
σ = {(p = 1 + q, σx∗, y)},

Jout−σ = {(p = −1 + q, σx∗, y)},
J in−σ = {(p = −1 + q, x, σy∗)},

(30)

where σ ∈ {+,−} and x∗, y∗ > 0 are fixed. When considering the angular variable θ ∈ Tn,
we denote by

Σin±,out±
σ = J in±,out±σ × Tn (31)

the corresponding sections in the extended phase space.
Notice that for the Duffing equation we included a variable σ that allows us to dis-

tinguish whether the trajectory hits the section Σout±,in±
+ or Σout±,in±

− . However, since the
system has the symmetry (p, x, y) → (−p, y, x), the information provided by σ does not
affect the results, so we are not going to include σ to simplify the reading. For the same
reason, we will denote

Σin±,out± = Σin±,out±
+ ∪ Σin±,out±

− , (32)

and only consider two heteroclinic connections, namely Γ+
RD→LD and Γ+

LD→RD, for which
we will omit the superindex from now on.

First, we are going to obtain an approximation of the local maps T±L from section Σin±

to Σout± using the linearized dynamics around the saddle points with p = 1 for T+
L and

p = −1 for T−L (see Figure 9(d)). Thus, we have

T+
L : Σin+ −→ Σout+

(q, y, θ) 7→ (q̄, x̄, θ̄),
(33)

where
q̄ = q exp (−2 Ty) ,
x̄ = x∗ exp ((−1 + Ix) Ty) ,
θ̄ = θ + ω Ty,

(34)

with

Ty =
1

Iy
ln

(
y∗

y

)
. (35)

Similarly, the map T−L : Σin− −→ Σout− is described by

(q̄, ȳ, θ̄) = T−L (q, x, θ) = (q exp (−2 Tx) , y∗ exp ((−1 + Iy) Tx) , θ + ω Tx), (36)

with Tx =
1

Ix
ln

(
x∗

x

)
.
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Next, we are going to obtain an approximation of the global maps T±G from sections
Σout± to Σin∓ (see Figure 9(d)). Consider first the global map

T+
G : Σout+ −→ Σin−

(q, x, θ) 7→ (q̄, x̄, θ̄),
(37)

defined as
T+
G (q, x, θ) = ϕ(τ ∗(1 + q, x, y∗, θ); 1 + q, x, y∗, θ),

where ϕ is the flow of system (27)-(28) and τ ∗(1 + q, x, y∗, θ) > 0 is the minimal global
time such that ϕ(τ ∗(1 + q, x, y∗, θ); 1 + q, x, y∗, θ) ∈ Σin−.

We will obtain an approximation of the global map by computing the linear dynamics
around the separatrix ΓLD→RD for Ix, Iy ∈ (0, 1) and ε = 0. Thus, as in Section 2.3.1,
we consider the parameter ε as a variable (ε̇ = 0) and denote by ϕ̂(t; p, x, y, θ, ε) the
flow of the extended system (27)-(28) adding ε̇ = 0, and T̂+

G the extended global map.
Consider a point of the form (1+q, x, y∗, θ, ε) = (1+qs+∆q, xs+∆x, y∗, θs+∆θ, ε), where
{(1 + qs, xs, y∗)} = ΓLD→RD ∩ Jout+ and θs ∈ Tn. Notice that xs = 0. Its image is given by

T̂+
G (q, x, y∗, θ, ε) = T̂+

G (qs, xs, y∗, θs, 0) +DT̂+
G (qs, xs, y∗, θs, 0) ·∆ +O(∆2)

= (q̄s, x̄s, y∗, θs + ωT ∗, 0)
+(αq∆x+ βq∆q + ερq(θ

s), αx∆x+ βx∆q + ερx(θ
s),

0,∆θ + αθ∆x+ βθ∆q + ερθ(θ
s), ε)

+O(∆2)

where ∆ = (∆q,∆x, 0,∆θ, ε), {(−1+q̄s, x̄s, y∗)} = ΓLD→RD∩J in−, T ∗ = τ ∗(1+q̄s, xs, y∗, θs),
which is independent of θs when ε = 0. Moreover, analogously to (14) but taking into
account that now there is an extra variable p, we have the following expression for the
coefficients:

αx = ϕ̂xx −
F x

F y
ϕ̂yx, βx = ϕ̂xp −

F x

F y
ϕ̂yp, ρx(θ) = ϕ̂xε −

F x

F y
ϕ̂yε ,

αq = ϕ̂px −
F p

F y
ϕ̂yx, βq = ϕ̂pp −

F p

F y
ϕ̂yp, ρq(θ) = ϕ̂pε −

F p

F y
ϕ̂yε ,

αθ = −ω ϕ̂
y
x

F y
, βθ = −ω

ϕ̂yp
F y

, ρθ(θ) = −ω ϕ̂
y
ε

F y
,

(38)

where Fw and ϕ̂w denote the w-coordinate of the vector field (27) and the extended flow
ϕ̂, respectively, for w = p, x, y.

Therefore, disregarding the terms of O(∆2), the global map (37) has the form below,
which is analogous to expression (15) taking into account that there is an extra variable p
and xs = 0:

q̄ = q̄s + αq (x− xs) + βq (q − qs) + ε ρq(θ),
x̄ = αx (x− xs) + βx (q − qs) + ε ρx(θ),
θ̄ = θ + ω T ∗ + αθ (x− xs) + βθ (q − qs) + ε ρθ(θ).

(39)
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Since x − xs, q − qs and ε are assumed to be small, the contribution of the terms
αθ (x−xs), βθ (q−qs) and ε ρθ is neglegible compared with the finite term ωT ∗. Recall xs =
0. Moreover, one can see that the terms q̄s and qs are O2(y∗, x∗). Therefore, considering
only the dominant terms, we can write the global map T+

G as

q̄ = αq x+ βq q + ε ρq(θ),
x̄ = αx x+ βx q + ε ρx(θ),
θ̄ = θ + ω T ∗.

(40)

The global map
T−G : Σout− −→ Σin+

(q, y, θ) 7→ (q̄, ȳ, θ̄),

is the same as (40) because of the symmetry (p, x, y) 7→ (−p, y, x), just replacing x by y
and x̄ by ȳ. that is,

q̄ = αq y + βq q + ε ρq(θ),
ȳ = αx y + βx q + ε ρx(θ),
θ̄ = θ + ω T ∗.

(41)

We finally define the separatrix map S (as in Section 2.4.1) by combining the local and
global maps described above in the following way (see Figure 9(d)):

S := T+
L ◦ T

−
G ◦ T

−
L ◦ T

+
G : Σout+ → Σout+

(q, x, θ) → (q̂, x̂, θ̂).
(42)

For the sake of clarity we will not provide the explicit global expression of the map S, and
work only with the expressions (34)-(36)-(40)-(41).

We conclude this section with an important remark. For this particular model αq ≈ 0,
βq ≈ 0, αθ ≈ 0 and βx ≈ 0 in expressions (40) and (41) (see Section 3.3). Therefore, by
looking at these expressions and the ones for the local maps in (34)-(36), it is clear that
the dynamics of the variable q decouples from the rest of the variables. Therefore, (42) will
be essentially a 2-dimensional map, since we can omit the dynamics for q (see also [8]).

3.2 Derivation of the separatrix map via Melnikov integrals (semi-
analytical derivation)

We can also obtain the separatrix map via Melnikov integrals, as done in the study of the
Duffing equation, see Section 2.3.2. In the case of system (27) with Ix = Iy = ε = 0, we can
take advantage of the knowledge of the heteroclinic connections given by ΓLD→RD = {hLR =
0} ∩ {x = 0} and ΓRD→LD = {hRL = 0} ∩ {y = 0}, where hLR := p2 + 2 y2 − 1 and hRL :=
p2 + 2 x2− 1. Let us denote the respective time-parameterizations by {(p0(s), 0, y0(s)), s ∈
R}, where lims→∓∞ p0(s) = ±1 and lims→∓∞ y0(s) = 0, and {(p0(−s), x0(s), 0), s ∈ R},
where lims→∓∞ x0(s) = 0. More specifically, p0(s) = ξ (1 + ξ2)

−1/2
and x0(s) = y0(s) =

(2 (1 + ξ2))
−1/2

, where ξ = ξ(s) is implicitly given by s = ξ
√
ξ2 + 1 + arcsinh(ξ)− ξ2. The
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variables hLR and hRL play an analogous role to the Hamiltonian variable h used in Section
2.3.2.

We use the Poincaré sections already defined in (31). For the sections Σout+ and Σin−

we will consider the set of variables (hLR, x, θ), while for the sections Σin+ and Σout− we
will consider the set of variables (hRL, y, θ). As in Section 3.1, the separatrix map is
composed by the concatenation of the four Poincaré maps illustrated in Figure 9(d), that
is: S = T+

L ◦ T
−
G ◦ T

−
L ◦ T

+
G .

The local maps are defined as in (33) and we only need to rewrite them in the new
variables. For instance,

T+
L : Σin+ → Σout+

(hRL, y, θ) 7→ (h̄LR, x̄, θ̄),

where

h̄LR =
(
hRL − 2x∗2

)
ψ2 + 2 y∗2 + 2ψ (1− ψ)

(
−1 +

√
1 + hRL − 2x∗2

)
,

x̄ = x∗ exp ((−1 + Ix) Ty) ,
θ̄ = θ + ω Ty,

where the time Ty is defined in (35) and ψ := exp (−2 Ty). The map T−L : Σin− −→ Σout−

is obtained in a similar way and will be described as (h̄RL, ȳ, θ̄) = T−L (hLR, x, θ).
To compute the global maps

T+
G : Σout+ → Σin− T−G : Σout− → Σin+

(hLR, x, θ) 7→ (h̄LR, x̄, θ̄), (hRL, y, θ) 7→ (h̄RL, ȳ, θ̄),

we use a different strategy. For instance, to get T+
G up to the first order in terms of the

perturbation parameters Ix, Iy and ε (similar expressions can be obtained for T−G ), we
remark that hLR = x = 0 (the heteroclinic connection ΓLD→RD) is invariant for the flow of
system (27)-(28) when Ix = Iy = ε = 0. Therefore, hLR and x satisfy differential equations
that can be written as (

ḣLR

ẋ

)
=

(
a b
0 c

) (
hLR

x

)
+

(
m
n

)
, (43)

where m, n vanish when Ix = Iy = ε = 0. More specifically, a, b, c,m, n are given by:

a = a(p, x, y) := −2(p2 + x2 + y2),
b = b(p, x) := −2x2(1− p),
c = c(p, x, y) := (0.5− p)(p+ 1)− x2 − y2,
m = mI(y) Iy +mε(θ) ε := (4 y2) Iy + (4 ηy(θ)y) ε,
n = nI(x) Ix + nε(θ) ε := x Ix + ηx(θ) ε.

Note that if we approximate system (43) by evaluating the functions a, b, c, m and n on
ΓLD→RD, that is, with p = p0(s), x = 0, y = y0(s), then (43) becomes an uncoupled system
of linear ordinary differential equations in hLR and x:(

ḣLR

ẋ

)
=

(
a0(s) 0

0 c0(s)

)(
hLR

x

)
+

(
m0(s)
n0(s)

)
, (44)
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where a0(s) = −2(p0(s)2 + y0(s)2), m0(s) = (4 y0(s)2) Iy + (4 ηy(θ + ω s)y) ε, c0(s) =
(0.5− p0(s))(p0(s) + 1)− y0(s)2 and n0(s) = ηx(θ + ω s) ε.

We introduce τ and τ̄ such that (p0(τ), 0, y0(τ)) ∈ Jout+ and (p0(τ̄), 0, y0(τ̄)) ∈ J in−

and set hLR = hLR(τ), h̄LR = hLR(τ̄), x = x(τ) and x̄ = x(τ̄). Then, we can solve the two
uncoupled differential equations (44) and obtain an expression for the Poincaré map T+

G

up to order one in terms of the perturbation parameters Ix, Iy and ε, which can be seen as
analogous to the Melnikov integrals used in (17) for the Duffing equation. More precisely,
the map has the form

h̄LR = Bh h
LR + ε Ph(θ) + ΞI Iy,

x̄ = Ax x+ ε Px(θ),
θ̄ = θ + ω (τ̄ − τ),

(45)

where
Bh = exp

(∫ τ̄
τ
a0(s)ds

)
,

Ph(θ) =
∫ τ̄
τ

4y0(t)ηy(θ + ω t) exp
(
−
∫ t
τ
a0(s)ds

)
dt,

ΞI =
∫ τ̄
τ

4y2
0(t) exp

(
−
∫ t
τ
a0(s)ds

)
dt,

Ax = exp
(∫ τ̄

τ
c0(s)ds

)
,

Px(θ) =
∫ τ̄
τ
ηx(θ + ω t) exp

(
−
∫ t
τ
c0(s)ds

)
dt.

(46)

The expression (45)-(46) provides a theoretical framework to compute an approximation
of the global map T+

G for Ix, Iy and ε small enough, but the cumbersome parameterization
of ΓLD→RD makes a numerical resolution more advisable (see Section 3.3).

3.3 Numerical computation

In this Section, we show the numerical computations of the separatrix map for the HBR
model with perturbation (28) and the same frequencies as in Section 2.5, that is ω =
(ω1, ω2, ω3) = (1, (

√
5 − 1)/2,

√
769 − 27). Moreover, we choose sections Σout±,in± with

x∗ = y∗ = r (see definition (30) for the sections) and r = 0.1 (see Appendix B for a
justification for this choice). Moreover, we consider inputs I = Ix = Iy = 0.1 as in [8].

For these parameter values we have computed the global map (39) obtained using varia-
tional equations. We have also computed the global map (45) using the alternative method
based on Melnikov integrals, and the comparison between both methods is discussed in Sec-
tion 3.3.1. For the rest of the section, we focus on the map computed using variational
equations, since it is applicable to a wider parametric range of I values.

For the specific choice of the parameters described above, we compute numerically the
coefficients of the map (39) using the expressions in (38), and we obtain:

q̄ = 0.005494470100 + ε ρq(θ),
x̄ = 0.0000123595x+ ε ρx(θ),
θ̄ = θ + 19.2385452050ω + 7.1811476867 (q + 0.0091291201) + ε ρθ(θ),

(47)
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where
ρq(θ) = a1(−0.0830186087 cos(θ1)− 0.0388801779 sin(θ1))

+a2(−0.0355217259 cos(θ2)− 0.1058303244 sin(θ2))
+a3(−0.0708199918 cos(θ3) + 0.0786695423 sin(θ3)),

ρx(θ) = a1(−0.4340559240 cos(θ1) + 0.7770758314 sin(θ1))
+a2(−2.9264485016 cos(θ2) + 1.8586408166 sin(θ2))
+a3(1.9947756545 cos(θ3) + 1.5403924072 sin(θ3)),

and
ρθ(θ) = a1(−3.9499622400 cos(θ1) + 97.4619562829 sin(θ1))

+a2(−28.9752119958 cos(θ2) + 158.9382104783 sin(θ2))
+a3(−13.2998112505 cos(θ3) + 123.3597165763 sin(θ3)).

Notice that in expression (47) we have αq = βq = βx = αθ = 0. Its reduced version (40)
reads out as

q̄ = ε ρq(θ),
x̄ = 0.0000123595x+ ε ρx(θ),
θ̄ = θ + 19.2385452050ω.

(48)

The local maps are obtained explicitly according to the formulas in (34)-(36). Thus, we
consider the separatrix map S defined in (42) using the specific parameters computed in
(48) for the reduced version of the global map. Next, we are going to explore the dynamics
of this map (omitting the dynamics for q which decouples from the other two variables) for
ε = 0.001 as in [8] and three different perturbations: a periodic perturbation (a1 = 1, a2 =
0, a3 = 0), a quasi-periodic perturbation with 2 frequencies (a1 = 1, a2 = 1, a3 = 0) and a
quasi-periodic perturbation with 3 frequencies (a1 = 1, a2 = 1, a3 = 1).

To explore the dynamics for each map we consider a grid of initial conditions on the
plane (x, θ), where all the components of the vector θ take the same value θ1 = θ2 = θ3,
and we compute for each corresponding orbit the maximal Lyapunov exponent using the
MEGNO algorithm. Results are shown in Figure 10. We observe that, independently of
the initial conditions, all the orbits show chaotic behaviour (positive Lyapunov exponent)
for the three maps (1,2 or 3 frequencies).

Moreover, we explored the distribution of dominance times Tdom defined as the time
difference between impacts on the sections Σout+ and Σout−, i.e Tdom = (θ̃i − θi)/ωi, where
θ̃i is the projection onto the θi component of TL ◦ TG. Notice that Tdom is independent of
the coordinate i. The dominance times provide an approximation of the time spent near
the vicinity of the saddle points p = 1 (corresponding to the LD state) and p = −1 (cor-
responding to the RD state). Notice that this is equivalent to consider the time difference
between impacts on the section Σc corresponding to p = 0. The histograms of Tdom for
1, 2 and 3 frequencies are shown in Figure 11(a), (b) and (c), respectively. We compare
these histograms with those obtained with a noisy perturbation (27)-(28) (Figure 11(d)).
We fit the histograms to Gamma and log-normal distributions (see Appendix C). Notice
that differences are not noticeable. In Figure 12 we show the fittings altogether. We ob-
serve that as the number of frequencies in the perturbation increases the histograms of the
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dominance durations shift leftwards and they become more similar to the ones obtained
with noise.

3.3.1 Comparison between separatrix maps for the HBR model

We have performed numerical simulations and computed the coefficients in (46) for x∗ =
y∗ = r = 0.1 and the same three frequencies as before, that is ω = (ω1, ω2, ω3) = (1, (

√
5−

1)/2,
√

769− 27), which lead to:

Bh = 0,
Ph(θ) = a1(−0.2774816480 cos θ1 − 0.0581912473 sin θ1)

+a2(0.1756420310 cos θ2 − 0.3011001793 sin θ2)
+a3(0.3250998384 cos θ3 + 0.0519822050 sin θ3)

ΞI = 0.1147989903,
Ax = 0,

Px(θ) = a1(0.0490168560 cos θ1 − 0.8643742388 sin θ1)
+a2(2.9257472656 cos θ2 + 0.5387775767 sin θ2)
+a3(0.7848263649 cos θ3 + 2.0413493194 sin θ3)

(49)

We have checked that the global map (40) computed using variational equations, coin-
cides with the map (45) with the values given in (49) when Ix, Iy are zero and it remains
close as Ix and Iy increase. To illustrate this, we show in Figure 13 the comparison between
the coefficient αx in (40) and Ax = 0 in (49) and between the function ρx(θ) in (40) and
Px(θ) in (49) as a function of I = Ix = Iy.

4 Discussion

We have constructed the separatrix map for two different systems, the Duffing equation (see
Section 2.4) and the 3-dimensional HBR model introduced in [8] (see Sections 3.1 and 3.2),
both subject to periodic and, more relevantly for the purpose of this study, quasi-periodic
perturbations with at most 3 non-resonant frequencies. The separatrix map associated to
a Poincaré section constitutes a powerful tool to express in a simplified way the dynamics
around homoclinic and heteroclinic trajectories of dynamical systems. The ideas presented
herein are extendable to more frequencies and larger networks.

We have obtained the technical results using two strategies: a Melnikov approach,
valid only for small perturbations but providing analytical descriptions, and variational
equations, based on analytico-numerical integration. We have compared both of them and
checked its coincidence in the region where it is expected to be fulfilled.

For the Duffing equation, we have first analyzed the Lyapunov exponents for all the
initial conditions. When perturbing with quasi-periodic perturbations with two or three
non-resonant frequencies, we generically obtain positive Lyapunov exponents, thus indi-
cating chaotic behaviour. We have then explored the distribution of the dominance times
Tdom between impacts on Poincaré sections, whose histograms show a log-normal or Gamma
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distribution. The fitting quality obtained is comparable to that obtained from noisy per-
turbations of equivalent strength.

The results obtained for the Duffing equation persist for the HBR model. Remarkably,
as for the Duffing equation, from the separatrix map we also obtain a good agreement with
Gamma distributions when perturbing with two and three non-resonant frequencies. For
this case, we have developed a method based on Melnikov integrals for non-Hamiltonian
systems that have “action-like” variables vanishing at the heteroclinic connections. This
Melnikov approach, as opposed to the case for the Duffing equation, requires the numerical
computation of the integrals because of the cumbersome parameterization of the non-
perturbed heteroclinic orbits. The resulting discrete model can be thought of as a new
model for bistable perception, much easier to use than the full model expressed in terms of
differential equations. Altogether, the methodology that we propose provides in both cases
an alternative discrete model (a map) which avoids numerically unstable computations.
More precisely, time-continuous models require the numerical integration close to saddle
points while the separatrix maps resolves this issue by using the linear approximation
around the saddles. More refined maps could be obtained by substituting the local maps
by higher order approximations (normal forms).

From a modelling point of view, we have proved that important features attributed
to psychophysical experiments of bistable perception, namely the Gamma distribution of
dominance times, cannot only be reproduced by noisy perturbations but also by quasi-
periodic perturbations with two or more non-resonant frequencies. This fact was known
for noisy perturbations but not for deterministic ones [32, 8, 33]. It is worth noticing that
the signal of a noisy perturbation presents a continuous spectrum and so, our result implies
that the same output distribution can be achieved by perturbing the system with only few
frequencies. One could argue that for finite time simulations, as for instance those in [8],
the spectrum is less richer than the theoretical prediction for infinite time, but still the
support of the spectrum in the input distributions decays drastically in size when jumping
from noisy to quasi-periodic perturbations.

We would also like to draw the attention to the question of what the noise is actually
representing, since models in the literature are not precise enough about the source of
the stochastic nature of bistable perception. It is believed that perceptual switches are
spontaneous and stochastic events (for instance, a priorities) which cannot be eliminated
by intentional efforts and it has been largely emphasized the relative role of noise versus
adaptation [32, 27] but, as far as we know, there are no solid arguments that sustain that
they must be forcedly spontaneous and purely stochastic. The models usually contain
two main variables that represent the ensembles of neurons more directly related to the
percepts (for instance, the left and right eyes in binocular rivalry, the most well-known
phenomenon of bistable perception). Adding noise to the model, on the other hand, entails
the assumption that this basic biperceptual system is receiving inputs from a continuous
spectrum. However, Electroencephalography (EEG) studies (see for instance [17, 16])
suggest a prevalent role of gamma-band frequencies. More precisely, transient gamma-
band synchrony in localized recurrent prefrontal and parietal brain areas (responsible for
executive functions) have been reported to precede switching between percepts in binocular
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rivalry. These findings make plausible the conjecture that a few number of frequencies in
the input sources could be sufficient to account for the statistics of perceptual switches.

This perspective of bistable perception using maps brings up new possibilities to inves-
tigate this phenomenon which are beyond the scope of this paper. For instance, studying
in depth the dynamics of these maps or its fitting to experimental data. Here, we give a
first step in this direction by computing the Lyapunov exponents and certifying the com-
patibility with the obtained Gamma distributions. As a future work, we plan to use the
separatrix map models to fit other experimental (psychophysical) data.

We finish by pointing out that our results extend naturally to other problems modelled
by means of heteroclinic networks already mentioned in the Introduction like decision-
making, memory-retrieval, central patterns generators or ecological models.
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Appendices

A Variational equations

Consider the system of the first variational equations along the separatrix Γ for the ex-
tended system, consisting of system (7) with the extra equation ε̇ = 0, as introduced in
Section 2.3.1, given by

d

dt
Dwϕ̂(t; w) = A(t)Dwϕ̂(t; w), Dwϕ̂(0; w) = Idn+3,
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where

A(t) =



∂F u

∂u

∂F u

∂v
0

∂F u

∂ε
∂F v

∂u

∂F v

∂v
0

∂F v

∂ε

0 0 0 0
0 0 0 0


| ϕ̂(t; ws)

with F u, F v given in (7), ϕ̂ is the flow of the extended system and ws = (us, v∗, θs, 0) with
(us, v∗) = {Γ ∩ Jout}.

Let us denote ϕ̂w the derivative with respect to w and ϕ̂w the coordinate w, for w =
u, v, θ, ε. Since

˙̂ϕθu,v,θ,ε = 0, then ϕ̂θu,v,ε = 0, ϕ̂θθ = 1,

and since
˙̂ϕεu,v,θ,ε = 0, then ϕ̂εu,v,θ = 0, ϕ̂εε = 1.

Therefore, we are left with the following equations

˙̂ϕuu =
∂F u

∂u
ϕ̂uu +

∂F u

∂v
ϕ̂vu,

˙̂ϕvu =
∂F v

∂u
ϕ̂uu +

∂F v

∂v
ϕ̂vu,

˙̂ϕuv =
∂F u

∂u
ϕ̂uv +

∂F u

∂v
ϕ̂vv,

˙̂ϕuv =
∂F u

∂u
ϕ̂uv +

∂F u

∂v
ϕ̂vv,

˙̂ϕuθ = 0, ˙̂ϕvθ = 0,

˙̂ϕuε =
∂F u

∂u
ϕ̂uε +

∂F u

∂v
ϕ̂vε +

∂F u

∂ε
, ˙̂ϕuε =

∂F u

∂u
ϕ̂uε +

∂F u

∂v
ϕ̂vε +

∂F u

∂ε
.

Notice that only the equations for ϕ̂uε and ϕ̂vε depend on θ through the term ∂F u/∂ε and
∂F v/∂ε, respectively. Therefore, we will compute ϕ̂uε and ϕ̂vε for different initial conditions
of θs. We use Fourier series to obtain an analytical expression for ϕ̂uε and ϕ̂vε as a function
of θ.

From the solution of the variational equations, we obtain the first order approximation
of the global map T̂G (see equation (13)). Indeed, let us take a vector (∆u, 0,∆θ, ε) onto
the Poincaré section Σout (where v = v∗, see (8)) and compute αv, αθ, κv, κθ, ρv, ρθ such
that:

ϕ̂uu ϕ̂uv 0 ϕ̂uε
ϕ̂vu ϕ̂vv 0 ϕ̂vε
0 0 1 0
0 0 0 1


|(τ∗;ws)


∆u
0

∆θ
ε

+∆t


F u

F v

ω
0


|ϕ̂(τ∗;ws)

=


0

αv∆u+ κv∆θ + ρv(θ)ε
αθ∆u+ κθ∆θ + ρθ(θ)ε

ε

 ,

where τ ∗ = τ ∗(ws) is such that ϕ̂u(τ ∗(ws); ws) = u∗. From the first coordinate we obtain

∆t = − ϕ̂
u
u∆u+ ϕ̂uε∆ε

F u
,
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and therefore,

αv = ϕ̂vu −
F v

F u
ϕ̂uu, κv = 0, ρv(θ) = ϕ̂vε −

F v

F u
ϕ̂uε ,

αθ = −ω ϕ̂
u
u

F u
, κθ = 1, ρθ(θ) = −ω ϕ̂

u
ε

F u
,

(50)

obtaining the formulas that are given in (13) and (14).

B Choice of the Poincaré sections

In both examples, the Duffing equation and the HBR model, we have chosen sections Σin

and Σout located at a distance r = 0.1 from the saddle points. This choice is a compromise
between avoiding long computations along the separatrices, which requires r to be as large
as possible, and maintaining the validity of the approximation of the local dynamics by the
linear map, which requires r to be as small as possible. To assess this balance, we considered
fixed sections at a very small distance (r0) to the saddle and, for r > r0, we evaluated the
time error induced by the fact of considering the approximation of the local dynamics from
section r0 to section r instead of considering the global map. More precisely, for the Duffing
equation (for the HBR model, the procedure is similar), we compare the global time from
section v = r0 to u = r0 (denoted by T r0gl ) along the separatrix with the concatenation
of three times (see also Figure 14(a)): (1) the time T r0→rloc to go from section v = r0 to
section v = r > r0 computed using the local approximation (T r0→rloc = 1/λ+ ln(r/r0)) plus
(2) the global time (T rgl) along the separatrix to go from section v = r to u = r plus (3)
the time T r→r0loc to go from section u = r > r0 to section u = r0 computed using the local
approximation (T r→r0loc = 1/λ− ln(r0/r)). That is, we compute the error function

ET (r) = |T r0gl − (T r0→rloc + T rgl + T r→r0loc )|. (51)

In Figures 14(b) and (c) we show the function ET (r) with r0 = 0.001 and 0.001 ≤ r ≤ 0.5
for γ = 0.008 and γ = 0.08, respectively. By looking at these plots, it is clear that r = 0.1
is a good compromise.

An analogous computation for the HBR model gives the results shown in Figure 14(d).
Again it is clear that r = 0.1 is a good compromise also for this model.

C Fitting of the histograms

The distributions of dominance times in Figures 4, 5, 6 (top) and 11 top have been fitted to
log-normal and Gamma distributions. The probability density function for the log-normal
distribution is

fln(x) =
1

σx
√

2π
exp

(
−(ln(x)− µ)2

2σ2

)
,

where µ is the mean and σ is the standard deviation of the normally distributed logarithm
of the variable. The probability density function for the Gamma distribution with a shape
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Gamma Log-normal Normal

Model shape (a) scale (λ) σ µ (scale=eµ) µ σ

γ
=

0.
00

8 SM 2 freq 105.584 0.08686 0.09766 0.96084 0.00022 0.02664

SM 3 freq 87.2084 0.09990 0.10748 0.93821 -0.00030 0.04286

noise 84.2724 0.10647 0.10938 0.95094 -0.00073 0.03466

γ
=

0.
08 SM 2 freq 126.606 0.07405 0.08922 0.97069 0.00026 0.01996

SM 3 freq 98.6673 0.09110 0.10105 0.95199 0.00026 0.03072

noise 95.3895 0.09917 0.10273 0.97411 -0.00093 0.01932

Table 1: Parameters of the Gamma and log-normal distributions obtained from the fitting
of the dominance times histograms and parameters of the normal distribution obtained
from the fitting of the impact histograms shown in Figures 4, 5, 6 for simulations of the
separatrix map (SM) with 2 and 3 frequencies and the system with noise corresponding to
the Duffing equation.

parameter a and a scale parameter λ is

fg(x) =
1

Γ(a)λa
xa−1 exp(−x/λ).

Maximum likelihood fits of the time distributions to a log-normal and Gamma distri-
bution give the parameter values indicated in Table 1 for the Duffing equation and Table 2
for the HBR model.

The distributions of impacts on sections Σout in Figures 4, 5, 6 (bottom) have been fitted
to a normal distribution. The probability density function for the normal distribution is

fn(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
,

where µ is the mean and σ is the standard deviation. The parameter values obtained from
the maximum likelihood fits to the normal distribution for the Duffing equation are given
in Table 1.
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Gamma Log-normal

Model shape (a) scale (λ) σ µ (scale=eµ)

SM 1 freq 167.492 0.42598 0.07735 4.26527

SM 2 freq 87.1589 0.65399 0.10765 4.03872

SM 3 freq 55.9174 1.00719 0.13446 4.02414

noise 38.0614 1.49805 0.16332 4.03324

Table 2: Parameters of the Gamma and log-normal distributions obtained from the fitting
of the dominance times histograms shown in Figure 11 for simulations of the separatrix
map (SM) with 1, 2 and 3 frequencies and the system with noise corresponding to the HBR
model.

List of Figures

(a) (b) (c)

Figure 1: (a) Level sets of the Hamiltonian of the Duffing equation (1) and section J c

defined in (3). (b) The zero level set in the space (u, v). (c) Projections, J in,outσ , of the
Poincaré sections defined in (8) on the phase space (u, v).
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(a) 1 frequency (b) 2 frequencies (c) 3 frequencies

γ
=

0.
00

8
γ

=
0.

08

Figure 2: Maximal Lyapunov exponent (computed using MEGNO) for the orbits of several
separatrix maps of the Duffing equation with initial conditions on the phase space (u, θ)
(θi = θ, for i = 1, 2, 3): (top) separatrix map (22) corresponding to γ = 0.008 with r = 0.1
and ε = 0.001, and (bottom) separatrix map (23) corresponding to γ = 0.08 with r = 0.1
and ε = 0.001. The number of frequencies in the perturbation is indicated in each panel.

(a) (b)

Figure 3: Iterates of the separatrix map (22) corresponding to γ = 0.008 with r = 0.1,
ε = 0.001, and a perturbation with two frequencies, with initial conditions in the non-
chaotic region (see Figure 2(b) top). (a) Iterates on the (u, θ1) space, and (b) iterate
number vs angle variable θ1.
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Figure 4: Histograms of the dominance times (time to return to the Poincaré section Σout
v=±r)

and the u-value at section v = ±r for the map in (22) corresponding to γ = 0.008 with a
perturbation with (a) 1, (b) 2 and (c) 3 frequencies, ε = 0.001, r = 0.1 and initial conditions
u = 0, θi = 0, σ = 1 and γ = 0.008. We have used 100,000 iterates. Dominance times
histograms (top) are fitted to Gamma (green) and log-normal (red) distributions (fittings
not distinguishable) and impact histograms (bottom) are fitted to normal distributions
(blue), see Appendix C. Notice here that the u-values of the iterates for the quasi-periodic
perturbation of 3 frequencies impact, in some cases, outside r = 0.1. This is not a problem
since the map computes the times correctly. If the initial condition for the case with
1 frequency is chosen as u = 0.1, the orbit converges to a different periodic orbit and
we obtain a histogram which is also a delta function but centered at a different position
(results not shown). Histograms have been normalized to have area 1.
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Figure 5: Histograms of the dominance times (time to return to the Poincaré section Σout
v=±r)

and the u-value at section v = ±r for the map in (23) corresponding to γ = 0.08 with a
perturbation with (a) 1, (b) 2 and (c) 3 frequencies, ε = 0.001, r = 0.1 and initial conditions
u = 0, θi = 0, σ = 1 and γ = 0.008. We have used 100,000 iterates. Dominance times
histograms (top) are fitted to Gamma (green) and log-normal (red) distributions (fittings
not distinguishable) and impact histograms (bottom) are fitted to normal distributions
(blue), see Appendix C. Histograms have been normalized to have area 1.
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Figure 6: Histograms of the dominance times (time to return to the Poincaré section
Σout
v=±r) and the u-value at section v = ±r obtained from the integration of the system

of differential equations (24) with γ = 0.008 and ε = 5 · 10−4 (left) and γ = 0.08 and
ε = 10−3 (right). Time histograms (top) are fitted to Gamma (green) and log-normal
(red) distributions (fittings not distinguishable) and impact histograms (bottom) are fitted
to normal distributions (blue), see Appendix C. We have used 10,000 iterates and initial
conditions u = 0 and v = r. We have integrated the system using an Euler-Maruyama
method with a stepsize of ∆t = 10−6 for γ = 0.008 and ∆t = 10−5 for γ = 0.08. For
γ = 0.008 the homoclinic is less contractive, therefore the noise is chosen smaller to avoid
that trajectories drift away from the separatrix. Histograms have been normalized to have
area 1.

36



(a) γ = 0.008 (b) γ = 0.08

Figure 7: Comparison between fittings to log-normal distribution of the dominance times
histograms in Figures 4, 5 and 6 (similar results for fittings to Gamma distribution).

(a) (b)

Figure 8: For different values of γ and different values of r of the Poincaré section we show
(a) the coefficient α in (16) computed numerically using variationals around the perturbed
separatrix and (b) the difference in L1-norm (in log-scale) between the function ε−1 M̃(θ)
and the function rµρ(θ) (see expression (26)).
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(a) Global view (b) Partial view (c) Local view

(d)

T+
G : Σout+ → Σin− T−L : Σin− → Σout− T−G : Σout− → Σin+ T+

L : Σin+ → Σout+

Figure 9: (a) Saddle points and heteroclinic orbits (27) for Ix = Iy = ε = 0. (b, c) Views
of the 2-D transversal sections used in the Poincaré maps defined in (30). Each Poincaré
section, consists of two components, each one denoted with a sign subindex which is omitted
here. (b) Positive components of the Poincaré sections (i.e., for x > 0 and for y > 0) both
nearby p = −1 and p = 1. (c) All components of the Poincaré sections nearby p = 1.
Recall that Σin,out± = J in,out± × Tn, see (27). (d) The four Poincaré maps that define the
total separatrix map S = T+

L ◦ T
−
G ◦ T

−
L ◦ T

+
G .
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(a) 1 frequency (b) 2 frequencies (c) 3 frequencies

Figure 10: Maximal Lyapunov exponent (computed using MEGNO) for the orbits of the
separatrix map (42) (using the reduced version (48) of the global map) for the HBR model
with initial conditions on the phase space (x, θ) (θi = θ, for i = 1, 2, 3) and parameters
Ix = Iy = 0.1, ε = 0.001 and r = 0.1. The number of frequencies in the perturbation is
indicated in each panel.
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(a) 1 frequency (b) 2 frequencies

(c) 3 frequencies (d) noise

Figure 11: (a,b,c) Dominance times histograms computed using the separatrix map (42)
with a quasi-periodic perturbation of 1,2 and 3 frequencies (28) and ε = 10−3 and Ix = Iy =
0.1. We show time to return to the section p = 0 by concatenating one local map and one
global map. We used 200,000 iterates. Initial conditon is x = −0.1, θi = 0. (d) Dominance
times for system (27) with noise (29) with ε = 10−3 and Ix = Iy = 0.1. We show time to
return to the Poincaré section p = 0 by integrating the full system (27) (notice that this is
equivalent to concatenate one local map and one global map when we consider symmetry
in the system). We used 2,000 iterates. For all histograms, we show fittings to Gamma
(green) and log-normal (red) distributions (fittings not distinguishable). Histograms have
been normalized to have area 1.
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Figure 12: Comparison between fittings to log-normal distribution of the dominance times
histograms in Figure 11 (similar results for fittings to Gamma distribution).

(a) (b)

Figure 13: For different values of I = Ix = Iy we show (a) the coefficient αx in (40) com-
puted numerically using variational equations along the heteroclinic connection to compare
with the coefficient Ax = 0 in (49) and (b) the difference in L1-norm between the function
ρx(θ) in (40) and the function Px(θ) in (49).
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(a) Comparison scheme (b) γ = 0.008

(c) γ = 0.08 (d) HBR model

Figure 14: Justification for the choice of r. (a) Schematic representation of the two com-
pared times: global map (left) and concatenation of three maps (right). On trajectories
shown in blue, the time is computed using global maps, while on trajectories shown in
red, the time is computed using local approximations. (b,c,d) Function ET (r) showing
the difference between the time from section Σout

0.001 to Σin
0.001 computed using a global map

or a combination of local and global maps involving r for (a) the Duffing equation with
γ = 0.008, (b) the Duffing equation with γ = 0.08 and (c) the HBR model (see equation
(51) and Appendix B for more details).
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