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The pseudo-normal form is presented as an alternative to the Birkhoff nor-
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1. INTRODUCTION

Given a “planar” general ordinary differential equation (o.d.e.) of the
type

{
ż = F (z, θ) z ∈ R

2 or C
2

θ̇ = ω θ ∈ T
d = (R/2πZ)d

, d ≥ 0,
(1)

where F is analytic in z and vanishes for z = 0: F (0, θ) = 0 for all θ ∈ T
d,

an important problem is to find a transformation (z, θ) = (Φ(ζ, θ), θ), with
ζ = (ξ, η), such that in the new variables the system takes the simpler
normal form

⎧⎨
⎩
ξ̇ = ξA1(ξη)
η̇ = ηA2(ξη)
θ̇ = ω.

(2)
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The existence and convergence of such change depends not only on the
dimension d, but also on the dynamical character exhibited by the invariant
torus z = 0. In order to achieve an affirmative answer to this problem, we
will restrict ourselves to normal forms of the type

(
ξ̇
η̇

)
= N(ξ, η) =

(
ξA(ξη)

−ηA(ξη)

)

θ̇ = ω

, (3)

that is, with A2 = −A1 in (2). A system written in this way is said to be in
Birkhoff normal form. It is straightforward to verify that it is Hamiltonian,
with Hamilton function H(ξη), where H(u) =

∫
A(u) du. Thus, given

a (Hamiltonian) system like (1), our original situation has become the
problem of seeking for a transformation (ζ, θ) �→ (z, θ) = (Φ(ζ, θ), θ) leading
it into its corresponding Birkhoff normal form (3). The existence and
convergence of the transformation to Birkhoff normal form has been proved,
for analytic Hamiltonian systems, in several cases:

The autonomous case (d = 0). Here, the equilibrium point z = 0 can
be hyperbolic or elliptic, and the first results were due to Poincaré and
Birkhoff.

The periodic case (d = 1). In this situation, z = 0 is a periodic orbit γ =
{(0, θ), θ ∈ T}. The convergence of the transformation to Birkhoff normal
form is achieved provided γ is hyperbolic, that is, with real characteristic
exponents ±λ, λ > 0. The dependence of F with respect to the angle θ
does not need to be analytic, and it suffices to consider F to be C1 with
respect to θ. This result was obtained by J. Moser [5] in 1956.

The quasi-periodic case (d = 2). The invariant object is now a 2-dimen-
sional torus T = {(0, θ), θ ∈ T

2}, assumed to be hyperbolic, that is, with
3-dimensional stable and unstable associated invariant manifolds. F is
assumed analytic in θ ∈ T

2 and the frequency ω of the invariant torus is
assumed to be Diophantine, that is, there exist C > 0 and τ ≥ 1 such that

|k · ω| ≥ C|k|−τ , ∀k ∈ Z
2 \ {0} .

The existence and convergence of such transformation was provided by
A. Delshams et al. [2] in 1997, and can be easily generalized for d ≥ 2.

Similar results hold for analytic reversible systems. Indeed, the Birkhoff
normal form (3) is just the form obtained when the normal form (1) is
required to be invariant under the involution (ξ, η, t) −→ (η, ξ,−t). Thus,
the Birkhoff normal form (3) is the normal form that arises in Hamiltonian
or reversible systems in a neighborhood of z = 0.
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In the present paper, we will restrict ourselves to the case d = 0, that is,
we will consider a general analytic two-dimensional system ż = F (z) where

F (z) =
(
f(x, y)
g(x, y)

)
.

We recall that the process leading to a Birkhoff normal form for this
system is equivalent to the existence of a transformation z = Φ(ζ), close
to the identity and analytic in z = (x, y), such that the new vector field
N = Φ∗F = [DΦ]−1

F (Φ) is of the form given in (3). In other words, F , Φ
and N must satisfy the equation

DΦ ·N = F (Φ). (4)

Since the functions f and g involved in this process are general (they are
just assumed to be analytic in x, y), the study of its transformation to
Birkhoff normal form is equivalent to the problem of determining if a given
system is Hamiltonian or not.

Our approach, which follows an idea of D. DeLatte [1], and J. Moser,
consists of looking for vector fields Φ, N and B satisfying the equation

DΦ ·N +B = F (Φ), (5)

with

B(ζ) =
(
ξb1(ξη)
ηb2(ξη)

)
. (6)

Condition (5) is weaker than the one in (4) and, in particular, implies that
Φ does not have to be a change of variables, unless B is of the form DΦ ·W .
Indeed, the new system is not necessarily written in Birkhoff normal form.
In a näıve way, the remainder term B contains the obstructions of the
original system to be Hamiltonian and, therefore, in the planar context,
integrable. From now on, we will say that the transformation Φ leads
system ż = F (z) into its Birkhoff pseudo-normal form (or shorter, its
pseudo-normal form) if there exists a vector field N of the form (3) and a
vector field B of the form ( 6) such that equation (5) is satisfied.

It is worth mentioning that, during the procedure of calculating the
transformation Φ and the vector fields N and B corresponding to a given
system, the connection between the two scalar functions b1 and b2 of the
remainder term B is not completely determined. That is, its particular
aspect can be established a priori with a certain degree of freedom. Thus,
we may, depending on the context, consider different forms for the vector
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field B like, for instance [1]

B(ξ, η) =
(

0
ηb(ξη)

)
,

which provides an easy triangular scheme to obtain A(ξη) and b(ξη), or

B(ξ, η) =
(
ξb(ξη)
ηb(ξη)

)
,

which will be the one used in this paper, since it will be more useful to
preserve the geometrical properties of the original system..

We now present our main result on the convergence of the pseudo-normal
form. In its statement, as well as along the paper, the following notation
will be used: ĥ(x, y) will denote the terms of order equal or greater than 2
in the variables x, y of a function h(x, y) of these two variables.

Theorem 1 (Pseudo-Normal Form Theorem).
Let us consider a general system of the form,

ż = F (z), z = (x, y) ∈ R
2 or C

2, (7)

where

F (z) = Λz + F̂ (z) =
(
λ 0
0 −λ

)
+
(
f̂(x, y)
ĝ(x, y)

)

is analytic in z, with λ �= 0 and such that z = 0 is an equilibrium solution.
Then, there exist vector fields

N(ζ) =
(

ξA(ξη)
−ηA(ξη)

)
, B(ζ) =

(
ξb(ξη)
ηb(ξη)

)
, (8)

and an analytic in ζ transformation, convergent in a neighborhood of ζ = 0,

z = Φ(ζ), ζ = (ξ, η),

leading system (7) into its pseudo-normal form, that is, satisfying

DΦ(ζ) ·N(ζ) +B(ζ) = F (Φ(ζ)). (9)

Remark 2. A similar result is given in [1], where the convergence of
the transformation leading to the pseudo-normal form (9) is proved for the
case of a non-necessarily area-preserving mapping, with λ real, |λ| > 1 and
B of type (0, ηb(ξη)). Our approach is slightly different since we focus on
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planar vector fields and we deal in a unified way, by means of hypothesis
λ �= 0, with both the hyperbolic and the elliptic (linear center) equilibrium
point case.

There are several cases, depending on the vector field F , where the re-
mainder term B is known to be zero, and therefore Theorem 1 ensures the
convergence of the normal form. One of them is the case of a Hamiltonian
vector field F . Another one is the case of a reversible vector field F .

We recall that, given an involution G, (G2 = Id and G �= Id), a system
Ẋ = F(X) is called G-reversible if it is invariant under the action (X, t) �→
(G(X),−t). Equivalently, the transformation G conjugates F with −F ,
that is G∗F = −F , where G∗F = (DG)−1F(G). The involution G is called
a reversing involution of the system Ẋ = F(X). In the particular case that
G is linear, we will denote it by R and therefore the last equality becomes
just R ◦F ◦R = −F . For instance, R(ξ, η) = (η, ξ) is a reversing involution
for the Birkhoff normal form (3). For more details about reversible systems,
see [7].

Remark 3. The reversing involutions G of a reversible system do not
need to be linear. However, it is known that any reversible system is
conjugate, in a neighborhood of symmetric object, to a linear reversible
system (Bochner Theorem, see [4]). Moreover, having in mind that the
invariance under an involution is preserved by coordinate transformations,
it is straightforward to construct families of G-reversible systems with a
non-linear G. Namely, if the system Ẋ = F(X) satisfies R ◦ F ◦ R =
−F , where R is linear, applying a transformation of the form W = S(X),
the new system Ẇ = H(W ) is reversible with respect the reversing (not-
necessarily linear) involution G = S ◦ R ◦ S−1.

We now summarize these results about convergence of the Birkhoff nor-
mal form in the following corollary of the Pseudo-Normal Form Theorem.

Corollary 4. Given a Hamiltonian or reversible analytic system

ż = F (z) = Λz + F̂ (z), z ∈ C
2,

with Λ a diagonal matrix (λ,−λ), λ �= 0, there exists an analytical change
of variables z = Φ(ζ), convergent in a neighborhood of the origin, which
leads it into its Birkhoff Normal Form (i.e., with B ≡ 0).

The result above simply requires an additional study of the form of the
transformations Φ of Theorem 1 leading to pseudo-normal form, that will
be performed in section 5. Interestingly enough, that result for the Hamil-
tonian case can be derived from a Criterium of Integrability (Theorem 14),
which establishes that the vanishing of the remainder term B in the pseudo-
normal form is equivalent to the existence of an analytical first integral of
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system (7) around the origin. Therefore, for the vector field F of sys-
tem (7), its Hamiltonian character is equivalent to its reversibility and also
to its integrability.

For a non-integrable vector field F , the vector field N in the pseudo-
normal form (9) plays the rôle of its integrable part, whereas the vector
field B plays the rôle of the obstruction to integrability. Since they have
the form

N(ζ) =
(

ξA(ξη)
−ηA(ξη)

)
, B(ζ) =

(
ξb(ξη)
ηb(ξη)

)
,

each one of them is determined by an analytic function A, b of the variable
u = ξη. It is worth noticing that each zero u∗ = ξ∗η∗ of the function b
gives rise to a solution of system (7) given explicitly by

z(t) = Φ(ξ∗ exp(tA(u∗)), η∗ exp(−tA(u∗))). (10)

If in system (7), F is a real vector field with both critical exponents λ,−λ
real (and non-zero: the saddle case), the transformation Φ and the vector
fields N , B can be chosen also real, as well as the functions A, b, which are
real analytic functions of the real variable u = ξη. In accordance with the
Criterium of Integrability, the function b(u) measures the non-integrability
of the vector field F . On the other hand, the non-constant character of the
function A(u) measures the anisochronicity of the vector field F . Indeed,
given an integrable vector field F , it will be conjugated to its normal form
N , whose solutions are of the form (10), which will be linear if and only
if A is a constant function. On the contrary, we may speak about an
(integrable) isochronous saddle when b = 0 and A is constant. Of course,
this notion is simply a particular case of the one given by Christopher et
al. [3], which is also valid for more general critical exponents.

If the vector field F in system (7) is the complexification of a real vector
field with both critical exponents λ,−λ imaginary (and non-zero: the lin-
ear center case, with its application to the center-focus problem), it turns
out that to come back to the real variables, one has to consider ξ, η as
conjugate variables (that is, ξ̄ = η), and b is a real analytic function of
the variable r2 = ξη, whereas A is a pure imaginary function of the same
variable. Alternatively, introducing A = ia, a is a real analytic function of
the variable r2 = ξη,

By equation (10), each zero r2∗ = ξ∗η∗ of the function b gives rise to a
periodic solution of system (7) with period T = 2π/a(r2∗). Unless b ≡ 0
(the integrable case, that is the origin is a center), each zero of a will be
isolated, and will give rise to a limit cycle of system (7). One has, in this
way, a new tool to locate limit cycles close to linear centers of analytic
systems in the plane. Of course, in the case of a center (b ≡ 0), it is clear
by equation (10) the rôle of anisochronicity played by the function a.
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Indeed, from the series of a:

a(r2) = a0 + a1r
2 + a2r

4 + a3r
6 + · · ·

convergent for, say,
∣∣r2∣∣ < u0 and where λ = ia0, one obtains straightfor-

wardly the so-called period constants Tm of the series expansion

T = 2π/a(r2) = 1 + T1r
2 + T2r

4 + T3r
6 + · · ·

We summarize these results in the following corollary.

Corollary 5. For any planar vector field (7) under the assumptions of
Theorem 1, with a function b in (8) not identically zero, we have

(i)For each zero u∗ = ξ∗η∗ of b, there exists a solution of the form (10)
of system (7).

(ii)In the linear center case (λ = ia0, a0 > 0), for each zero r2∗ of the
analytic function b, there exists a limit cycle of period T = 2π/a(r2∗), with
A = ia in (8).

Coming back to the non-center case, the series expansion of b

b(r2) = b1r
2 + b2r

4 + b3r
6 + · · ·

gives rise to a kind of focal values. In contrast with the center case, where
the constants am are uniquely determined, in the non-center case the con-
stants bm (and therefore am) are not uniquely determined, but it turns
out that each of them is uniquely determined modulo the ideal generated
by the previous ones, as the so-called Lyapunov constants do. This com-
mon property gives strong evidences that the constants bm are, in fact, the
Lyapunov constants modulo some constant term.

The rest of the paper is organized as follows. In the next section, the
proof of the Pseudo-Normal Form Theorem is begun, at least at a formal
level. Later on, in section 3 we detail the inductive process, and finally,
in section 4, the proof of Theorem 1 is finished. Section 5 deals with the
Criterium of Integrability and the recursive computation of the constants
bm. As a corollary, the proof of the Corollary 4 is readily performed.

2. PSEUDO-NORMAL FORM THEOREM: FORMAL
SOLUTION

In order to solve, formally, the so-called homological equation

DΦ ·N +B = F (Φ), (11)
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we assume that the remainder function B begins with terms of order at
least 2 in ξ, η. Introducing N = ΛId + N̂ , Φ = Id + Φ̂, B = B̂ and
F = ΛId+ F̂ (see the notation introduced before Theorem 1), we obtain

D(Id+ Φ̂) · (ΛId+ N̂) + B̂ = ΛΦ + F̂ (Φ),

which is equivalent to

DΦ̂ ·N − ΛΦ̂ = F̂ (Φ)− N̂ − B̂.

Thus, by defining the functional operator,

LNΨ := DΨ ·N − ΛΨ,

equation (11) is equivalent to

LN Φ̂ = F̂ (Φ)− N̂ − B̂. (12)

2.1. The homological equation
Before dealing with the resolution of (12), we study first the formal

solution of the linear equation

LN Φ̂ = H, (13)

that is, the formal invertibility of the functional operator LN . First of all,
notice that LNΨ is of order equal or greater than 2 in ζ = (ξ, η) if Ψ is.
This means that we can consider H = Ĥ = (ĥ1(ξ, η), ĥ2(ξ, η)). Introducing
Φ̂ = (φ̂(ξ, η), ψ̂(ξ, η)), we write the series expansions for the components of
Φ̂ and Ĥ,

φ̂(ξ, η) =
∑

j+k≥2

φjkξ
jηk , ψ̂(ξ, η) =

∑
j+k≥2

ψjkξ
jηk

and ĥm(ξ, η) =
∑

j+k≥2

h
(m)
jk ξjηk, m = 1, 2. Hence,

LN Φ̂ = DΦ̂ ·N − ΛΦ̂

=
(
φ̂ξ φ̂η

ψ̂ξ ψ̂η

)(
ξA(ξη)

−ηA(ξη)

)
−
(
λ 0
0 −λ

)(
φ̂

ψ̂

)

=
(

(ξφ̂ξ − ηφ̂η)A(ξη) − λφ̂
(ξψ̂ξ − ηψ̂η)A(ξη) + λψ̂

)
=
(
ĥ1(ξ, η)
ĥ2(ξ, η)

)
.
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Equating the first components of the last expression we get

ĥ1(ξ, η) =
∑

j+k≥2

h
(1)
jk ξ

jηk =
∑

j+k≥2

{(j − k)A(ξη) − λ}φjkξ
jηk,

which, using that

A(ξη) = λ+ Â(ξη) = λ+
∑
m≥1

αm(ξη)m,

is equal to

∑
j+k≥2

(j − k − 1)λφjkξ
jηk +

∑
m≥1

∑
j+k≥2

αm(j − k)φjkξ
j+mηk+m

=
∑

j+k≥2

(j − k − 1)λφjkξ
jηk +

∑
m≥1

∑
j+k≥2(m+1)

αm(j − k)φj−m,k−mξ
jηk.

We see that the corresponding coefficient φjk of a given order in ξ, η is
computed, iteratively, as a function of the coefficient h(1)

jk of the same order
and coefficients φj∗k∗ of a lower order, (which are known from previous
steps of the process) provided that j �= k + 1. The terms of the expansion
of Φ̂ that we are not able to determine from our system are of the type

ξ
∑
k≥1

φk+1,k(ξη)k,

and are known as resonant terms. So, at the end, following this iterative
scheme, we are able to determine the coefficients φjk, of the function φ(ξ, η)
if j �= k + 1, with arbitrary values for φk+1,k, k ≥ 0. Analogously, for the
second component, such coefficients ψjk can be obtained, provided that
k �= j+1 and for any fixed value of ψj,j+1, j ≥ 0. It is worth stressing that
the only condition we need to carry out this (formal) procedure is that λ
does not vanish.

2.2. Definition of the projections
In solving the linear equation (13), we have seen that it is only possible to

compute the coefficients of the series expansion of Φ = (φ, ψ) corresponding
to non-resonant terms. This fact leads to the following

Definition 6. Given a function f of the form

f(x, y) =
∑

j+k≥1

fjkx
jyk,
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we define the following two projectors, P1 and P2, as

P1f(x, y) = x
∑
j≥0

fj+1,j(xy)j

P2f(x, y) = y
∑
j≥0

fj,j+1(xy)j .
(14)

In the same way, if F (x, y) = (f(x, y), g(x, y)) is a vector field, we define

PF (x, y) =
(
P1f(x, y)
P2g(x, y)

)
. (15)

Moreover, we will denote R = Id− P , where Id is the identity.

These operators satisfy very nice properties. For instance, as stated in
the following lemma, the three operators P , R and LN commute.

Lemma 7. The projections P and R commute with LN , that is,

P(LNΦ) = LN (PΦ), R(LNΦ) = LN (RΦ).

We omit its proof, since it consists on straightforward computations, and
come back to the solution of the homological equation (12). Since PN̂ = N̂
and PB̂ = B̂, applying P onto both sides of equation (12) we get

P(LN (Φ̂)) = PF̂ (Φ)− N̂ − B̂. (16)

In the same way, applying R and taking into account the previous lemma
it follows that

LN (RΦ̂) = RF̂ (Φ).

Looking for an iterative scheme solving, formally, the homological equation
(12) we present a first attempt which derives directly from the properties
above. We take as initial values

Φ(1) = Id, N (1) = ΛId, B(1) = 0. (17)

Recursively, the corresponding (K+1)-iterate of the transformation Φ̂, i.e.
Φ̂(K+1), will be chosen as the (infinite) formal series satisfying

LN(K)(RΦ̂(K+1)) = RF̂ (Φ(K)). (18)

Moreover, if we write

P(LN(K) Φ̂(K)) = PF̂ (Φ(K))− N̂ (K+1) − B̂(K+1),
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using that

P(LN(K) Φ̂(K+1)) = LN(K)(PΦ̂(K+1)) =: Ψ̂(K+1) =

(
ξψ̂

(K+1)
1 (ξη)

ηψ̂
(K+1)
2 (ξη)

)

is known, we finally get

N̂ (K+1) + B̂(K+1) = PF̂ (Φ(K+1))− Ψ̂(K+1). (19)

3. THE ITERATIVE SCHEME: AN IMPROVEMENT

Equation (18) will determine Φ̂(K+1) except for its resonant terms, i.e.,
for PΦ̂(K+1) that, for the moment, we leave undetermined. For compu-
tational reasons, we will not follow exactly the iterative scheme presented
in the previous section. Before going on with this question, we introduce
some notation that will be used along the section. Indeed, we will denote
G(ξ, η) = O[K] if G is a (formal) homogeneous polynomial of order ex-
actly K in the spatial variables ξ, η. Besides, we will write G(ξ, η) = OK

if G contains only terms of order greater or equal than K in ξ, η and
G(ξ, η) = O≤K if all the terms in G are of order less or equal that K. Now,
we present a result that will be crucial to refine the initial iterative process.

Lemma 8. The vector fields Φ, N and B provided by the inductive
scheme (17) –(19) satisfy, for K > 1,

Φ(K+1) − Φ(K) = OK+1

B̂(K+1) − B̂(K) = OK+1

N̂ (K+1) − N̂ (K) = OK+1.

(20)

Proof. We proceed inductively. For K = 1 it is straightforward to verify
them, since Φ(2) = Id + Φ̂(2) = Φ(1) + Φ̂(2), where Φ̂(2) = O2 and B̂(2),
N̂ (2) are, in fact, O3. Thus, assume that the following equations

Φ(K) − Φ(K−1) = OK

B̂(K) − B̂(K−1) = OK

N̂ (K) − N̂ (K−1) = OK

hold. To prove Φ(K+1) − Φ(K) = OK+1, we compare LN(K)(RΦ̂(K+1)) =
RF̂ (Φ(K)) with LN(K−1)(RΦ̂(K)) = RF̂ (Φ(K−1)). Subtracting them we
have the following equation,

LN(K)(RΦ̂(K+1))− LN(K−1)(RΦ̂(K)) = RF̂ (Φ(K))−RF̂ (Φ(K−1)),
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that we study in two steps. Namely,

(i) First, expanding the right-hand side in Taylor series up to order one,
using that R(DF̂ ) = O1 and the induction hypothesis, it turns out that

RF̂ (Φ(K))−RF̂ (Φ(K−1))

= RDF̂ (μΦ(K−1) + (1− μ)Φ(K))
[
Φ(K) − Φ(K−1)

]
= RDF̂ (Id + μΦ̂(K−1) + (1− μ)Φ̂(K))

[
Φ(K) − Φ(K−1)

]
= OK+1,

where 0 < μ < 1.
(ii) Second, taking into account that

LN1+N2Ψ = LN1Ψ +DΨ ·N2,

it follows that

LN(K)(RΦ̂(K+1))− LN(K−1)(RΦ̂(K))

= LN(K−1)(RΦ̂(K+1)) +D(RΦ̂(K+1))
[
N (K) −N (K−1)

]
−LN(K−1)(RΦ̂(K))

= LN(K−1)(RΦ̂(K+1) −RΦ̂(K)) +D(RΦ̂(K+1))
[
N (K) −N (K−1)

]
.

It is clear that

D(RΦ̂(K+1))
[
N (K) −N (K−1)

]
= OK+1

so, at the end, using [(i)], we obtain an equality of the form

LN(K−1)(RΦ̂(K+1) −RΦ̂(K)) = H(K+1),

where H(K+1) = OK+1. Since LN preserves the order in ξ, η, that is,
Ψ = OK+1 if and only if LNΨ = OK+1, it follows thatRΦ̂(K+1)−RΦ̂(K) =
OK+1 and finally

Φ(K+1) − Φ(K) = OK+1.

The proof of the estimates

B̂(K) − B̂(K−1) = OK

N̂ (K) − N̂ (K−1) = OK

is completely analogous.
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One of the most important consequences of this lemma is that it shows
how to decrease enormously the computational effort, not only in terms of
the CPU time but also in terms of the amount of memory employed. For
this reason, from now on, the corresponding K-iterates, Φ(K), N (K), B(K)

will be assumed to contain only terms up to order K in ξ, η.
To apply this result on our procedure, we start with a general even

step, say 2M (where M is assumed to be greater than 1). Indeed the
2M -approximation to the function Φ comes from

LN(2M−1)(RΦ̂(2M)) = RF̂ (Φ(2M−1)),

where Φ(2M) = Φ(2M−1) + ΔΦ(2M−1), Φ(2M−1) = O≤2M−1 and ΔΦ(2M−1)

being a homogeneous polynomial containing only terms of order 2M in
ξ, η, that is, ΔΦ(2M−1) = O[2M ]. By comparison with the corresponding
equation from the previous step, namely,

LN(2M−2)(RΦ̂(2M−1)) = RF̂ (Φ(2M−2)),

using that N (2M−2) = N (2M−3) and writing

N (2M−1) = N (2M−3) + ΔN (2M−3),

where N (2M−3) = O≤2M−3 and ΔN (2M−3) = O[2M−1], we arrive at

LN(2M−1)(RΦ̂(2M))− LN(2M−2)(RΦ̂(2M−1)) =
= RF̂ (Φ(2M−1))−RF̂ (Φ(2M−2)). (21)

Using that LN(2M−1)Ψ = LN(2M−3)Ψ +DΨ ·ΔN (2M−3) and the linearity
of LN and R, the left-hand side of (20) can be checked to be equal to

D(RΔΦ(1)) ·ΔN (2M−3) +
[
RΔΦ(2M−1),ΛId

]
+O2M+1,

where [G,H ] = DG ·H −DH ·G is the Lie bracket. Concerning the right-
hand side of the same equation, expanding in Taylor series around Φ(2M−2),
and denoting F = F2+F3+· · ·, Fj being homogeneous polynomials of order
exactly j, it follows that

RF̂ (Φ(2M−1))−RF̂ (Φ(2M−2)) =

= R
{
F̂ (Φ(2M−2))

}
[2M ]

+R
(
DF2 ·ΔΦ(2M−2)

)
+O2M+1.

So finally, we get forM ≥ 2 the following iterative equation, which provides
the incremental term ΔΦ(2M−1) becomes[

RΔΦ(2M−1),ΛId
]

= R
{
F̂ (Φ(2M−2))

}
[2M ]
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+R
(
DF2 ·ΔΦ(2M−2)

)
−D(RΔΦ(1)) ·ΔN (2M−3).

For the case M = 1, corresponding to the first step of the process, it is
straightforward to derive the equation

[
RΔΦ(1),ΛId

]
= RF2.

With respect to the odd steps of the process, we should distinguish
between two kind of equations: a first type, providing the new term ΔΦ(2M)

and a second one which gives the increments related to N and B, namely
ΔN (2M−1) and ΔB(2M−1), respectively. About the former, it follows the
same argument that was used for the even steps case, coming now from the
comparison between the current step equation

LN(2M)(RΦ̂(2M+1)) = R
{
F̂ (Φ(2M))

}
≤2M+1

with the previous one

LN(2M−1)(RΦ̂(2M)) = R
{
F̂ (Φ(2M−1))

}
≤2M

.

Notice that, since ΔΦ(2M) = O[2M+1], it is only necessary to consider terms
of order less or equal than 2M + 1. Then we obtain the following iterative
equation

[
RΔΦ(2M),ΛId

]
= R

{
F̂ (Φ(2M−1))

}
[2M+1]

+R(DF2 ·ΔΦ(2M−1)).

Concerning the second type, which provides the new approximation to
the vector fields N and B, it comes from

N̂ (2M+1) + B̂(2M+1) = P
{
F̂ (Φ(2M+1))

}
≤2M+1

− Ψ̂(2M+1),

where Ψ̂(2M+1) = LN(2M−1)(PΦ̂(2M+1)) and we denote

N̂ (2M+1) = N̂ (2M−1) + ΔN (2M−1)

B̂(2M+1) = B̂(2M−1) + ΔB(2M−1)

Ψ̂(2M+1) = Ψ̂(2M−1) + ΔΨ(2M−1),
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with ΔN (2M−1), ΔB(2M−1), ΔΨ(2M−1) homogeneous polynomials of order
exactly 2M + 1 in ξ, η (that is, they are O[2M+1]). We compare it with

N̂ (2M−1) + B̂(2M−1) = P
{
F̂ (Φ(2M−1))

}
≤2M−1

− Ψ̂(2M−1),

where Ψ̂(2M−1) = LN(2M−3)(PΦ̂(2M−1)), and then apply on it the following
lemma, whose proof is a consequence of the linearity of the operator LN

and the expansion on Taylor series, and is left to the reader.

Lemma 9. Having in mind the definitions above, we have

Ψ̂(2M+1) = Ψ̂(2M−1) +D(PΔΦ(2)) ·ΔN (2M−3) +O2M+2

and

P
{
F̂ (Φ(2M+1))

}
≤2M+1

− P
{
F̂ (Φ(2M−1))

}
≤2M−1

= P
(
DF2 ·ΔΦ(2M−1)

)
+ P

{
F̂ (Φ(2M−1))

}
[2M+1]

+O2M+3.

Indeed, it turns out that

ΔN (2M−1) + ΔB(2M−1)

= P
(
DF2 ·ΔΦ(2M−1)

)
+ P

{
F̂ (Φ(2M−1))

}
[2M+1]

−D
(
PΔΦ(2)

)
·ΔN (2M−3) +O2M+2.

Because of the freedom we have in the choice of PΦ and in order to simplify
the final scheme, we can take PΔΦ(2) = 0. Therefore, the final equation
involving ΔN (2M−1) and ΔB(2M−1), for M ≥ 2, becomes

ΔN (2M−1) + ΔB(2M−1)

= P
(
DF2 ·ΔΦ(2M−1)

)
+ P

{
F̂ (Φ(2M−1))

}
[2M+1]

+O2M+2.

Concerning the first iterates ΔN (1) and ΔB(1), it is straightforward to
verify that they come from

ΔN (1) + ΔB(1) = PF3 + P(DF2 ·ΔΦ(1)).

This equation completes the final iterative scheme, which can be summa-
rized in the following way. Start the process with initial values

Φ(1) = Id, N (1) = ΛId, B(1) = 0,
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and fix a value for PΦ such that PΔΦ(2) = 0. Then,[
RΔΦ(1),ΛId

]
= F2,[

RΔΦ(2),ΛId
]

= R
{
F̂ (Φ(1))

}
[3]

+R(DF2 ·ΔΦ(1)),

ΔN (1) + ΔB(1) = PF3 + P(DF2 ·ΔΦ(1)),

and, for K ≥ 3,[
RΔΦ(K),ΛId

]
= R

{
F̂ (Φ(K−1))

}
[K+1]

+R(DF2 ·ΔΦ(K−1))− δKD(RΔΦ(1)) ·ΔN (K−2),

where δK = 0 if K is even and δK = 1 for K odd. Moreover, about N and
B, if we write K = 2M − 1 with M > 1, we have

ΔN (2M−1)+ΔB(2M−1) = P
(
DF2 ·ΔΦ(2M−1)

)
+P

{
F̂ (Φ(2M−1))

}
[2M+1]

.

We want to stress the fact that, besides the simplicity of the scheme above,
its solution at any step is given by a linear equation. Concretely, we must
solve [

RΔΦ(K),ΛId
]

= RΔH(K), (22)

where the term on the right-hand side is known from the previous steps of
the process. Thus, if we write

ΔΦ(K) =
(
φ(ξ, η)
ψ(ξ, η)

)
, ΔH(K) =

(
h1(ξ, η)
h2(ξ, η)

)
,

where

φ(ξ, η) =
∑

j+k=K+1
j �=k+1

φjkξ
jηk, ψ(ξ, η) =

∑
j+k=K+1

k �=j+1

ψjkξ
jηk,

and

h�(ξ, η) =
∑

j+k=K+1
j �=k+1

h
(�)
jk ξ

jηk, � = 1, 2,

the explicit solution for (22) is given by

φjk =
h

(1)
jk

λ(j − k − 1)
where j + k = K + 1 and j �= k + 1,
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ψjk =
h

(2)
jk

λ(j − k + 1)
where j + k = K + 1 and k �= j + 1.

4. PROOF OF THE CONVERGENCE
4.1. Definition of the norms

Let us consider the following domain around the origin

Dr =
{
z = (z1, z2, . . . , zn) ∈ C

n : ‖z‖∞ = max
j=1,...,n

|zj | ≤ r

}

and let f(z) be an analytic function

f(z) =
∑

α∈Nn

fαz
α.

Writing z = |z|eiϕ we can also express it in multi-index notation as

f(z) = f(|z|, ϕ(z)) =
∑

α∈Nn

fα|z|αeiα·ϕ, (23)

being α · ϕ = α1ϕ1 + α2ϕ2 + · · · + αnϕn and ϕ = ϕ(z) = arg z. At first,
for such kind of functions we consider the supremum norm

‖f‖∞,r = sup
z∈Dr

|f(z)|.

However, this is not the norm we are going to deal with. This new norm,
closely related to the �2-norm, will be defined thanks to the following result.

Lemma 10. Given a positive real number r, there exits a unique r∗ ≥ 0
such that r = r∗er∗.

Hence, we define

‖f‖r = ‖f(|z|, ϕ(z))‖r = sup
|z∗|,|η|≤r∗

(
1

(2π)n

∫
T n

|f(|z∗|, ϕ+ iη)|2dϕ
)1/2

,

with ϕ = ϕ(z∗) = arg z∗ and where r∗ satisfies r = r∗er∗ . Notice that
it is well-defined, since |z∗ei(ϕ+iη)| ≤ |z∗|e|η| ≤ r∗er∗ = r. Moreover,
we can express the Fourier coefficients of f(|z∗|, ϕ + iη) in terms of the
corresponding ones of f(|z∗|, ϕ). Namely, applying a shift ϕ �−→ ϕ + iη
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with |η| ≤ r∗, it follows that

fα|z∗|α =
1

(2π)n

∫
T n

f(|z∗|, ϕ)e−iα·ϕdϕ

=
1

(2π)n

∫
T n

f(|z∗|, ϕ+ iη)e−iα·(ϕ+iη)dϕ

= eα·η 1
(2π)n

∫
T n

f(|z∗|, ϕ+ iη)e−iα·ϕdϕ

and then

1
(2π)n

∫
T n

f(|z∗|, ϕ+ iη)e−iα·ϕdϕ = fα|z∗|αe−α·η.

Using the isometry between L2 and �2 norms, we have∫
T n

|f(|z∗|, ϕ+ iη)|2 dϕ =
∑

α∈Nn

|fα|2|z∗|2αe−2α·η,

so

sup
|z∗|,|η|≤r∗

(
1

(2π)n

∫
Tn

|f(|z∗|, ϕ+ iη)|2dϕ
)1/2

=

(
1

(2π)n

∑
α∈Nn

|fα|2r2α
∗ e2|α|r∗

)1/2

where |α| = |α1|+ |α2|+ · · ·+ |αn|. Indeed we can write the norm defined
above, in a equivalent way, as an slightly weighted �2-norm,

‖f‖r = ‖f(|z|, ϕ(z))‖r =

(
1

(2π)n

∑
α∈Nn

|fα|2r2α
∗ e2|α|r∗

)1/2

with r = r∗er∗ and ϕ(z) = arg z. Such norm satisfies some useful properties
collected in the following lemma, whose proof is standard.

Lemma 11.

(i)For any positive number r we have

‖f‖r ≤ ‖f‖∞,r.

(ii)Given a positive number R, for any ρ, r satisfying 0 < ρ < r ≤ R,
the following estimate

‖f‖∞,ρ ≤
c0

(r − ρ)n/2
‖f‖r,
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holds, where c0 = c0(n) is a constant which depends on n and R.
(iii)Let us consider an analytic function Ψ : Dρ �→ Ds, satisfying that

‖Ψ‖ρ ≤ s. Then, if s < r we have

‖f ◦Ψ‖ρ ≤
c0

(r − s)n/2
‖f‖r.

(iv)Let fM (z) be an homogeneous polynomial of order M ,

fM (z) =
∑
|α|=M

fαz
α.

Then, if 0 ≤ r ≤ R, we have the following bound

‖fM‖r ≤
(
r∗
R∗

)M

‖fM‖R,

where s∗ means the unique positive real number satisfying s = s∗es∗.

This norm can be easily extended to a norm for vector fields. More pre-
cisely, we have

Definition 12. Let us consider a vector field F (z) = (f(z), g(z)),
analytic in Dr. Then, we define

‖F‖r =
(
‖f‖2r + ‖g‖2r

)1/2
.

It is straightforward to verify that this norm satisfies analogous results
to the ones achieved in the previous lemma.

4.2. Convergence of the iterative scheme
The scheme we will follow to prove the convergence of Φ, N and B is

supported on simple ideas. Namely, since Φ = Id +
∑

K≥1 ΔΦ(K), N =
ΛId +

∑
K≥2 ΔN (2K−1) and B̂ =

∑
K≥2 ΔB(2K−1), we will get estimates

for ‖ΔΦ(K)‖ρ, ‖ΔN (2K−1)‖ρ and ‖ΔB(2K−1)‖ρ in a suitable domain Dρ

a bit smaller than the original one, Dr0 . More precisely, we will obtain
bounds of type

a2M−1 ≤ k1ε
2M + k2εa2M−3, a2M−2 ≤ k3ε

2M−1 + k4εa2M−3,

where aK := ‖ΔΦ(k)‖ρ and 0 < ε < 1, k1, . . . , k4 are suitable constants. It
will be derived from these expressions the convergence of ‖Φ‖ρ. The corre-
sponding estimates for N and B come from the fact that ‖Φ‖ρ majorates
them.
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Let us be more precise. First, assume that the following quantities are
finite on Dr0

L0 := ‖F̂‖r0 , L1 := ‖DF2‖r0 ,

Moreover, consider rj = rj−1 − δ, j = 1, 2, 3, intermediate radii and define

0 < γ∗ :=
r3∗
r0∗

< 1,

with r3∗ and r0∗ the unique positive numbers satisfying r3 = r3∗er3∗ and
r0 = r0∗er0∗ , respectively. Since the final domain of convergence will be
Dr3 , we define

aK := ‖ΔΦ(K)‖r3.

Since ΔΦ(2K−1) = O[2K], we have that PΔΦ(2K−1) = 0 and, consequently,
RΔΦ(2K−1) = ΔΦ(2K−1). Furthermore, remind that during the iterative
scheme the value of the projection PΦ̂ can be chosen arbitrary, so we will
need to impose some conditions on this term. Concretely, we want it to be
absolutely convergent in such norm and bounded by the norm of the vector
field F̂ , more precisely,∑

K≥1

‖PΔΦ(K)‖r0 ≤ c3‖F̂‖r0 , (24)

where c3 is a positive constant (that could be large).
Let us focus our attention on the former estimates. From equation[
RΔΦ(1),ΛId

]
= F2 it turns out that |λ|a1 ≤ L0. From[
RΔΦ(2),ΛId

]
= RF3 +R

(
DF2 ·ΔΦ(1)

)
,

and hypothesis (24), one gets |λ|a2 ≤ (c3|λ| + 1)L0 + L1a1. Finally,
‖ΔN (1)+ΔB(1)‖r3 ≤ L0+L1a1. It is now important to remark the concrete
shape of the vector fields N and B. Since N(ξ, η) = (ξA(ξη),−ηA(ξη)) and
B(ξ, η) = (ξb(ξη), ηb(ξη)), it is not difficult to check that

‖ΔN (2K−1)‖r3 , ‖ΔB(2K−1)‖r3 ≤ c2‖ΔN (2K−1) + ΔB(2K−1)‖r3,

where c2 is a constant depending only on r0. Therefore, the previous
bounds become ‖ΔN (1)‖r3 ≤ L0 + L1a1 and ‖ΔB(1)‖r3 ≤ L0 + L1a1.

Our aim is to get recurrent estimates on a2K−1. To this purpose let us
consider the equation[

RΔΦ(2M−1),ΛId
]

= R
{
F̂ (Φ(2M−2))

}
[2M ]

+R(DF2 ·ΔΦ(2M−2))−D(RΔΦ(1)) ·ΔN (2M−3).
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A first näıve estimate reads

|λ|‖RΔΦ(2M−1)‖r3 ≤ ‖
{
F̂ (Φ(2M−2))

}
[2M ]

‖r3

+‖DF2‖r3‖ΔΦ(2M−2)‖r3 + ‖D(RΔΦ(1))‖r3‖ΔN (2M−3)‖r3 , (25)

but can be refined by dealing with its terms separately. Namely,

(i) Since D(RΔΦ(1)) = O[1], applying the last lemma, it follows that

‖D(RΔΦ(1))‖r3 ≤ γ∗‖D(RΔΦ(1))‖r0 ≤
2γ∗L0

|λ| .

(ii) We have

‖F ◦ Φ(2M−2)‖r3 ≤
c1
δ
‖F‖r1

provided ‖Φ(2M−2)‖r3 < r2. So, using again the same lemma, it turns out

‖
{
F̂ (Φ(2M−2))

}
[2M ]

‖r3 ≤ γ2M
∗ ‖

{
F̂ (Φ(2M−2))

}
[2M ]

‖r2 ≤
c1L0

δ
γ2M
∗ .

(iii) Having in mind that DF2 = O[1], it follows that

‖DF2‖r3 ≤ γ∗‖DF2‖r0 ≤ γ∗L1.

(iv) Since

‖ΔN (2J−1) + ΔB(2J−1)‖r3

≤ ‖DF2‖r3‖ΔΦ(2J−1)‖r3 + ‖P
{
F̂ (Φ(2J−1))

}
[2J−1]

‖r3

we have

‖ΔN (2M−3)‖r3 ≤
c1c2L0

δ
γ2M−1
∗ + c2L1γ∗a2M−3.

(v) From

[
RΔΦ(2M−2),ΛId

]
= R

{
F̂ (Φ(2M−3))

}
[2M−1]

+R
(
DF2 ·ΔΦ(2M−3)

)

and assumption (24), it is deduced that

|λ|a2M−2 ≤
(c1
δ

+ c3|λ|
)
L0γ

2M−1
∗ + L1γ∗a2M−3.
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Applying together bounds (i) − (v) onto inequality (25), we arrive at the
following estimate

|λ|a2M−1

≤ L0

(
c1|λ|+ 2c1c2L0 + c1L1 + c3δ|λ|L1

δ|λ|

)
γ2M
∗

+
L1

|λ| (L1 + 2L0) γ2
∗a2M−3,

which involves only odd terms of the sequence {aK}K . Refining the con-
stants we reach the final expression

a2M−1 ≤
K1

δ|λ|2 γ
2M
∗ +

K2

|λ|2 γ
2
∗a2M−3,

where

K1 = |λ|(c1 + c3L1) + 2c1c2L0 + c1L1

K2 = L1(L1 + 2L0),

depend on ‖F‖r0, ‖DF2‖r0 and |λ|. In the same way, from (v),

a2M−2 ≤
K3

δ|λ|γ
2M−1
∗ +

K4

|λ| γ∗a2M−3,

with K3 = c1 + c3|λ| and K4 = L1 also depend only on ‖F‖r0 , ‖DF2‖r0

and |λ|. Choosing γ∗ such that

γ∗ ≤
|λ|2

L1(L1 + 2L0)
,

the inequality satisfied by a2M−1, for M ≥ 2, becomes

a2M−1 ≤
K1

δ|λ|2 γ
2M
∗ + γ∗a2M−3. (26)

The convergence of the series
∑

M≥1 a2M−1 (and, therefore, of
∑

M≥1 a2M ),
comes directly from the application of the following result.

Lemma 13. Let us consider a sequence {ak}k, with ak ≥ 0 ∀k, such
that the following recurrent inequalities are satisfied, for m ≥ 2 and 0 <
ε < 1,

a2m−1 ≤ kε2m + εa2m−3,
a2m−2 ≤ k1ε

2m−1 + k2εa2m−3.
(27)
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Then,
∑
m≥1

am is convergent.

Proof. We start by checking that
∑

m≥1 a2m−1 is convergent. To this
end, we apply recursively the first equation in (27), getting

a2m−1 ≤ k
(
ε2m + ε2m−1 + · · ·+ εm+1

)
+ εm−1a1 ≤ kmεm+1 + εm−1a1.

So, ∑
m≥1

a2m−1 ≤ a1 + k
∑
m≥2

(m− 1)εm+1 + a1

∑
m≥2

εm−1,

which is not difficult to see that is equal to

a1

1− ε + k
ε3 + 2ε(1− ε)

(1− ε)2 .

Finally, the convergence of the even part comes from∑
m≥2

a2m−2 ≤ k1

∑
m≥2

ε2m−1 + k2ε
∑
m≥2

a2m−3.

Notice that this lemma gives the convergence of ‖Φ‖r3, provided we take
ε = γ∗, with γ∗ satisfying condition (26). Concretely,

‖Φ‖r3 ≤ ‖Id‖r3 +
∑
m≥1

‖ΔΦ(m)‖r3 =
r3

π
√

2
+
∑
m≥1

am.

Moreover, because of the restriction imposed by (ii) on ‖Φ(2M−2)‖r3 we
choose γ∗ in such a way that

∑
am is less than r2 (= r0 − 2δ).

The convergence, in ‖ · ‖r3-norm, of N and B is easily derived from the
estimates,

‖ΔN (2M−1)‖r3 , ‖ΔB(2M−1)‖r3 ≤
c1L0

δ
γ2M+1
∗ + L1γ∗a2M−1.

In this way we get analyticity of the transformation Φ and the vector fields
N and B in a domain Dr3 , where r3 = r3∗er3∗ and r3∗ = γ∗r0∗. This
concludes the proof of the Pseudo-Normal Form Theorem.

5. INTEGRABILITY AND PSEUDO-NORMAL FORMS

Integrability is closely related to an special pseudo-normal form of the
system. Precisely, the existence of a first integral will depend on the fact
that b(ξη) vanishes.
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Theorem 14 (Criterium of integrability).
Let us consider a system

ż = F (z) = Λz + F̂ (z), (28)

with Λ = diag (λ,−λ) and λ �= 0, verifying that there exist vector fields N ,
B and a transformation z = Φ(ζ),

N(ξ, η) =
(

ξA(ξη)
−ηA(ξη)

)
, B(ξ, η) = B̂(ξ, η) =

(
ξb(ξη)
ηb(ξη)

)
,

leading it to its pseudo-normal form, i.e. satisfying DΦ ·N +B = F (Φ).
Then, ż = F (z) has a first integral h(z) if and only if B ≡ 0. Moreover,

if h(z) = h(x, y) is a first integral of this system, then it has the form
h = h̃ ◦ Φ−1, where h̃(ζ) = h̃(ξη), depending only on the product ξη.

Remark 15. Since B(ξ, η) = (ξb(ξη), ηb(ξη)), this result also holds for
the scalar function b(ξη).

Proof. It is clear that if B ≡ 0, this is, our system can be written in
Birkhoff normal form, any function of the form h̃(ξη) is a first integral.
Moreover, this is the unique kind of first integrals it has. Then, it is
straightforward to obtain one for the initial system.

To prove the theorem in the other sense, we apply some ideas given
by C.L. Siegel and J.K. Moser (see [8, §30]). Indeed, assuming that sys-
tem (28) has a first integral h and that B �= 0 we arrive at a contradiction.
Performing the transformation z = Φ(ζ), system (28) becomes

ζ̇ = N(ζ) + [DΦ(ζ)]−1B(ζ). (29)

It is easy to verify that h(z) is a first integral of ż = F (z) if and only if
(h ◦ Φ)(ζ) is a first integral of (29). This first integral h̃ = h ◦ Φ can be
written as

h̃(ξ, η) = h̃M (ξ, η) + h̃M+1(ξ, η) + · · ·
with h̃M (ξ, η) �= 0, M ≥ 1, h̃J(ξ, η) being homogeneous polynomials of
order J in ξ, η. Then, since h̃ is a first integral, we have that the equation

Dh̃ ·
{
N + [DΦ]−1B

}
= 0 (30)

holds for any order in the variables ξ, η. On the other hand, we know that
Φ begins with the identity and that B is of order greater or equal than 3
in ξ, η. Therefore, the homogeneous polynomial of minimal order we get
from the left-hand side of (30) comes from Dh̃ ·N(

∂

∂ξ
h̃M (ξ, η)

∂

∂η
h̃M (ξ, η)

)
·
(

λξ + · · ·
−λη − · · ·

)
, (31)
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where (λξ,−λη) is the linear part of N(ξ, η) = (ξA(ξη),−ηA(ξη)). If we
write

h̃M (ξ, η) =
∑

j+k=M

h
(M)
jk ξjηk,

equations (30) and (31) lead to

λ
∑

j+k=M

(j − k)h(M)
jk ξjηk = 0

so, if j �= k, we have that h(M)
jk = 0. In other words, if h̃(ξ, η) is a first

integral of system (29), then it starts with a term hm(ξη)m, wherem = M/2
and hm �= 0.

Once we know how the first integral h̃ begins, we seek for the term of
type (ξη)s on the left-hand side of equation (30), having minimal order in
ξ, η. First, notice that Dh̃(ξ, η) ·N(ξ, η) does not contribute to this kind
of terms, because if

h̃(ξ, η) = · · ·+ c�(ξη)� + · · ·+ djkξ
jηk,

with j �= k, it follows that

Dh̃(ξ, η) ·N(ξ, η)
=
(
· · ·+ �c�(ξη)�−1η + · · ·+ jdjkξ

j−1ηk

+ · · ·+ �c�(ξη)�−1ξ + · · ·+ kdjkξ
jηk−1 + · · ·

)
·
(

ξA(ξη)
−ηA(ξη)

)
= · · ·+ c�(�− �)(ξη)� + · · ·+ djk(j − k)ξjηk + · · ·
= djk(j − k)ξjηk + · · ·

Concerning the second part of (30), since we are assuming B �= 0, there
must exist a non-zero constant β�, in such a way that b(ξη) = β�(ξη)� +
h.o.t. Moreover, since [DΦ]−1

B = B + · · ·, the (ξη)s-term of minimal
order provided by Dh̃ · [DΦ]−1

B comes from

(
mhm(ξη)m−1η + · · · mhm(ξη)m−1ξ + · · ·

)
·
(
ξβ�(ξη)� + · · ·
ηβ�(ξη)� + · · ·

)
= 2mhmβ�(ξη)m+� + · · · ,

where + · · · means terms of higher order. From equation (30), it follows
that mhmβ� = 0, which is a contradiction since m, hm and β� do not
vanish.
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To extract from b(ξη) the obstructions to integrability, we will define
a kind of invariants, which will be derived from its coefficients. This set
of invariants must be independent of the pseudo-normal form exhibited
by the system. Since it is not uniquely determined (unless we fix the
projection of the transformation, PΦ), we need to know, first, the family
of transformations preserving the aspect of the pseudo-normal form of the
system and, second, how they affect the coefficients of b(ξη). In this sense,
we have the following result about existence.

Proposition 16. Given a vector field F , assume that we have vector
fields N , B and a transformation X = Φ(ζ) leading it into pseudo-normal
form, that is,

DΦ ·N +B = F (Φ).

Then, if we perform a close to the identity transformation, ζ = Ψ(χ),{
ξ = xψ(xy)
η = yψ(xy) (32)

it follows that the aspect of the pseudo-normal form corresponding to F is
preserved, i.e.

D(Φ ◦Ψ)(χ) ·N ′(χ) +B′(χ) = F ((Φ ◦Ψ)(χ)).

Moreover, the new vector fields N ′ and B′ are given by N ◦ Ψ and B ◦ Ψ,
respectively, and it is straightforward to verify that P(Φ ◦Ψ) = (PΦ) ◦Ψ.

Proof. Using that the change z = Φ(ζ) satisfies

DΦ(ζ) · N (ζ) + B(ζ) = F (Φ(ζ)),

it follows that

ζ̇ = (Φ∗F )(ζ) = [DΦ(ζ)]−1
F (Φ(ζ)) = N(ζ) + [DΦ(ζ)]−1

B(ζ). (33)

Hence, by performing a change ζ = Ψ(χ) of the form (32), the latter
equation becomes

χ̇ = [DΨ(χ)]−1N(Ψ(χ)) + [DΨ(χ)]−1 [(DΦ)(Ψ(χ))]−1B(Ψ(χ))

= (Ψ∗N)(χ) + [D(Φ ◦Ψ)]−1 (χ)B(Ψ(χ)).

If we want it to be of the form (33) it must verify

(Ψ∗N)(χ) = N ′(χ) =
(

xA(xy)
−yA(xy)

)
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and

B(Ψ(χ)) = B′(χ) =
(

xβ(xy)
yβ(xy)

)
.

Thus, by using the explicit definition of Ψ, it follows that

DΨ(x, y) =
(
ψ + xyψ′ x2ψ′

y2ψ′ ψ + xyψ′

)

and then det DΨ(x, y) = ψ2 + (xy)(ψ2)′ := J(xy). So,

[DΨ(x, y)]−1 =
1

J(xy)

(
ψ + xyψ′ −x2ψ′

−y2ψ′ ψ + xyψ′

)
.

Besides,

N(Ψ(χ)) =
(

xψ(xy)A(xyψ2(xy))
−yψ(xy)A(xyψ2(xy))

)
=
(

xψA(xy)
−yψA(xy)

)
.

Indeed,

(Ψ∗N)(χ) = [DΨ(χ)]−1
N(Ψ(χ))

=
1

J(xy)

(
ψ + xyψ′ −x2ψ′

−y2ψ′ ψ + xyψ′

)(
xψA(xy)

−yψA(xy)

)

=
1

J(xy)

(
xψ2A + x2yψψ′A + x2yψ′ψA

−xy2ψψ′A− yψ2A− xy2ψ′ψA

)

=
1

J(xy)

(
xJ(xy)A(xy)

−yJ(xy)A(xy)

)
=
(

xA(xy)
−yA(xy)

)
,

where A(xy) = A(xyψ2(xy)). With respect to the remainder term B′, we
get

B′(χ) =
(

xψ(xy)b(xyψ2(xy))
yψ(xy)b(xyψ2(xy))

)
=
(

xβ1(xy)
yβ2(xy)

)
.

Finally, to check that P(Φ◦Ψ) = (PΦ)◦Ψ, we consider Φ = (φ1, φ2) where

φ� =
∑

j+k≥1

φ
(�)
jk ξ

jηk.

Then, with respect to the projection P1 it turns out that

P1(φ1 ◦Ψ)(x, y) = P1

⎧⎨
⎩
∑

j+k≥1

φ
(1)
jk xjyk(ψ1(xy))j(ψ2(xy))k

⎫⎬
⎭

=
∑
k≥0

φ
(1)
k+1,k(xψ1(xy))k+1(yψ2(xy))k = ((P1φ1) ◦Ψ)(x, y).
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In the same way it is proved that P2(φ2 ◦Ψ)(x, y) = (P2φ2) ◦Ψ.

We are going to prove that this family is completely determined, that
is, any transformation ζ = Ψ(χ) preserving the pseudo-normal form has to
be necessarily of the form (32). As it is easy to verify, this family presents
a group-like structure so, in this way, it constitutes a generalization of the
group of self-transformations of the normal norm given by Moser in [5].

Proposition 17. If ζ = Ψ(χ) is a transformation which preserves the
pseudo-normal form then it is of the type (xψ(xy), yψ(xy)).

Proof. Let us consider Φ(ζ), a vector field leading our system into
pseudo-normal form, and Ψ(χ) the one defining the transformation, written
in the form

Φ(ξ, η) =
(
φ1(ξ, η)
φ2(ξ, η)

)
, Ψ(x, y) =

(
ψ1(x, y)
ψ2(x, y)

)
,

where

φ1(ξ, η) = ξ +
∑

j+k≥2

φ
(1)
jk ξ

jηk,

φ2(ξ, η) = η +
∑

j+k≥2

φ
(2)
jk ξ

jηk.

Assume that PΨ �= Ψ, i.e. RΨ �= 0, so that

ψ1(x, y) = P1ψ1(x, y) +R1ψ1(x, y) =
∑
k≥0

ψ
(1)
k+1,kxk+1yk + c�mx�ym + · · · ,

with � �= m + 1, c�m �= 0 and �+ m = M the minimal order of this form,
or analogously,

ψ2(x, y) = P2ψ2(x, y) +R2ψ2(x, y) =
∑
j≥0

ψ
(2)
j,j+1x

jyj+1 + c�mx�′ym′ + · · · ,

where �′ �= m′−1 and c�′m′ �= 0. Suppose we are in the first situation, that
is, � �= m + 1, c�m �= 0. Then, if ζ = Ψ(χ) preserves the pseudo-normal
form, we have that

D(Φ ◦Ψ) · N + B = F (Φ ◦Ψ). (34)

Writing F = (f, g), N = (xA(xy),−yA(xy)) and B = (xb̃(xy), yb̃(xy)), the
first component of (34) becomes

< ∇(φ1 ◦Ψ),N > (x, y) + xb̃(xy) = f(Φ ◦Ψ)(x, y).
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Using that f(x, y) = λx+O2(x, y), and the expressions for Φ, Ψ introduced
above, it follows that

f(Φ ◦Ψ)(x, y) = λ
∑
k≥0

2k+1≤M

dk+1,kxk+1yk + λc�mx�ym + · · ·

where + · · · means terms of order greater or equal than � + m = M in x,
y. In the same way, bearing in mind that A(xy) = λ+ Â(xy), it turns out
that

< ∇(φ1 ◦Ψ),N > (x, y) + xb̃(xy)

= λ
∑
k≥0

2k+1≤M

dk+1,kxk+1yk + λ(�−m)c�mx�ym + · · ·+ xb̃(xy).

Equating both expressions, we have

λc�mx�ym = λ(�−m)c�mx�ym,

that is only true if � = m+ 1 or c�m = 0, contradicting the initial assump-
tions.

These results lead us to define a new set of invariants. Concretely,

Theorem 18. Let us consider a system ż = F (z) into pseudo-normal
form,

DΦ ·N +B = F (Φ),

and write

B(ξ, η) =
(
ξb(ξη)
ηb(ξη)

)
,

where

b(ξη) =
∑
k≥1

bk(ξη)k. (35)

Then, we define the set {βm}m, by means of the relation

βm = bm (mod b1 = b2 = . . . = bm−1 = 0) ,

Assume now that we have a transformation Ψ leading our system into
pseudo-normal form and let B̃(x, y) be the corresponding new remainder
term. If we write

b̃(xy) =
∑
k≥1

b̃k(xy)k (36)
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and take again

β̃m = b̃m

(
mod b̃1 = b̃2 = . . . = b̃m−1 = 0

)
,

it turns out that

β̃m ≡ βm (mod Jm−1) ,

where Jm is the ideal generated by β1, β2, . . . , βm.

Proof. Notice that this definition for βm is not trivial since (and it is
easily verified by looking at the iterative scheme presented in preceding
sections) any term bm is determined not only by the coefficients form-
ing the vector field F but also by b1, b2, . . . , bm−1. Suppose now that
the corresponding function b∗(xy) obtained by means of a transformation
(ξ, η) = (xψ1(xy), yψ2(xy)) is written as follows

b∗(xy) =
∑
m≥1

b∗m(xy)m.

Thus, using that (xψ(xy), yψ(xy)) begins with the identity,

ψ(xy) = 1 + ψ1(xy) + ψ2(xy)2 + · · · , ,

it is easily derived that β∗1 = b∗1 = b1 = β1. Then, let us assume that the
following induction hypothesis

β∗s = βs

holds, for s = 1, 2, . . . ,m− 1 or, in other words,

b∗s (mod b∗1 = b∗2 = . . . = b∗s−1 = 0) = bs (mod b1 = b2 = . . . = bs−1 = 0),

where s = 1, 2, . . . ,m− 1 and b∗0 = b0 = 0. Since

b∗(xy) = b(xψ(xy), yψ(xy)) =
∑
s≥1

bs (xy)s {ψ(xy)ψ(xy)}s =

=
∑
s≥1

bs (xy)s

⎧⎨
⎩
∑
n≥0

n∑
j=0

ψjψn−j(xy)n

⎫⎬
⎭

s

,

we have that the contribution of the latter expression to the term of type
(xy)m is given by

b∗m = b1ϕm−1 + b2

( ∑
i1+i2=m−2

ϕi1ϕi2

)
+ b3

( ∑
i1+i2+i3=m−3

ϕi1ϕi2ϕi3

)
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+ · · ·+ br

( ∑
i1+i2+···+ir=m−r

ϕi1ϕi2 · · ·ϕir

)
+ bm−1(m− 1)ϕ1 + bm,

where

ϕu =
∑

�+k=u

ψ�ψk.

Therefore, since mod (b∗1 = b∗2 = . . . = b∗m−1 = 0) is equivalent to mod
(b1 = b2 = . . . = bm−1 = 0), we get the assertion

β∗m = βm,

which completes the proof.

Proof of Corollary 4

Proof. For the Hamiltonian case, this result is derived from the Cri-
terium of Integrability (Theorem 14), introduced above.

To prove it for the reversible case, we use the following result. A transfor-
mation z = Ψ(ζ) satisfying R ◦Ψ ◦R = Ψ preserves the R-reversibility. For
this reason, we call them R-symmetric. In our case, it is straightforward to
verify that the transformation z = Φ(ζ) provided by the iterative scheme
(see section 3) is R-symmetric, with R(ξ, η) = (η, ξ). As a consequence, it
follows that the vector field B is R-reversible and, therefore, b(ξη) ≡ 0.
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