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Abstract Establishing the conditions allowing for the
stable coexistence in hypercycles has been a subject
of intensive research in the past decades. Determinis-
tic, time-continuous models have indicated that, under
appropriate parameter values, hypercycles are bistable

Electronic supplementary material The online version of
this article (doi:10.1007/s11071-017-3769-6) contains
supplementary material, which is available to authorized users.

G. Farré
Department of Mathematics, KTH, Royal Institute of
Technology, SE-100 44 Stockholm, Sweden
e-mail: gfarrepu7@gmail.com

J. Sardanyés (B)
Centre de Recerca Matemàtica, Campus de Bellaterra,
Edifici C, 08193 Bellaterra, Barcelona, Spain
e-mail: jsardanyes@crm.cat

J. Sardanyés · A. Guillamon · E. Fontich
Barcelona Graduate School of Mathematics (BGSMath),
Campus de Bellaterra, Edifici C, 08193 Bellaterra,
Barcelona, Spain

A. Guillamon
Departament de Matemàtiques, Universitat Politècnica de
Catalunya, Av. Gregorio Marañón 44-50, 08028 Barcelona,
Spain
e-mail: antoni.guillamon@upc.edu

E. Fontich
Departament de Matemàtiques i Informàtica, Universitat de
Barcelona, Gran Via de les Corts Catalanes 585, 08007
Barcelona, Spain
e-mail: fontich@ub.edu

systems, having two asymptotically stable attractors
governing coexistence and extinction of all hypercy-
cle members. The nature of the coexistence attractor is
largely determined by the size of the hypercycle. For
instance, for two-member hypercycles the coexistence
attractor is a stable node. For larger dimensions more
complex dynamics appear. Numerical results on so-
called elementary hypercycles with n = 3 and n = 4
species revealed, respectively, coexistence via strongly
and weakly damped oscillations. Stability conditions
for these cases have been provided by linear stabil-
ity and Lyapunov functions. Typically, linear stabil-
ity analysis of four-member hypercycles indicates two
purely imaginary eigenvalues and two negative real
eigenvalues. For this case, stability cannot be fully char-
acterized by linearizing near the fixed point. In this
letter, we determine the stability of a non-elementary
four-member hypercycle which considers exponential
and hyperbolic replication terms under mutation giv-
ing place to an error tail. Since Lyapunov functions
are not available for this case, we use the center man-
ifold theory to rigorously show that the system has a
stable coexistence fixed point. Our results also show
that this fixed point cannot undergo a Hopf bifurca-
tion, as supported by numerical simulations previously
reported.

Keywords Center manifold theory · Cooperation ·
Hypercycles · Nonlinear dynamics · Origins of life

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-017-3769-6&domain=pdf
http://dx.doi.org/10.1007/s11071-017-3769-6


1874 G . Farré et al.

1 Introduction

The stability of hypercycles is a very important sub-
ject of research within the origin-of-life framework.
Hypercycles are catalytic sets of macromolecules that
can catalyze their own replication or the replication of
other species of the network, which usually has cyclic
architecture [1]. Catalytic sets have been a subject of
study in different fields. For instance, hypercycles have
been largely investigated in the framework of prebi-
otic evolution [1–4], suggested of being responsible
for one of the major transitions in evolution: the transi-
tion from quasispecies to hypercycles as a possible way
to surpass the information crisis at early stages of bio-
logical evolution [1,4,5]. Hypercycle equations have
been also used to study the dynamics of other complex
systems, for instance, ecological dynamical systems
[4,6–8].

The conditions allowing the asymptotic persistence
of hypercycles have been investigated during the past
decades. The nature of the coexistence attractor for
small hypercycles is well known. For instance, when
n = 2, the coexistence attractor is a stable node [1,9–
11] since linearization near these equilibria revealed
two negative eigenvalues. For larger hypercycles, the
nature of the coexistence attractor slightly changes.
Specifically, the stability for the so-called elementary
hypercycle in [1] has been determined by using Lya-
punov functions. Together with these results, further
numerical simulations have revealed that hypercycles
with n = 3 and n = 4 have, respectively, a coexistence
attractor which is achieved via strongly and weakly
damped oscillations [1,12]. For the n = 4 dimension,
linear stability analysis shows two imaginary eigenval-
ues with zero real part and two negative eigenvalues.
This particular condition does not allow to character-
ize the stability of this putative attractor. As mentioned
above, the stability for n = 4 in the elementary hyper-
cycle studied in Ref. [11] was determined using a Lya-
punov function. For the system explored in this letter,
which considers the hypercycle with the error tail, it
is not clear at all how to find a Lyapunov function.
However, a rigorous stability analysis can be performed
using the center manifold theory.

In this letter, we perform this analysis showing that
the dynamics restricted to the center manifold corre-
sponding to the two imaginary eigenvalues is a stable
(degenerate) focus of order two, which implies that this
equilibrium point is certainly an attractor. Our study

also shows that the stable fixed point cannot undergo
a Hopf bifurcation; thus, no periodic orbits can born
from this equilibrium point.

2 Mathematical model

The hypercycle model we analyze describes the time
evolution of the relative concentration of n molecular
species with the so-called error tail [2,13]. The hyper-
cycle was conceived as a set of replicators with cat-
alytic couplings replicating at extremely high muta-
tion rates. Hence, more realistic hypercycle models
need to consider the mutant replicators, which can be
grouped as a single variable by defining the so-called
error tail [2,9], comprised for all those sequences with
nucleotide changes arising within the population evo-
lutionary dynamics. If we denote by {I1, . . . , In} the
hypercycle species and Ie the species forming the error
tail, the differential equations describing their concen-
trations x = (x1, . . . , xn) and xe, which are real-valued
variables, are

ẋ j = x j (A j Q + K j x j−1Q − �̂(x, xe)), (1)

for j = 1, . . . , n, and

ẋe = xe(Ae − �̂(x, xe))

+(1 − Q)

n∑

j=1

x j (A j + K j x j−1), (2)

where x0 ≡ xn , K j , A j > 0, 1 ≤ j ≤ n, Ae > 0,
Q ∈ (0, 1) and

�̂(x, xe) =
n∑

j=1

x j (A j + K j x j−1) + Aexe.

System (1) describes the dynamics of the hypercy-
cle of dimension n with bothMalthusian and heterocat-
alytic (nonlinear) reproduction together with mutation.
Both sets of constants A j and K j , for j = 1, . . . , n,
denote the Malthusian and heterocatalytic replication
rates, respectively. The parameter Q is the replication
quality factor or copying fidelity. Equation (2) corre-
sponds to the dynamics of the error tail. The solutions
of the full system (1), (2) live in the (n+1)-dimensional
real space Rn+1. Finally, �̂(x, xe) is the dilution flow
that keeps the total population constant; it also intro-
duces competition between all the replicators forming
the hypercycle and the error tail.
The hyperplane H = {

(x, xe) ∈ R
n+1| ∑n

j=1 x j +
xe = 1

}
is invariant by the flow. Accordingly, we will
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restrict our study to the solutions in H . Moreover, we
can forget about the error tail and omit the term xe
because it is given by xe = 1−∑n

j=1 x j . Thus, we are
let to consider the differential equation

ẋ j = f j (x) = x j (A j Q + K j x j−1Q − �(x)), (3)

1 ≤ j ≤ n, where�(x) = ∑n
j=1 x j (A j + K j x j−1)+

Ae(1 − ∑n
j=1 x j ) and x = (x1, . . . , xn).

We will restrict to the biological meaningful region,
namely the set

S =
⎧
⎨

⎩(x1, . . . , xn) | 0 ≤ x j ≤ 1,
n∑

j=1

x j ≤ 1

⎫
⎬

⎭ ,

which is positively invariant by the evolution of the
hypercycle. That is, the flow will never come out from
S and it will exist for any positive time. Additionally,
we will assume that K j = 1 to simplify the model.

3 The symmetric hypercycle

We will take A j = Ae = a, ∀ j ∈ {1, . . . , n}, for some
a > 0. We refer to this case as the symmetric hyper-
cycle, which assumes that all hypercycle elements are
selectively neutral. The following proposition gives the
equilibrium points in any dimension. For the sake of
completeness, we include the proof in “Appendix 1.”

Proposition 1 For the values of (a, Q) such that
Q2/(1−Q) ≥ 4na, Eq. (3) has three fixed points in S:
x0 = (0, . . . , 0) = �0, and x∗+, x∗−, whose coordinates
are

x∗±, j = Q ± √
Q2 − 4na(1 − Q)

2n
,

for all j ∈ {1, . . . , n}. When Q2/(1 − Q) < 4na, the
only fixed point of Eq. (3) in S is the origin.

The coordinates of the non trivial equilibriumpoints are
actually the two solutions of nx2−Qx+a(1−Q) = 0.
Notice that for Q = QSS := 2

(√
na(1 + na) − na

)
a

saddle-node bifurcation occurs and the two equilibria
x∗+ and x∗− appear for Q > QSS .

3.1 Stability of the equilibrium points

In this section,wewill classify the character of the fixed
points. We first note that the right-hand side of (3) for
the symmetric case can be written as

f j (x) = x j Fj (x), j ∈ {1, . . . , n} , (4)

where Fj (x) = a(Q − 1) + Qx j−1 − ∑n
k=1 xkxk−1.

Since
∂ f j
∂xk

(x) = δ jk Fj (x) + x j
∂Fj

∂xk
(x),

where δ jk is the Kronecker delta function and

∂Fj

∂xk
(x) =

{
Q − xk+1 − xk−1, k = j − 1,
−xk+1 − xk−1, k 
= j − 1,

it turns out that the components of the Jacobian of f
are
∂ f j
∂xk

(x)

=
⎧
⎨

⎩

x j (Q − xk+1 − xk−1), k = j − 1,
x j (−xk+1 − xk−1), k /∈ { j − 1, j} ,

Fj (x) + x j (−x j+1 − x j−1), k = j.

(5)

Substitution of x j = 0, for all j = 1, . . . , n, into (5)
leads to D f (�0) = diag(a(Q − 1), . . . , a(Q − 1)).
Therefore, the eigenvalues of D f (�0) are all equal to
a(Q − 1) < 0 so x∗ = �0 is an attracting fixed point
independently of the parameter values (a, Q), a > 0,
Q ∈ (0, 1). In the sameway, wewill analyze the stabil-
ity of the fixed points x∗+ and x∗− given in Proposition
1. Using again Eq. (5), together with the fact that all the
components are equal, we obtain the following expres-
sion for the entries of the Jacobian matrix

∂ f j
∂xk

(x∗±) =
⎧
⎨

⎩

x∗±,1(Q − 2x∗±,1), k = j − 1,
−2(x∗±,1)

2, k /∈ { j − 1, j} ,

Fj (x∗±,1) − 2(x∗±,1)
2, k = j.

From the proof of Proposition 1, we know that

a(Q − 1) + Qx∗±,1 − n(x∗±,1)
2 = 0. (6)

Therefore, if we denote b± := −2(x∗±,1)
2 and d± :=

x∗±,1(Q − 2x∗±,1),

D f (x∗±) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

b± b± . . . b± d±
d±

. . .
. . .

. . . b±
b±

. . .
. . .

. . .
...

...
. . .

. . .
. . . b±

b± . . . b± d± b±

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

which is a circulant matrix. There are explicit formulas
to get the eigenvalues and the eigenvectors for circulant
matrices, see e.g., [14]. In our case, these formulas give
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(a) (b) (c)

Fig. 1 Eigenvalues λ+
j for 0 < j < n on the circle of

radius k = Q x∗+,1 in the complex space C. The case n = 4,
analyzed in this letter, displays two eigenvalues with negative

real part and a couple of complex eigenvalues with zero real
part (λ+

0 is not displayed). a n = 3, b n = 4, c n = 5

λ±
j =

n−2∑

k=0

−2(x∗±,1)
2 exp (2π i jk/n)

+x∗±,1(Q − 2x∗±,1) exp (2π i j (n − 1)/n), (7)

where i2 = −1 and j ∈ {0, . . . , n − 1}. If j 
=
0, using that the sum of the geometric progression∑n−1

k=0 exp (2π i jk/n) is zero, we can simplify (7) to
obtain:

λ±
j = x∗±,1Q exp (2π i j (n − 1)/n), j ∈ {1, . . . , n − 1} .

For j = 0 we get:

λ±
0 = x∗±,1(Q − 2x∗±,1) − 2(n − 1)(x∗±,1)

2

= Qx∗±,1 − 2n(x∗±,1)
2 = −Qx∗±,1 + 2a(1 − Q),

using (6) again. Observe that for x∗− we have that λ−
0 >

0, and so x∗− is unstable independently of the character
of other eigenvalues. On the other hand, since λ+

0 =
x∗+,1(Q−2nx∗+,1) and x

∗+,1 > Q/(2n) > 0, then λ+
0 <

0. Thus, to determine the stability character of x∗+ we
need to study the sign of the real part of λ+

j for 0 <

j ≤ n. As it is illustrated in Figure 1, we have that
for n ≤ 3 all these eigenvalues have negative real part
and for n ≥ 5 we will always have eigenvalues with
positive real part. Therefore, for n ≤ 3 the equilibrium
point x∗+ is an attractor and for n ≥ 5 it is unstable. It
remains the discussion in the case n = 4, for which x∗+
is non hyperbolic.

3.2 Stability of x∗+ when n = 4

In order to simplify the notation, we introduce the
parameters

κ := Q x∗+,1 and c := κ − 2 a (1 − Q). (8)

Notice that both κ and c are positive. Then, for n = 4,
the eigenvalues of D f (x∗±) read as

λ+
0 = −c, λ+

1 = κe2π i
3
4 = −iκ,

λ+
2 = κe2π i

3
2 = −κ, λ+

3 = κe2π i
9
4 = iκ,

and their corresponding eigenvectors are:

v0 = (1, 1, 1, 1)� , v1 = (1, i,−1,−i)� ,

v2 = (1,−1, 1,−1)� , v3 = (1,−i,−1, i)� .

The invariant subspace generated by v1 and v3 (thought
as a vector space over the complex space C) is also
generated byw1 := 1

2 (v1+v3),w2 := i
2 (v3−v1), and

moreover,

D f (x∗±)w1 = − i

2
κv1 + i

2
κv3 = κw2,

D f (x∗±)w2 = − 1

2
κv1 − 1

2
κv3 = −κw1.

This linear study is not sufficient to draw conclusions
about the stability of the equilibrium x∗+,1. At this point,
we know that two eigenvalues are negative and the other
two have zero real part. Moreover, in this situation, the
point x∗+ has a center manifold which is tangent to the
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linear space generated by v1 and v3. If we are able to
prove that the equilibrium point of the system restricted
to the center manifold is asymptotically stable, then by
Theorem 2 in [15, Ch. 1] we will prove that the equilib-
rium of the four dimensional system (3) is asymptoti-
cally stable. Let us then compute the center manifold
and study the restriction of (3) on it. To reduce the
vector field to the central manifold, it is convenient to
perform a translation of the point x∗+, say z = x−x∗+ to
the origin followed by a linear change z = C y, where
C is the matrix whose columns are the vectors w1, w2,
v2 and v0, that is,

C =

⎛

⎜⎜⎝

1 0 1 1
0 1 −1 1

−1 0 1 1
0 −1 −1 1

⎞

⎟⎟⎠ , (9)

In the new set of variables y = (y1, y2, y3, y4), the
vector field is expressed as

ẏ = C−1 f
(
C y + x∗+

) =: G(y), (10)

which is topologically conjugate to (3) since transla-
tions and invertible linear maps are diffeomorphisms.
Performing the whole calculation and using the fact
that x∗+,1 is a solution of (6), we can express G(y) =
G[1] + G[2] + G[3], where the index stands for the
degree of the polynomial in y and

G[1] =

⎛

⎜⎜⎝

−κ y2
κ y1

−κ y3
−c y4

⎞

⎟⎟⎠ ,

G[2] =

⎛

⎜⎜⎝

Q(y1(y4 − y3) − y2(y3 + y4)) − 8x∗+,1y1y4
Q(y1(y4 − y3) + y2(y3 + y4)) − 8x∗+,1y2y4

−(Qy1y2 + 8x∗+,1y3y4)
(−Q + 4x∗+)y23 + (Q − 12x∗+,1)y

2
4

⎞

⎟⎟⎠,

G[3] = 4(y23 − y24 )

⎛

⎜⎜⎝

y1
y2
y3
y4

⎞

⎟⎟⎠ . (11)

Notice that now the linear part of the system corre-
sponds to the expected one. The above expressions
were obtained using the computer algebra software
Maple [16] (code available at http://bit.ly/2tgxlus),
but we also include the full set of computations in
“Appendix 2” for the sake of completeness.

3.3 Reduction to the center manifold

The resulting system (10) is polynomial of degree 3
and therefore a C∞ function (i.e., is a function that is

differentiable for all degrees of differentiation). Thus,
by the centermanifold theorem [15] we know that �0 has
a center manifoldWc = graph(h) tangent to the vector
space generated by the eigenvectors corresponding to
the eigenvalues with zero real part, that is, the plane
generated by y1 and y2. The center manifold is locally
parameterized by a Cr function h with r as large as we
want. We rewrite (10) in the form
{

ξ̇ = A ξ + u(ξ, η),

η̇ = B η + v(ξ, η),
(12)

with ξ = (y1, y2), η = (y3, y4),

A =
(
0 −κ

κ 0

)
and B =

(−κ 0
0 −c

)
,

and u(ξ, η) and v(ξ, η) represent the nonlinear terms of
the system. In this notation, Wc is represented by η =
h(ξ). Then, the condition of graph(h) being invariant
by (12) is η̇ = Dh(ξ)ξ̇ , that is,

B η + v(ξ, η) = Dh(ξ) (A ξ + u(ξ, η)) . (13)

Substituting η = h(ξ) into Eq. (13) gives

B h(ξ) + v(ξ, h(ξ)) = Dh(ξ) (A ξ + u(ξ, h(ξ))) .

(14)

From now on, we rename variables y1 and y2 by x and
y, respectively, so that ξ = (x, y). For our purposes, it
is enough to know the quadratic terms of the function
h; accordingly, we write

h(x, y) =
(
a20x2 + a11xy + a02y2

b20x2 + b11xy + b02y2

)
+ O(3), (15)

whereO(3) denotes all the terms of order 3 or greater.
Substituting (15) into (14), we have
(−κa20x2 − κa02y2 − (κa11 + Q) xy

−c(b20x2 + b02y2 + b11xy)

)

= κ

(
a11x2 − a11y2 + 2(a02 − a20)xy
b11x2 − b11y2 + 2(b02 − b20)xy

)
,

from which we obtain

a11 = − Q

5κ
, a20 = Q

5κ
, a02 = − Q

5κ
,

b11 = 0, b20 = 0, b02 = 0.

Thus, our function h will be

h(x, y) =

⎛

⎜⎜⎝

Q

5κ

(
x2 − xy − y2

)

0

⎞

⎟⎟⎠ + O(3).
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Now, we can write the system restricted to the center

manifold, (ẋ, ẏ) = A

(
x
y

)
+ u(x, y, h(x, y)), which

reads as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ = −κy − Q2

5κ
(x3 − 2xy2 − y3) + O(4),

ẏ = κx − Q2

5κ
(x3 − 2x2y + y3) + O(4).

(16)

A first attempt to determine the stability of �0 is to
change to polar coordinates (r, θ). The derivative of
r is:

ṙ = r3
Q2

5κ

[
sin3 θ (cos θ − sin θ)

− cos3 θ (cos θ + sin θ) + 4 cos2 θ sin2 θ

]
.

We note that the sign of ṙ depends on θ , see Figure
2 (upper), so it does not provide a conclusive infor-
mation concerning stability. However, the flow of the
vector field of system (16), see Figure 2 (lower), shows
evidence that the equilibrium point is stable. In order to
prove the stability, we will look for the normal form of
the system at the origin, see [17, Ch. 3.3]. For this pur-
pose, it is convenient to write system (16) in complex
variables, z = x + i y and z = x − i y:

ż = iκz − (1 + 3 i)
Q2

20 κ
z2z − (3 + i)

Q2

20 κ
z3

+O(4), (17)

and the equation for z, which is the complex conju-
gate of Eq. (17). In these variables, the linear part is
diagonal. An additional advantage of working in these
variables is that we only need to transform one equa-
tion because the other remains its conjugate. Since the
eigenvalues are ±iκ , the resonant terms for Eq. (17)
are zn+1zn , with n ≥ 1. The explicit calculations give
that the normal form of (17) is

ż = iκz − Q2 (1 + 3 i)

20κ
z2z + O(5). (18)

Alternatively, we can apply Theorem A in [18] to
system (17), see [19, Ch. IX.2] for a more classical
reference, to conclude that �0 is an attracting equilib-
rium point. However, for this case we can proceed
directly writing (18) in polar coordinates by means of
the change z = r eiθ , which leads to

Fig. 2 Radial derivative and phase portrait for system (16).
(Upper) plot of ṙ/r3 with respect to θ . (Lower) flow for Eq. (16)
around �0 for a = 0.5, Q = 0.95.Gray arrows indicate the vector
field

⎧
⎪⎨

⎪⎩

ṙ = − Q2

20κ
r3 + O(5),

θ̇ = κ − 3 Q2

20κ
r2 + O(4).

Notice that near the origin ṙ < 0 and θ̇ > 0, so it
is clear that the origin is asymptotically stable, and
so it is for system (16) (recall that the stability of
the fixed points is preserved under locally topologi-
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cal conjugacies). Finally, as we pointed out at the end
of Sect. 3.1, using Theorem 2 in [15, Ch. 1] we reach
the conclusion that the fixed point x∗+ in the original
fourth-dimensional system (3) is an attractor. The fact
that ṙ < 0 for all values of the (considered) parameters
prevents the birth of a periodic orbit from �0 (which cor-
responds to x∗+ in the present variables), which implies
that no Hopf bifurcation can take place.

4 Discussion

In this letter, we have conducted a stability analysis
using the center manifold theory for hypercycles with
n = 4 species and an error tail formed by mutant repli-
cators. Previous works provided numerical evidences
that the coexistence in hypercycles was governed by a
stable fixed point [1,12]. Numerical simulations indi-
cated that such a fixed point can be achieved with dif-
ferent damped oscillatorymodes (i.e., strongly damped
oscillations for n = 3 and weakly damped oscillations
for n = 4) [1]. Moreover, for the so-called elementary
hypercycle in [1] Lyapunov functions are known for
these fixed points when n = 3 and n = 4 so they are
asymptotically stable. Despite these previous results,
and for other types of hypercycles beyond the elemen-
tary ones, linear stability analysis around the coexis-
tence attractor for n = 4 gives two purely imaginary
eigenvalues and two other negative eigenvalues. Since
Lyapunov functions for these cases are not available,
no direct conclusions about the stability of this fixed
point can be attained.
As mentioned above, we here explore the stability in
the coexistence for a hypercycle with four species in a
slightly different model from the one analyzed in [1].
In particular, it introduces another layer of complexity
by considering that replicators can synthesize neutral
mutants, which ultimately act as parasites, since they
do not reciprocate the catalytic support to the repli-
cators forming the catalytic cycle. To determine the
stability for this case, we have performed a reduction
to the center manifold, showing that this fixed point is
locally asymptotically stable, in agreementwith numer-
ical results conducted for this type of hypercycle [2].
Our approach also indicates that a Hopf bifurcation
giving place to a periodic orbit underlying coexis-
tence dynamics is not possible. In this sense, our
approach reinforces the results suggesting that themin-
imal hypercycle size for which periodic orbits can exist

is n > 4 species [1,3]. Our analytical results thus com-
plement previous studies on the stability of hypercycles
with the so-called error tail [2,13]. Initially, hypercycle
studies obviated the mutant replicators [5] and focused
on hypercycle dynamics without mutation processes.
However, as previouslymentioned, hypercycles, as pre-
biotic replicator systems, may be expected to replicate
under large mutation rates. The stability for hypercy-
cles with error tails, specially for those systems with
n ≥ 4 replicators, was performed mainly numerically
[2,13]. Here, we have provided rigorous arguments to
assert that four-species hypercycles with error tails are
indeed stable under appropriate parameter values. The
analysis presented in this letter, albeit being purely the-
oretical, may have applications within the fields of syn-
thetic biology and bioengineering. In this sense, exper-
imental studies have characterized hypercycle dynam-
ics in the bacteriophage Qβ [20] and, more recently,
in cooperating engineered yeast populations [21] and
engineered synthetic bacteria with their parasites [22].
Studies on the conditions allowing for the stability for
cooperative systems thus become important and can
allow to properly define those parameter regions where
hypercycle systems may be stable and perform their
functions, specially under the presence of mutant par-
asites.
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Appendix 1: Proof of Proposition 1

Suppose we have an equilibrium point x∗ ∈ S (in
particular all components are greater or equal than 0)
such that x∗

j = 0 for a fixed 0 ≤ j < n. Then since

ẋ j+1 = x j+1
(
a(Q − 1) + Qx j − ∑n

k=1 xkxk−1
)
we

have either x∗
j+1 = 0 or

0 = a(Q − 1) + Qx∗
j −

n∑

k=1

x∗
k x

∗
k−1 = a(Q − 1)

−
n∑

k=1

x∗
k x

∗
k−1.
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This last case would imply

n∑

k=1

x∗
k x

∗
k−1 = a(Q − 1) < 0

since a > 0 and Q < 1, leading to a contradiction
because the left-hand side should be positive or zero.
Therefore, x∗

j = 0 implies x∗
j+1 = 0 for any 0 ≤ j < n

(recall we identify x0 ≡ xn) and so if there is some
0 ≤ j < n such that x∗

j = 0 we must have x∗ = �0. It
is clear then that any fixed point x∗ ∈ S different from
the origin must satisfy

a(Q − 1) + Qx∗
j −

n∑

k=1

x∗
k x

∗
k−1 = 0, ∀ 1 ≤ j ≤ n,

(19)

which can be rewritten as

x∗
j =

∑n
k=1 x

∗
k x

∗
k−1 − a(Q − 1)

Q
, ∀ 1 ≤ j ≤ n.

(20)

From (20) we see that all components must be equal
and so (19) becomes the quadratic equation

a(Q − 1) + Qx∗
j − n(x∗

j )
2 = 0, (21)

which has the same two solutions for all j ∈ {1, . . . , n}:

x∗±,1 = Q ± √
Q2 − 4na(1 − Q)

2n
.

It is easy to verify that if the discriminant in (21) is not
negative (that is Q2/(1 − Q) ≥ 4na), then such fixed
points are contained in S because 0 < x∗±,1 < 1/n and
so

∑n
j=1 x

∗±,1 = nx∗±,1 < 1. If Q2/(1 − Q) < 4na,
then the components are complex and the only fixed
point that remains in S is the origin.

Appendix 2: Computation of G( y)

By the definition of F in (4), the j-th component of the
vector field G defined in (10) can be written as

G j (y) = (
C−1 f

(
C y + x∗+

))
j

=
4∑

k=1
C−1

jk

(
4∑

l=1
Ckl yl + x∗+,1

)
Fk

=
4∑

k,l=1
C−1

jk Ckl yl Fk +
4∑

k=1
C−1

jk x
∗+,1Fk,

(22)

where Fk stands for Fk(C y + x∗+), x∗+ = (x∗+,1, x
∗+,1,

x∗+,1, x
∗+,1), the notation A jk denotes the entry of a

matrix A located in the j th row and k-th column, C is
defined in (9) and

C−1 = 1

4

⎛

⎜⎜⎝

2 0 −2 0
0 2 0 −2
1 −1 1 −1
1 1 1 1

⎞

⎟⎟⎠ .

Next, we reduce the expression of the components
of F(C y + x∗+) as:

Fj (C y + x∗+) = a(Q − 1) + Q (C y + x∗+) j−1

−
4∑

k=1
(C y + x∗+)k(C y + x∗+)k−1

= a(Q − 1) + Q (C y) j−1 + Q x∗+,1

−
4∑

k=1
(C y)k(C y)k−1

−
4∑

k=1
x∗+,1((Cy)k + (Cy)k−1) − 4 x∗+,1

2

= Q (C y) j−1 −
4∑

k=1
(C y)k(C y)k−1

−
4∑

k=1
x∗+,1((C y)k + (C y)k−1),

(23)

subscripts j and k indicate components of vectors and
in the last step we have used Eq. (6), and (C y)0 :=
(C y)4. Note that the last expression in the expan-
sion of Fj only contains one term that depends on j ,
Q (C y) j−1, which can be computed directly from the
definition ofC in (9). The other two terms are the same
for every j ∈ {1, 2, 3, 4} and can be further simplified:

• The linear term −
4∑

k=1
x∗+,1((C y)k + (C y)k−1),

thanks to the cyclic structure of the variables, satis-

fies
4∑

k=1
((C y)k + (C y)k−1) = 2

4∑
k=1

(C y)k . More-

over, since
4∑

k=1
Ckm = 0 for m = 1, 2, 3 and

4∑
k=1

Ck4 = 4, then

4∑

k=1

(C y)k =
4∑

k=1

4∑

m=1

Ckm ym =
4∑

m=1

ym

4∑

k=1

Ckm = 4 y4.

We conclude that

−
4∑

k=1

x∗+,1((C y)k + (C y)k−1) = −8 x∗+,1 y4.

• For the quadratic term −
4∑

k=1
(C y)k(C y)k−1, if we

call Ck the k-th row of matrix C , then it is easy to
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prove that

4∑

k=1

(Cy)k(Cy)k−1 = y� M y,

where M :=
4∑

k=1
C�
k Ck−1, assuming that C0 :=

C4. A straightforward computation gives

M =

⎛

⎜⎜⎝

0 −2 0 0
2 0 0 0
0 0 −4 0
0 0 0 4

⎞

⎟⎟⎠ , and so

−
4∑

k=1

(Cy)k(Cy)k−1 = 4 y23 − 4 y24 .

Gathering the simplified expressions for the three terms
from (23), we get:

Fj (C y + x∗+) = Q (C y) j−1 − 8 x∗+,1 y4 + 4 y23 − 4 y24 .

We split this expression into Fj (C y+ x∗+) =: Fj [1]+
F[2], for each j = 1, 2, 3, 4, according to the degree
(notice that the quadratic term does not depend on j),
where

Fj [1] = Q (C y) j−1 − 8 x∗+,1 y4,
F[2] = 4 y23 − 4 y24 .

Weplug the above expression for Fj into the expression
of G j obtained in (22):

G j =
4∑

k,l=1

C−1
jk Ckl yl(Fk[1] + F[2])

+
4∑

k=1

C−1
jk x

∗+,1(Fk[1] + F[2]).

The terms of order 1, 2 and 3 in y are then:

G j [1] =
4∑

k=1
C−1

jk x
∗+,1 Fk[1],

G j [2] =
4∑

k,l=1
C−1

jk Ckl yl Fk[1]

+
4∑

k=1
C−1

jk x
∗+,1 F[2],

G j [3] =
4∑

k,l=1
C−1

jk Ckl yl F[2],

which, after substitution of Fk[1] and F[2], become:

G j [1] =
4∑

k=1
C−1

jk x
∗+,1 (Q (C y)k−1 − 8 x∗+,1 y4),

G j [2] =
4∑

k,l=1
C−1

jk Ckl yl (Q (C y)k−1 − 8 x∗+,1 y4)

+x∗+,1(4 y
2
3 − 4 y24 )

4∑
k=1

C−1
jk ,

G j [3] = (4 y23 − 4 y24 )
4∑

k,l=1
C−1

jk Ckl yl .

(24)

We develop each term separately, just substituting the
entries ofC−1 andC , respectively, in the following two
steps:

G[1] = x∗+,1

⎛

⎜⎜⎜⎜⎝

Q 1
2 ((Cy)4 − (Cy)2)

Q 1
2 ((Cy)1 − (Cy)3)

Q 1
4 ((Cy)4 − (Cy)1 + (Cy)2 − (Cy)3)

Q 1
4 ((Cy)4 + (Cy)1 + (Cy)2 + (Cy)3) − 8 x∗+,1 y4

⎞

⎟⎟⎟⎟⎠

= Q x∗+,1

⎛

⎜⎜⎝

−y2
y1

−y3
y4

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

0
0
0

−8 x∗+,1
2 y4

⎞

⎟⎟⎠ .

This gives the linear term provided in (11), just recall-
ing the definitions of κ = Q x∗+,1 and c = −(Q x∗+,1 −
8 x∗+,1

2) = −Q x∗+,1 + 2 Q x∗+,1 + 2 a(Q − 1) =
κ − 2 a (1 − Q). The quadratic terms are given by the
two terms of G j [2] in (24), for j = 1, 2, 3, 4. On the
one hand, one term only influences the fourth compo-
nent:

x∗+,1(4 y
2
3 − 4 y24 )

4∑

k=1

C−1
jk

=
{
0 if j = 1, 2, 3;
x∗+,1(4 y

2
3 − 4 y24 ) if j = 4.

On theother hand, the term
4∑

k,l=1
C−1

jk Ckl yl (Q (C y)k−1

− 8 x∗+,1 y4) requires more detailed computations. For
j = 1,
4∑

k,l=1

C−1
1k Ckl yl (Q (C y)k−1 − 8 x∗+,1 y4)

=
∑

k=1,3

(−1)
k−1
2
1

2

4∑

l=1

Ckl yl (Q (C y)k−1−8 x∗+,1 y4)

= 1

2
(y1 + y3 + y4)(Q(−y2 − y3 + y4) − 8x∗+,1y4)

−1

2
(−y1 + y3 + y4)(Q(y2 − y3 + y4) − 8x∗+,1y4)

= Q(−y1y3 + y1y4 − y2y3 − y2y4) − 8x∗+,1y1y4,
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which coincides with the first component of G[2] in
(11). Similarly, for j = 2:

4∑

k,l=1

C−1
2k Ckl yl (Q (C y)k−1 − 8 x∗+,1 y4)

=
∑

k=2,4

(−1)
k−2
2

1

2

4∑

l=1

Ckl yl (Q (C y)k−1 − 8 x∗+,1 y4)

= 1

2
(y2 − y3 + y4)(Q(y1 + y3 + y4) − 8x∗+,1y4)

−1

2
(−y2 − y3 + y4)(Q(−y1 + y3 + y4) − 8x∗+,1y4)

= Q(−y1y3 + y1y4 + y2y3 + y2y4) − 8x∗+,1y2y4,

which coincides with the second component of G[2] in
(11). For j = 3:

4∑

k,l=1

C−1
3k Ckl yl (Q (C y)k−1 − 8 x∗+,1 y4)

=
4∑

k=1

(−1)k−1 1

4

4∑

l=1

Ckl yl (Q (C y)k−1 − 8 x∗+,1 y4)

= 1

4
(y1 + y3 + y4)(Q(−y2 − y3 + y4) − 8x∗+,1y4)

−1

4
(y2 − y3 + y4)(Q(y1 + y3 + y4) − 8x∗+,1y4)

+1

4
(−y1 + y3 + y4)(Q(y2 − y3 + y4) − 8x∗+,1y4)

−1

4
(−y2 − y3 + y4)(Q(−y1 + y3 + y4) − 8x∗+,1y4)

= Q(−y1y2) − 8x∗+,1y3y4,

which coincides with the third component of G[2] in
(11). For j = 4:

4∑

k,l=1

C−1
4k Ckl yl (Q (C y)k−1 − 8 x∗+,1 y4)

=
4∑

k=1

1

4

4∑

l=1

Ckl yl (Q (C y)k−1 − 8 x∗+,1 y4)

= 1

4
(y1 + y3 + y4)(Q(−y2 − y3 + y4) − 8x∗+,1y4)

+1

4
(y2 − y3 + y4)(Q(y1 + y3 + y4) − 8x∗+,1y4)

+1

4
(−y1 + y3 + y4)(Q(y2 − y3 + y4) − 8x∗+,1y4)

+1

4
(−y2 − y3 + y4)(Q(−y1 + y3 + y4) − 8x∗+,1y4)

= Q(−y23 + y24 ) − 8x∗+,1y
2
4 ,

which, after adding the expression x∗+,1(4 y
2
3 − 4 y24 )

obtained above, coincides with the last component of
G[2] in (11).

Finally, similar computations lead to:

G1[3] = (4 y23 − 4 y24 )
∑

k=1,3

(−1)
k−1
2
1

2

4∑

l=1

Ckl yl

= (4 y23 − 4 y24 )

(
1

2
(y1 + y3 + y4)

−1

2
(−y1 + y3 + y4)

)

= (4 y23 − 4 y24 ) y1;

G2[3] = (4 y23 − 4 y24 )
∑

k=2,4

(−1)
k−2
2
1

2

4∑

l=1

Ckl yl

= (4 y23 − 4 y24 )

(
1

2
(y2 − y3 + y4)

−1

2
(−y2 − y3 + y4)

)

= (4 y23 − 4 y24 ) y2;

G3[3] = (4 y23 − 4 y24 )
4∑

k=1

(−1)k−1 1

4

4∑

l=1

Ckl yl

= (4 y23 − 4 y24 ) y3;

G4[3] = (4 y23 − 4 y24 )
4∑

k=1

1

4

4∑

l=1

Ckl yl

= (4 y23 − 4 y24 ) y4,

as in (11) (notice that, in the last two steps, for the sake
of the presentation, we do not display the full expansion
in terms of the Ckl elements). This completes the com-
putation to obtain the expressions in (11) from (10).
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