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Abstract

Given a planar vector field U which generates the Lie symmetry of some other vector field X, we prove
a new criterion to control the stability of the periodic orbits of U . The problem is linked to a classical
problem proposed by A.T. Winfree in the seventies about the existence of isochrons of limit cycles (the
question suggested by the study of biological clocks), already answered by Guckenheimer using a different
terminology. We apply our criterion to give upper bounds of the number of limit cycles for some families
of vector fields as well as to provide a class of vector fields with a prescribed number of hyperbolic limit
cycles. Finally we show how this procedure solves the problem of the hyperbolicity of periodic orbits in
problems where other criteria, like the classical one of the divergence, fail.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Etant donné un champ de vecteurs U du plan qui produit une symétrie de Lie d’un autre champ de vec-
teurs X, nous présentons un nouveau critère pour contrôler la stabilité des orbites périodiques du champ U .
Ce problème est lié à un problème classique proposé par A.T. Winfree dans les années ’70 au sujet de
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l’existence des isochrones de cycles limite (une question apparue dans l’étude des horloges biologiques),
déjà répondu par Guckenheimer en utilisant une terminologie différente. Nous appliquons notre critère pour
donner un borne supérieur du nombre de cycles limite pour quelques familles de champs de vecteurs aussi
bien que pour fournir à une classe de champs de vecteurs un nombre prescrit de cycles limite hyperboliques.
Finalement, on montre comment ce procédé résout le problème de l’hyperbolicité de cycles limite dans des
problemes où d’autres critères, comme le critère classique de la divergence, échouent.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction and main results

Starting from the interpretation of a Lie symmetry, this paper strongly intersects with three
issues in dynamical systems and applications: (1) stability and (strong) hyperbolicity of limit
cycles; (2) isochrons of limit cycles; (3) non-uniqueness of limit cycles.

In this introduction, we mention our new results along with others already known in order to
describe the framework that Lie symmetries provide to these three issues. We differ the more
technical results and details to the remaining sections.

1.1. Lie symmetries: switching from period functions to return maps

The use of Lie brackets for proving questions related to the time of the orbits of a planar
vector field X is not new. One of the pioneering works wondering about isochronicity using this
approach was the paper of Pleshkan [14]. A revival has come since the papers of Sabatini and
Villarini [15,20], in the early 90s in which they linked the isochronicity of centres to the exis-
tence of commutators. Recall that, given an open set V ⊂ R

2, it is said that U is a (transversal)
generator of a Lie symmetry or a transversal normalizer for X in V if, on this subset, X and U

are transversal and [X,U ] = μX, being [,] the standard Lie bracket. In fact the geometric inter-
pretation of the existence of a Lie symmetry is that the flow of U sends orbits of X to orbits of X

(orbital symmetry) and the function μ controls the relation between the parameterization of the
orbits. In [6,7], we give a quantitative relation in case that X has a centre. It reads as follows.

Theorem 1. (Freire et al. [7]) Consider a C1 vector field X having a centre at a point p with
period annulus P . Let U be a vector field, U ∈ C1(P), transversal to X in P \ {p}, and such that
[X,U ] = μX on P , for some C1 function μ :P ⊂ R

2 → R. Denote by ψ = ψ(s) a trajectory of
U such that ψ(s0) ∈ P . Then,

T ′(s0) =
T (s0)∫
0

μ
(
x(t), y(t)

)
dt, (1)

where (x(t), y(t)) is the orbit of X such that (x(0), y(0)) = ψ(s0) and T (s) the period of the
orbit of X passing through ψ(s).

Notice that the above result can be useful to prove isochronicity of the centre (T ′(s) ≡ 0), to
prove monotonicity of the period function (T ′(s) �= 0) or to study the number of critical periods
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of T (the solutions of T ′(s) = 0). With Theorem 1 in mind we thought about the possibility of
getting a similar result but concerning to the Poincaré return map associated to a limit cycle of X.
We quickly realized that if X possesses a transversal normalizer in a neighbourhood of a periodic
orbit γ , it can never be a limit cycle. In fact the symmetry and the transversality force γ to live
in a continuum of periodic orbits. After checking several papers about the subject we confirmed
that the only way for X to have a limit cycle and, at the same time, having a Lie symmetry, is
breaking the transversality. In other words, essentially, the following idea is used to study the
limit cycles of planar vector fields X possessing a normalizer U : the limit cycles should live in
the set where X and U are parallel, see [17–19]. Hence, from this point of view, when the above
approach is useful and a symmetry can be computed, the limit cycles can be explicitly computed
and they are included in the set X · U⊥ = 0. This can be useful, for instance, when the system
possesses algebraic limit cycles, but in general using this point of view is equivalent to localize
the limit cycles, a very complicated problem. At this point we made ourselves the following
question: what about the limit cycles of the normalizer vector field U?

The study of the above question is the main subject of this paper. We consider a planar vector
field U , which we assume that is a transversal normalizer of another vector field X. Next result
gives a closed formula for the characteristic multiplier of a limit cycle of U in terms of μ. We
get:

Theorem 2. Let γ be a T -periodic orbit of a C1 planar vector field U , parameterized by
(x(s), y(s)), s ∈ [0, T ]. Assume that in a neighbourhood V of γ, U is a C1 transversal normal-
izer of X, i.e. [X,U ] = μX, for some C1 function μ. Let Σ = {ψ(p, t): t ∈ R} ∩ V, be a cross
section of γ, where ψ(p, t) is the solution of ż = X(z), z = (x, y), such that ψ(p,0) = p ∈ γ .
Then, the characteristic multiplier of γ is given by

π ′(0) = exp

( T∫
0

μ
(
x(s), y(s)

)
ds

)
,

where π is the Poincaré map on Σ .
Moreover, the time of first crossing of all orbits starting on Σ is T .

Notice that, as we wanted, Theorem 2 is somehow a version of Theorem 1 for the Poincaré
return map. The sequel of the paper is devoted to apply our result to control the number of limit
cycles of several types of planar vector fields.

1.2. Isochrons of limit cycles

When we try to apply Theorem 2 to some vector field U , the first difficulty is to find another
transversal vector field X such that U is its normalizer. The last result of Theorem 2, namely that
the Poincaré section Σ , generated by the flow of X, is an “isochronous section”, i.e. that all the
orbits of U spend the same time for going from Σ to Σ , gives the clue to solve the problem of
whether such an X exists or not. Fortunately, although with other interests in mind and by using
different notations, the problem of the existence of isochronous section has been already treated
in the literature.

In fact in a paper due to Guckenheimer [10], the author discusses the existence of what he calls
isochrons of a point x lying on a limit cycle γ of a vector field defined on R

n. The problem was
posed by Winfree [22], wondering about the features of biological clocks. Guckenheimer was
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able to clarify and give positive answers to Winfree’s questions using tools from dynamical sys-
tems. In Winfree’s context, it is said that y is on the isochron of x ∈ γ if d(φ(y, t), φ(x, t)) → 0
as t → +∞, where φ(z, t) represents the flow of the vector field U and satisfies that φ(z,0) = z.
Notice that, in the planar case, the isochrons introduced by Winfree coincide with the isochronous
sections given by Σ in Theorem 2.

More precisely, Winfree asked:

Question. Do isochrons exist? Is a neighbourhood of a stable limit cycle partitioned into the
isochrons of points on the limit cycle?

Guckenheimer is aware of the link between isochrons and stable sets and, using the Invariant
Manifold Theorem, he proves:

Theorem 3. (Guckenheimer [10]) Let φ :M ×R → M (M being a smooth manifold) be a smooth
flow with a hyperbolic, stable limit cycle γ . The stable set Ws(x) of each x ∈ γ is

(1) a cross-section of γ ,
(2) a manifold diffeomorphic to Euclidean space.

Moreover, the union of the stable manifolds Ws(x), x ∈ γ , is an open neighbourhood of γ and
the stable manifold of γ .

As he remarks in his article, the theorem proves the existence of isochrons for hyperbolic
stable limit cycles. He also points out the fact that the isochrons are permuted by the flow
(Ws(φ(x, t)) = φ(Ws(x), t)).

In fact, a similar result was already proven in [11, Section VI.2], where the stable limit cycles
are labelled as asymptotically orbitally stable periodic solutions and the existence of isochrons
is described as these periodic solutions having asymptotic phase. Moreover, Hale is aware of the
existence of asymptotically orbitally stable periodic solutions not having asymptotic phase, see
Exercise 2.1 in the same text. Here, for sake of completeness, we also present a two-dimensional
example of this situation, see Example 13.

Recently, two different papers which also prove related results in the planar case have ap-
peared. In the notation of our paper, the first result reads as follows:

Theorem 4. (Sabatini [16]) Let γ be a limit cycle of a C2 planar vector field U . Then U admits
a transversal isochron at any point of γ if and only if U is a non-trivial normalizer of another
vector field X in a neighbourhood of γ .

The second result says that for most non-hyperbolic limit cycles isochrons do not exist.

Theorem 5. (Chicone and Liu [3]) Let γ be a generic non-hyperbolic limit cycle, i.e. a double
limit cycle of a C2 planar vector field U . Then a necessary and sufficient condition for γ to
admit isochrons at a point p ∈ γ is that τ ′(p) = 0, where τ is the time of the first return to Σ, a
transverse section at p ∈ γ .

It is also worth to say that in [3] a new proof of the existence of isochrons for planar hyperbolic
limit cycles is also given.
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Gathering Theorems 3, 4 and 5 we get the following corollary.

Corollary 6. Let γ be a periodic orbit of a C2 planar vector field U . Then

(i) If γ is a hyperbolic limit cycle then there is a neighbourhood of γ such that U is a transversal
normalizer of another vector field X.

(ii) If γ is a double limit cycle then generically no X exists such that U is its normalizer.

As a consequence of the above result it could seem that Theorem 2 would only be useful
when we consider vector fields having all their limit cycles hyperbolic. This is not true. For
instance, in Theorem 7, by using our theorem, we give a result that includes double limit cycles.
Notice also that if we substitute the vector field U by BU , where B :U ⊂ R

2 → R is a positive
Dulac function, then the number of periodic solutions of U and BU coincide. By having in mind
Theorem 5, it seems natural that this function B can be chosen in such a way that the new vector
field BU is a normalizer of some vector field X. In any case, and although we think that it is an
interesting problem, we are not devoted, in this paper, to the general question of the existence, in
a neighbourhood of any periodic orbit of U, of B, X and μ such that [X,BU ] = μX.

Let us describe, then, the applications of Theorem 2 that we develop in this paper.
Theorem 2, as well as Theorem 4, can be thought of as a way of finding the isochrons of a

given vector field possessing a limit cycle. For the sake of illustration, in Section 2, and after the
proof of our theorem, we reproduce and explain in a general framework an example by Winfree
about the isochrons of a concrete family of integrable systems. The Lie symmetries approach
allows to unveil the hidden virtues of Winfree’s example.

1.3. Number of limit cycles

Section 3 is devoted to study the number of limit cycles of several families of planar vector
fields. Inspired in the so called rigid systems, see for instance [4], and also in the systems treated
in [16], we consider families of vector fields of the form

U = Z + F(x, y)X, (2)

where [Z,X] = 0.
For rigid systems,

Z =
(−y

x

)
and X =

(
x

y

)
,

and our main result is the following theorem.

Theorem 7. Consider the vector field

U :=
{

ẋ = −y + xF(x, y),

ẏ = x + yF(x, y),
(3)

with F(x, y) = F0 + Fm(x, y) + Fn(x, y), being Fi(x, y) homogeneous polynomials of degree i

in x and y and 0 < m < n. If either the function Fm(cos θ, sin θ) or the function Fn(cos θ, sin θ)

do not change sign, then (3) has at most two limit cycles and, more precisely, it can happen only
one the following possibilities:

(i) the vector field U has no limit cycles;
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(ii) the vector field U has a unique hyperbolic limit cycle;
(iii) the vector field U has a unique semi-stable limit cycle;
(iv) the vector field U has exactly two hyperbolic limit cycles;

and all them are realizable.

We want to stress that the above result adds a new example to the not very large list of systems
for which an upper bound of two limit cycles can be given.

Remark 8. In [9], it is proved that there are vector fields of the form (3) with m = 2 (resp. m = 3)
and n = 4 having at least 3 (resp. 4) limit cycles. Hence, one cannot avoid hypotheses on Fn or
Fm to get criteria that give an upper bound of 2 limit cycles for systems of this type.

For more general Z and X in (2), we consider F(x, y) = ϕ(V (x, y)) where V is a two variable
function. Notice that if [X,Z] = 0, the U given in (2) is a normalizer of X and in fact [X,U ] =
μX with μ(x, y) = ϕ′(V (x, y))V̇ , being V̇ the derivative of V along the orbits of X (V̇ =
∇V ·X). As we have noted, the orbits of X are the isochrons of the limit cycles of U ; in addition,
if the Z considered has a centre, it must be an isochronous centre. In this case, we give a result
about existence and upper bound of limit cycles of (2), adding some other hypotheses on this
vector field, see Theorem 14. We also study with more detail a vector field constructed with Z

being a Loud isochronous centre, also inspired by [16], see Section 3.3.

1.4. Strong hyperbolicity of limit cycles

Last section compares the method given in Theorem 2 with other methods to study the stability
of a limit cycle and focuses on the problem of the strong hyperbolicity of a limit cycle. Recall
that the concept of strong hyperbolicity is used in the literature when the divergence does not
change sign on the limit cycle (see for instance [2] and the references therein); as the limit cycle
is usually unknown explicitly, this concept can be crucial to prove the hyperbolicity. The term
itself would not be misleading if the computation of the divergence was the only tool to prove
hyperbolicity but, as Theorem 2 of this paper shows, there exist other independent techniques
that crop up the “essence” of strong hyperbolicity. As far as we know, the book of Ye et al.,
see [24], provides the third different (and more geometrical) way to prove the stability of a
limit cycle of the vector field U , by using the curvature of the orbits of the orthogonal vector
field U⊥, K⊥(U). Roughly speaking, this criterion says that the sign of

∫
γ

K⊥(U) gives the

stability character of the limit cycle. Recall that if U(x,y) = (P (x, y),Q(x, y)), then K⊥(U) =
(QyP

2 − (Py + Qx)PQ + PxQ
2)/(P 2 + Q2)3/2. In the computations, we will use K̃⊥(U) :=

QyP
2 − (Py + Qx)PQ + PxQ

2. An extension to any Riemannian metrics and examples of
independence of this method with respect to the divergence one were shown in [8].

With these three methods in mind we propose a refinement of the concept of strong hyperbol-
icity:

Definition 9. Given a periodic orbit γ of a C1 planar vector field U , and X a vector field transver-
sal to U in a neighbourhood of the limit cycle such that [X,U ] = μX, we say that

• γ is strongly hyperbolic via divergence if divU does not change sign on γ and only vanishes
on isolated points on it.
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• γ is strongly hyperbolic via the orthogonal curvature if K̃⊥(U) does not change sign on γ

and only vanishes on isolated points on it.
• γ is strongly hyperbolic via the Lie symmetry of X if μ does not change sign on γ and only

vanishes on isolated points on it.

In the next result we collect three examples, each of them being optimal for each of the
three methods (divergence, Lie symmetries and orthogonal curvatures), respectively, to stress the
independence of each one. The second and third ones are taken from [8] but we include them for
the sake of clarity and completeness. Its proof is done in Section 4.

Example 10. The three methods to prove strong hyperbolicity stated above (via divergence, via
orthogonal curvature and via Lie symmetries) are independent. In particular, considering the
auxiliary vector field X(x,y) = (−x,−y), we have:

(i) the unique limit cycle of system

U :=
{

ẋ = −y + x(ax2 + by2 + c),

ẏ = x + y(ax2 + by2 + c),

with a, b > 0 and c < 0, is strongly hyperbolic via a Lie symmetry of X. In this case, we
are able to find a ring-shaped domain containing the limit cycle in which the function μ of
the Lie symmetry does not change sign. On the other hand, since both the divergence and
the orthogonal curvature change sign over this domain, we cannot decide if the limit cycle
is strongly hyperbolic neither via divergence nor via orthogonal curvature;

(ii) the closed curve γ = {(x, y): R(x, y) = 0}, where R(x, y) = x2 + y2 − 1, is a strongly
hyperbolic limit cycle of

U :=
{

ẋ = −y + x − x2y + xy2 − 2y3 − x5 − 3x3y2 − 2xy4,

ẏ = x + x3 + 2xy2

via orthogonal curvature but not strongly hyperbolic via divergence nor via a Lie symmetry
of X;

(iii) the closed curve γ = {(x, y): R(x, y) = 0}, where R(x, y) = x2 + 4y2 − 1, is a strongly
hyperbolic limit cycle of

U :=
{

ẋ = −4y + 2x − 2x3 − 8xy2,

ẏ = x

via divergence but not strongly hyperbolic via orthogonal curvature nor via a Lie symmetry
of X.

A result of Amel’kin (see [2]) says that any hyperbolic limit cycle can be made strongly hy-
perbolic via divergence by means of a suitable Dulac function. At the same time, changing the
metrics of the plane we could also convert a limit cycle into a strongly hyperbolic via orthogonal
curvature one, since the topology remains unaltered after a change to another Riemannian met-
rics. Finally, if a specific Lie symmetry ([X,U ] = μX) does not provide strong hyperbolicity
on a limit cycle, we can eventually obtain new symmetries ([X′,U ] = μ′X′) such that μ′ has a
definite sign on the limit cycle; for instance, by taking X′ = BX for some non-negative scalar
function B . It seems, then, that the three methods share a kind of degree of freedom to arrive
to strong hyperbolicity. In fact, it is known that div( X

‖X‖ ) = K⊥(X), and the link between Lie
symmetries and Dulac functions will be stated in Remark 11.
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2. Proof of Theorem 2 and construction of isochrons

Proof of Theorem 2. Let γ = {γ (t), t ∈ R} be a periodic orbit of ẋ = U(x) of period T . Denote
by p = γ (0) and consider

Y(t) := exp

( t∫
0

μ
(
γ (s)

)
ds

)
X

(
γ (t)

)
.

We next prove that Y(t) is a solution of the first variational equation associated to ẋ = U(x). We
use that DUX − DXU = μX:

d

dt
Y (t) = exp

( t∫
0

μ
(
γ (s)

)
ds

)(
μ(x)X(x) + DX(x)U(x)

)∣∣
x=γ (t)

= exp

( t∫
0

μ
(
γ (s)

)
ds

)(
μ(x)X(x) + DU(x)X(x) − μ(x)X(x)

)∣∣
x=γ (t)

= exp

( t∫
0

μ
(
γ (s)

)
ds

)
DU

(
γ (t)

)
X

(
γ (t)

) = DU
(
γ (t)

)
Y(t).

Finally, observe that Y(0) = X(p) and Y(T ) = exp(
∫ T

0 μ(γ (s))ds)X(p).
On the other hand, d

dt
U(t) = DU(γ (t))U(γ (t)) and U(γ (0)) = U(γ (T )) = U(p). Then,

the monodromy matrix of the variational equation of the return map in the basis {U(p),X(p)},
where p ∈ γ , is(

1 0

0 exp
(∫ T

0 μ(γ (s))ds
))

.

That is, the characteristic exponent of the periodic orbit γ is
∫ T

0 μ(γ (s))ds.
The assertion that says that the time of first crossing of all orbits starting at Σ is T is an

straightforward consequence of the fact that the flow of U sends orbits of X to orbits of X.
Hence, in particular, the flow of U after time T sends Σ to Σ, as we wanted to prove. �
Remark 11.

1. In [5], it was already proved that the function V (x, y) = X(x,y)⊥ · U(x,y) satisfies

μ = divU − ∇V tU

V
, (4)

provided that [X,U ] = μX, and being X and U two transversal planar vector fields. In fact,
this is a particular case of the formula

[X,U ] =
(∇V tX

V
− divX

)
U −

(∇V tU

V
− divU

)
X,

given by S. Walcher in [21], when 1/V is an integrating factor of X.
Notice that equality (4) can be used to prove the theorem in an alternative way be-
cause (∇V tU)/V vanishes when integrated along a T -periodic orbit γ (t) of U . Then,
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∫ T

0 μ(γ (t))dt = ∫ T

0 div(γ (t))dt , and it is well known that the latest integral gives the char-
acteristic exponent of the periodic orbit.
On the other hand, since div(U/V ) = μ/V , we can obtain strong hyperbolicity via diver-
gence from strong hyperbolicity via Lie symmetries just considering B(x, y) := |1/V (x, y)|
as the Dulac function on the limit cycle.

2. Notice that the proof of the theorem (and, hence, the statement) can be extended to higher
dimensions. Any vector field X1 for which U is a transversal normalizer ([X1,U ] = μ1X1)

provides a characteristic exponent p1 := ∫ T

0 μ1(γ (t))dt of the T -periodic orbit γ (t). We can
obtain different characteristic exponents p1, . . . , pk provided that the corresponding vector
fields X1, . . . ,Xk are independent (that is, dim〈X1, . . . ,Xk,U 〉 = k + 1) in a neighbourhood
of γ (t). In particular, if k = n − 1, we get all the characteristic exponents.

Let us see how our approach using Lie symmetries leads to a general constructive procedure
to get the isochrons associated to a hyperbolic limit cycle of a given integrable system. Next
proposition includes all the examples considered by Winfree in [23, Chapter 6]. As we will see
it also gives the intuition to construct an example of asymptotically orbitally stable limit cycle
without asymptotic phase, i.e. without isochrons, see Example 13.

Proposition 12. Consider the C1 system

U :=
{

ṙ = ra(r),

θ̇ = b(r),

where r and θ are the polar coordinates, r0 > 0, a(r0) = 0, a′(r0) �= 0 and b(r0) �= 0. Then,
{r = r0} is a hyperbolic limit cycle of U and its isochrons satisfy the differential equation

dθ

dr
= b̃(r)

rã(r)
,

where b̃(r) = (b(r) − b(r0))/(r − r0) and ã(r) = a(r)/(r − r0).

Proof. We can think of U as

U = a(r)

(
x

y

)
+ b(r)

(−y

x

)
and look for functions α and β to build a vector field

X = α(r)

(
x

y

)
+ β(r)

(−y

x

)
and a function μ satisfying [X,U ] = μX.

A straightforward computation gives

[X,U ] = (
a′(r)α(r) − a(r)α′(r)

)
r

(
x

y

)
+ (

b′(r)α(r) − a(r)β ′(r)
)
r

(−y

x

)
.

Forcing [X,U ] = μX, we get that

a′α − aα′

α
= b′α − aβ ′

β
, (5)

since one must have μ = r(a′ − aα′/α) = r(αb′/β − aβ ′/β). Notice that there is a high freedom
to choose α(r). In order to simplify the above equation, we try with α(r) ≡ 1. Observe that this
choice guarantees the transversality of X and U as well, because X⊥ · U |r=r0 = b(r0)r

2
0 �= 0.
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When α = 1, from (5) we get that β satisfies the linear differential equation aβ ′ + a′β = b′
and, then, a(r)β(r) = b(r) + k. Since a(r0) = 0, then k = −b(r0). Hence,

β(r) = b(r) − b(r0)

a(r)
= b̃(r)

ã(r)
,

and the vector field X writes as{
ṙ = r,

θ̇ = b̃(r)
ã(r)

.

By using Theorem 2 we know that the orbits of X are, in fact, the isochrons of r = r0, as we
wanted to prove.

Finally, observe that, with this choice of α, the stability of the limit cycle is determined (as
we could expect) by the sign of a′(r0) since μ(r) = ra′(r). �

To conclude with the discussion of Section 1.2 about the existence of isochrons, in the next ex-
ample we give an instance of asymptotically orbitally stable periodic solution without asymptotic
phase:

Example 13. The orbit {r = 1} is an asymptotically orbitally stable periodic solution without
asymptotic phase for system{

ṙ = −r(r − 1)3,

θ̇ = r.
(6)

Proof. We call P(r0) the value of the Poincaré return map of the solution of (6) starting at
(r, θ) = (r0,0). Simple computations give

P(r0) = 1 − 1 − r0√
1 + 4π(1 − r0)2

.

On the other hand,

T (r0) =
T (r0)∫
0

dt =
P(r0)∫
r0

dr

r(1 − r)3
,

and so,

T ′(r0) = −
√

1 + 4π − 8πr0 + 4πr2
0 − 1

r0(r0 − 1)2
(√

1 + 4π − 8πr0 + 4πr2
0 + r0 − 1

) .

Taking limits to approach to the limit cycle,

lim
r0→1

T ′(r0) = −2π �= 0.

Hence, from the result by Chicone and Liu, see [3] or Theorem 5, we know that the limit cycle
has no asymptotic phase. Notice that, we are not under the hypotheses of previous proposition be-
cause a′(1) = 0. In fact the“possible” isochrons would be the solutions of ṙ = r , θ̇ = −(r − 1)−2,
which are not well defined on the limit cycle {r = 1}. �
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3. Examples

In this section we consider two different families of examples. The first subsection is devoted
to study some rigid systems. The two other sections deal with systems of the form (2). Sec-
tion 3.2 studies a quite general family of systems and gives a result providing both upper and
lower bounds for its number of limit cycles. On the other hand, Section 3.3 considers a sys-
tem constructed from an isochronous quadratic Loud system, and proves (in Proposition 17) the
uniqueness and hyperbolicity of its limit cycle. It is worth to say that we have tried to prove the
uniqueness of the limit cycle studied in Proposition 17 by other methods, but they have failed.

3.1. Rigid systems

Recall that rigid systems are planar systems with constant angular speed. They can be written
as

U :=
{

ẋ = −y + xF(x, y),

ẏ = x + yF(x, y).
(7)

Our main result, already stated in the Introduction, is Theorem 7. It provides a subfamily
of systems of type (7) (more precisely, F(x, y) = F0 + Fm(x, y) + Fn(x, y), being Fi(x, y)

homogeneous polynomials of degree i) having at most two limit cycles.

Proof of Theorem 7. Taking

X :=
{

ẋ = x,

ẏ = y,

it follows that [X,U ] = μX, with μ(x, y) = xFx(x, y)+yFy(x, y). In virtue of Euler’s formula,
μ(x, y) = mFm(x, y) + nFn(x, y) and, by Theorem 2, the stability of an eventual limit cycle
r = r̄(θ) > 0 is given by the sign of

h(r̄) := mIm(r̄) + nIn(r̄), (8)

where Ik(r̄) = ∫ 2π

0 r̄(θ)kFk(cos θ, sin θ)dθ, for k = 0,m,n. Notice that I0(r̄) ≡ I0 = 2πF0.
Since the expression in polar coordinates of (7) is{

ṙ = rF (r cos θ, r sin θ),

θ̇ = 1,
(9)

on one hand,

2π∫
0

F
(
r̄(θ) cos θ, r̄(θ) sin θ

)
dθ =

2π∫
0

r̄ ′(θ)

r̄(θ)
dθ = ln

(
r̄(2π)

r̄(0)

)
= 0, (10)

and on the other hand
2π∫

0

F
(
r̄(θ) cos θ, r̄(θ) sin θ

)
dθ = I0 + Im(r̄) + In(r̄). (11)

Let us assume, for instance, that Fn(cos θ, sin θ) � 0. The case in which this function is less
or equal than zero can be treated in a similar way. Gathering (8), (10) and (11) we get that
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h(r̄) = −mI0 + (n − m)In(r̄). The hypothesis on Fn implies that if r = r̄1(θ) and r = r̄2(θ) are
two periodic solutions of (9) satisfying 0 < r̄1(θ) < r̄2(θ) then In(r̄1) < In(r̄2) and hence

h(r̄1) < h(r̄2). (12)

By using inequality (12) and the fact the origin is the only critical point of system (9) we get
that it has at most three limit cycles, because two nested consecutive hyperbolic limit cycles, can
never have the same stability. Furthermore, if they are given by r = r̄i (θ), i = 1,2,3, and satisfy
0 < r̄1(θ) < r̄2(θ) < r̄3(θ), then we must have h(r̄1) < h(r̄2) = 0 < h(r̄3). This last inequality
says in particular that the inner and outer limit cycle are hyperbolic and that the middle one is a
semi-stable one. As usual, we use the theory of rotated vector fields [13, Section 4.6], to prove
that this semi-stable limit cycle cannot exist.

Notice that system (9) is a rotated family with respect the parameter F0. Hence, by moving a
little bit this parameter in the suitable direction, we can assure that the two hyperbolic limit cycles
remain as hyperbolic limit cycles for the new system and, at the same time, the semi-stable limit
cycle breaks giving rise to two more limit cycles. This new vector field would have four limit
cycles and Fn(cos θ, sin θ) � 0, a contradiction with the result proved above. Thus, only the two
hyperbolic limit cycles could exist.

If only the semi-stable limit cycle and one on the hyperbolic limit cycles would exist a similar
reasoning using again the rotatory parameter F0 would give a new contradiction. Hence, the
results (i)–(iv) follow when Fn does not change sign. To prove the same results when Fm does
not change sign, we can combine again (8), (10) and (11), giving rise to the expression h(r̄) =
−nI0 + (m − n)Im(r̄). From it, we can follow again the argument of the previous case.

It is not difficult to construct simple examples under the hypotheses of the theorem presenting
each one on the possibilities (i)–(iv); it suffices to consider functions F of the form F = F0 +
a(x2 + y2)m/2 + b(x2 + y2)n/2 for suitable constants a and b. Hence the proof is ended.

We only remark that taking into account that the stability of the origin is governed by the sign
of F0 and considering also the parity of m (resp. n) when Fn (resp. Fm) does not change sign, in
some cases the upper bound of two limit cycles can be reduced. �
3.2. A family of systems of the form U = Z + F(x, y)X

Let Z have a centre at p0 with period annulus P and let X be a vector field transversal to Z,
that is, Z⊥ · X > 0 (or < 0) in some region D, D ⊂ P , assuming that {Z,Z⊥} is a positively
oriented orthogonal basis. Suppose that X(p0) = 0.

Let V ∈ C1(D′), D ⊆D′, such that all the level curves {(x, y): V (x, y) = a > 0} included in
D are closed and connected.

Let also ϕ(x) be a C1 function in a subset I ⊆ R with exactly (m + 1) simple zeroes
(a0, . . . , am). We define, for convenience, a−1 := V (p0) and denote Ij := (aj−1, aj ), for j =
0, . . . ,m. Observe that I = ⋃m+1

j=0 Ij ∪ ⋃m
j=0{aj }. Suppose that ϕ does not change sign in I0. Of

course, ϕ will not change sign in Im+1 := I ∩ (am,+∞).
Given any pair γ, γ ′ of closed orbits, we say that γ � γ ′ if Intγ ⊆ Intγ ′. This operation

defines an ordering in P that allows to distinguish the following orbits of Z:

Γ
j

in := max
γ∈P

{
γ � {V = aj }

}
, Γ

j
out := min

γ∈P
{
γ � {V = aj }

}
, for j = 0, . . . ,m.
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Fig. 1. Formation of a region Ωj . Γ j
out (Γ

j
in) is the outmost (inmost) tangency of an orbit of Z with {V = aj } (symbolized

here by an ellipse). Ωj is the region filled in with scattered dots.

Fig. 2. The j -inclusion: two consecutive Ω-regions (Ωj and Ωj+1) filled in with scattered dots that do not overlap. The
white region in between is defined as Rj .

We also define Ωj as the ring bounded by Γ
j

in and Γ
j

out, for any j = 0, . . . ,m, see Fig. 1. We will

also say that the j -inclusion is fulfilled whenever Γ
j−1

out � Γ
j

in. In this case, we define Rj as the

ring bounded by Γ
j−1

out and Γ
j

in, j ∈ {1, . . . ,m}, see Fig. 2.

Theorem 14. Taking into account all the above definitions, consider the vector field U = Z +
ϕ(V (x, y))X. Then,

(a) If the 1-inclusion holds, then U has at least one limit cycle in the ring Ω0. If the j -inclusion
and the (j + 1)-inclusion hold for some j ∈ {1, . . . ,m − 1}, then U has at least one limit
cycle in the ring Ωj . If the m-inclusion holds, then U has at least one limit cycle in the
region Ωm.

(b) Assume, in addition, that X is a commutator of Z ([Z,X] ≡ 0 in D) and V is a strict
Liapunov function for X in D.
Then, U has exactly m + 1 limit cycles (which are hyperbolic) provided that ϕ is monotone
in every Ωj , for j = 0, . . . ,m. In fact, U has exactly one limit cycle in each Ωj , which is
hyperbolic and stable (unstable) if ϕ > 0 (< 0) in (aj , aj+1).
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Remark 15. A practical way to ensure the monotonicity of ϕ in Ωj , for a particular j ∈
{1, . . . ,m − 1}, is that ϕ has a unique maximum or minimum both in Ij (we denote it by a′

j )
and in Ij+1, and that {V = a′

j } ⊆ Rj and {V = a′
j+1} ⊆ Rj+1. In Ω0, a sufficient condition is

that a′
1 exists, with {V = a′

1} ⊆ R1, plus ϕ monotone in I0. Similarly, in Ωm, a sufficient condi-
tion is that a′

m exists, with {V = a′
m} ⊆ Rm, plus ϕ monotone in Im+1.

Proof. Without loss of generality, we can assume that the flow of Z is counterclockwise and
write the transversality hypothesis as Z⊥ · X > 0. Consequently, Z⊥ · U = (ϕ ◦ V )(Z⊥ · X) and,
then, the sign of Z⊥ · U is exactly the sign of ϕ ◦ V .

For the proof, we fix j ∈ {1, . . . ,m − 1} such that ϕ′(aj ) > 0 (as a consequence, ϕ(x) < 0 in
Ij and ϕ(x) > 0 in Ij+1). The special cases j = 0 and j = m are proved separately.

(a) Since {V = aj−1} � Γ
j−1

out � Γ
j

in � {V = aj }, the j -inclusion implies that (ϕ ◦ V ) < 0 on

Γ
j

in. Then, Z⊥ ·U < 0 on Γ
j

in also and, since it is an orbit of Z, then IntΓ j

in is a negatively invariant
region for the flow of U = Z + ϕ(V (x, y))X. Similar arguments (through (j + 1)-inclusion)
provide that IntΓ j

out is positively invariant. Then, using the Poincaré–Bendixson theorem, one
must encounter at least one (attracting) limit cycle in the region Ωj .

The fact that ϕ does not change sign both in I0 and in Im+1 provides, respectively, the appro-
priate invariance to Γ 0

in and Γ m
out.

Then, a suitable ϕ such that the j -inclusion holds for any j = 1, . . . ,m − 1, forces U to have
at least m + 1 limit cycles. It remains the question of hyperbolicity and uniqueness of the limit
cycles.

(b) Since [Z,X] = 0, it is easy to see that [X,U ] = ((∇ϕ)⊥ · X)U ; in other terms:

[X,U ] = μX, with μ(x, y) = ϕ′(V (x, y)
)
V̇ ,

where V̇ is the derivative of V along the orbits of X.
The fact that V is a strict Liapunov function for X, ensures that sgn(μ) = −sgn(ϕ′). Since

ϕ is monotone in Ωj , then ϕ′ �= 0 and, hence, applying Theorem 2, the hyperbolicity and, as a
consequence, the uniqueness of the limit cycle in each Ωj are proven. It is stable (resp. unstable)
if ϕ′ > 0 (resp. < 0) on Ωj . �

We keep assuming that the flow of Z is counterclockwise and writing the transversality hy-
pothesis as Z⊥ · X > 0. A corollary of Theorem 14 is the following:

Corollary 16. If V is a first integral of Z, then, for each j = 0, . . . ,m, Γ
j

in = Γ
j

out is a limit cycle
of U . The limit cycles are always hyperbolic (assuming that the zeroes of ϕ are simple) and the
sign of the stability is provided by ϕ′(aj ).

3.3. Limit cycles from a Loud system

The system studied in the following result is similar to a system considered in [16]. In fact,
the only difference is that in Sabatini’s paper the function 1 − αV (x, y) below is replaced by
V (x, y) − 4B2V (x, y)2. In that paper, the author uses a procedure to prove the existence of at
least one limit cycle for the system, that in fact was our main inspiration to state and prove part (a)
of Theorem 14. Unfortunately, part (b) of our theorem does not work to prove the uniqueness
of the limit cycle of Sabatini’s example. On the other hand, we can prove the existence and
uniqueness of the limit cycle of the system studied in the next proposition.
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Proposition 17. Consider the vector field U = Z + (1 − αV (x, y))Z⊥, where

Z =
{

ẋ = −y + Bxy,

ẏ = x − 1
2Bx2 + 1

2By2,

V (x, y) = x2 + y2, B > 0, α > B2 > 0 and Z,Z⊥ form a positive oriented basis. Then, U has
a unique limit cycle which is hyperbolic and unstable.

Proof. Notice that Z has an isochronous centre at the origin, as it was proved by Loud, see [12].
A transversal commutator of Z is its orthogonal vector field

X := Z⊥ =
{

ẋ = −x + 1
2Bx2 − 1

2By2,

ẏ = −y + Bxy.

To see that V = x2 + y2 is a Liapunov function for X notice that

V̇ = 2x

(
−x + 1

2
Bx2 − 1

2
By2

)
+ 2y(−y + Bxy) = (x2 + y2)(−2 + Bx).

Since the period annulus of the centre of Z is P = {(x, y): x < 1/B}, we have that V is a
strict Liapunov function for X on P .

Consider now the function ϕ(V ) = 1 − αV. In the notation of Theorem 14, m = 0 and a0 =
1/α. Moreover, ϕ′(a0) = −α < 0; ϕ(v) > (<)0 if v < (>)a0. We are then on the track of proving
that U = Z + (1 − αV (x, y))X has a unique limit cycle which is hyperbolic and unstable. This
is true because μ = ϕ′(V )V̇ = −αV̇ > 0.

To have a more precise idea of the location of the limit cycle, we can compute the Γ 0
out and

Γ 0
in given in Theorem 14.

Using that H(x,y) = x2+y2

−1+Bx
is a first integral of Z, we seek for k1 and k2 such that the

circle H(x,y) = k1 is the greatest integral curve completely included in the region bounded by
{V = −1/α} and the circle H(x,y) = k2 is the smallest one including completely {V = −1/α}
in its finite Jordan component. An easy computation shows that k1 = 1

−B
√

α−α
and k2 = 1

B
√

α−α
.

Again from easy computations, we conclude that the limit cycle must lie in the region bounded
by the circles C1 := Γ 0

out and C2 := Γ 0
in, where Ci is given by(

x − kiB

2

)2

+ y2 = ki

(
kiB

2

4
− 1

)
. �

4. Proof of Example 10

(i) In [1, p. 215] (Example 12), it is proved that the following system

U :=
{

ẋ = −y + x(ax2 + by2 + c),

ẏ = x + y(ax2 + by2 + c),
(13)

has a unique limit cycle for a = 3 and b = 2. The authors use the generalized Dulac criterion
ensuring that the divergence does not change sign in a (negatively) invariant region homotopic to
a ring and including the limit cycle. Thus, it can be called a strongly hyperbolic limit cycle via
divergence.

This result can be somehow improved. Indeed, the ring

Ω = {
(x, y): |c|/max(a, b) � x2 + y2 � |c|/min(a, b)

}
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is negatively invariant for any pair (a, b) ∈ R
2+

and free of critical points, and div(U) =
2(2ax2 + 2by2 + c). Thus, the ring Ω is included in the region of positive divergence if and
only if 2 min(a, b) � max(a, b). So, we can assert that the limit cycle is unique and strongly
hyperbolic via divergence if 2 min(a, b) � max(a, b).

On the other hand, if we use our approach, we are able to prove the uniqueness and strong
hyperbolicity via Lie symmetries of the limit cycle for any pair (a, b) ∈ R

2+
. Let us show how:

Consider

Z =
{

ẋ = −y,

ẏ = x,
and X =

{
ẋ = −x,

ẏ = −y.

Let also be V (x, y) = ax2 + by2 (it is easy to see that it is a Liapunov function for X) and
ϕ(v) = −v − c. In the notation of Theorem 14, a−1 = 0 and a0 := −c = |c|.

The ellipse {(x, y): V (x, y) = |c| = a0} defines the curves Γ 0
in = {x2 + y2 = |c|/max(a, b)}

and Γ 0
out = {x2 + y2 = |c|/min(a, b)}.

Since ϕ′ < 0 everywhere and V̇ = −2V < 0, then, applying Theorem 14(b), μ > 0 and so
there is a unique limit cycle which is strongly hyperbolic via Lie symmetries and unstable.

Once the elements of the symmetry are known, using Remark 11 for system (13), we obtain

the Dulac function B(x, y) = (x2 + y2)−1, for which div(BU) = 2 ax2+by2

x2+y2 .

Finally, the numerator of the curvature of U⊥ is K̃⊥ = C(x, y)(x2 + y2), where

C(x, y) = a3x6 + 3a2bx4y2 + 3ab2x2y4 + b3y6 + 3ca2x4

+ (2a2 − 2ba)x3y + 6abcx2y2 + (2ba − 2b2)xy3 + 3b2cy4

+ (3a + 3c2a)x2 + (2ac − 2bc)xy + (3b + 3bc2)y2 + c + c3.

Since we just want to show here that this limit cycle is not strongly hyperbolic via orthogonal
curvature for all (a, b, c), we only show an instance where C changes sign in Ω : in the case
a = 3, b = 2, C(x, x) has always one zero in the interval (

√|c|/√6,
√|c|/2) (that is, inside Ω)

if c ∈ (12
√

10 − 66,8
√

10 − 44). Then, we cannot ensure that the limit cycle lies on a region
with constant sign of K̃⊥.

(ii) First of all, it can be easily seen that γ = {x2 +y2 −1 = 0} is a periodic orbit of the system

U :=
{

ẋ = −y + x − x2y + xy2 − 2y3 − x5 − 3x3y2 − 2xy4,

ẏ = x + x3 + 2xy2,

just checking that Rxẋ + Ryẏ|{R=0} = 0.
If we compute K̃⊥ and afterwards we restrict it to γ , we obtain K̃⊥(x, y)|γ = 2x2(x2 − 3)3.

Then, γ is strongly hyperbolic via orthogonal curvature.
On the other hand, the divergence of U is divU = 1 + 2xy + y2 − 5x4 − 9x2y2 − 2y4, which

takes the value divU |γ = −6x2 + 2xy + 2x4 evaluated on the limit cycle. This function changes
its sign on γ and hence, it is not strongly hyperbolic via divergence.

Both in this example and the next one, the system U is not a normalizer of the “trivial” vector
field X(x,y) = (−x,−y), as in the first example. Of course, it could exist another vector field
X′ such that [X′,U ] = μ′X with μ′ non-vanishing on the limit cycle.

(iii) As in the previous example, it can be easily checked that γ = {x2 + 4y2 − 1 = 0} is a
periodic orbit for the system

U :=
{

ẋ = −4y + 2x − 2x3 − 8xy2,

ẏ = x.
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Here, K̃⊥(x, y)|γ = −4x(−3x3 + 4x + 3y), which changes sign on the limit cycle. On the other
hand, it turns out that divX|γ = −4x2 and so, the limit cycle is strongly hyperbolic via diver-
gence. �
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