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A characterization of isochronous centres
in terms of symmetries

Emilio Freire, Armengol Gasull and Antoni Guillamon

Abstract

We present a description of isochronous centres of planar vector
fields X by means of their groups of symmetries. More precisely, given
a normalizer U of X (i.e., [X,U ] = µX, where µ is a scalar function),
we provide a necessary and sufficient isochronicity condition based
on µ. This criterion extends the result of Sabatini and Villarini that
establishes the equivalence between isochronicity and the existence
of commutators ([X,U ] = 0). We put also special emphasis on the
mechanical aspects of isochronicity; this point of view forces a deeper
insight into the potential and quadratic-like Hamiltonian systems.
For these families we provide new ways to find isochronous centres,
alternative to those already known from the literature.

1. Introduction

Along this paper we suppose to have a vector field X on the plane with a cen-
tre at some critical point p. We are mainly concerned about the isochronicity
problem, that is, to determine whether the periodic orbits around p have the
same period or not.

The pioneering works wondering about isochronicity were already given
in the sixties by Levin and Shatz, Loud, Pleshkan and Urabe (see [7], [8],
[11] and [14]). Nevertheless, until the beginning of this decade, the prob-
lem has not been deeply considered. The most relevant works are those of
Sabatini and Villarini (see [13] and [15] and the references therein), where
they settled the strong relationship between Lie brackets and isochronicity.
In particular, they proved that p is an isochronous centre if and only if there
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exists a transversal commutator of this vector field. This idea has been used
fruitfully by many authors and commutators for centres have been found for
several families.

It is worth to say that the problem of isochronicity has also been thought
of as a problem of linearization of centres, which is equivalent. This approach
has been mainly used in the works of Mardešić, Moser-Jausslin, Rousseau
and Toni (see [9] and [10]) and has opened as well a productive line to deal
with hypothetical isochronous centres.

Our main result is in some sense a refinement of that introduced by
Sabatini and Villarini. It will be proved in Section 2 and it states as follows:

Theorem 1 Consider a C1 vector field X having a centre at a point p and
period annulus P ⊂ R

2. Let U be a vector field U ∈ C1(P), transversal
to X in P \ {p}, and such that [X,U ] = µX for some C1 scalar function
µ : P −→ R. Let γ = {x(t)} be any periodic orbit of X in P and denote
by Tγ its period.

Then, the centre is isochronous if and only if there is a neighbourhood of
p such that for any γ contained in it,

∫ Tγ

0

µ(x(t)) dt = 0.

Remark 2 The existence of U and µ such that [X,U ] = µX, is proved in [1]
for general systems with a nondegenerate centre at p. The main difficulty for
practical purposes is to find a way to compute U and µ. The vector field U has
a clear geometrical interpretation: since X has a centre, it possesses a Lie
group of symmetries; then, U is the infinitesimal generator of this group. In
Lie theory, the set of infinitesimal generators is called the normalizer of X,
while the set of commuting vector fields is called the centralizer, see [16] for
more details. In this context, Theorem 1 states that not only the centralizer
but also a subset of the normalizer is connected to isochronicity. For short,
an element of the normalizer of X will be called a normalizer for X.

The above theorem can be used either to give a proof of the isochronicity
for particular systems (see next examples) or to characterize the isochronous
systems inside some families of centres. For instance, as we will see in
Section 3, we are able to find a normalizer vector field for all Hamiltonian
systems with Hamiltonian function

(1.1) H(x, y) = C(x) y2 + B(x) y + A(x),

which are called quadratic-like Hamiltonian systems in [3].
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Therefore, for (1.1) the characterization of the isochronous centres can be
deduced from the integral condition given in Theorem 1, see Theorem 4. On
the other hand, it seems not so easy to prove Theorem 4 either by applying
Sabatini and Villarini’s result or by finding a linearizing map, because one
does not know, a priori, which systems inside this family are isochronous
and as a consequence for which systems either a commutator vector field or
a linearizing map can be found. Furthermore, even for concrete isochronous
systems, it is not always an easy task to prove isochronicity by finding an
explicit commutator, see for instance next Example 3.2 or Example 14, at
the end of the paper. It is also difficult to find a linearizing map, see again
Example 14. Finally, we notice that Theorem 1 also allows to prove some
new characterizations of potential isochronous centres, see Corollary 5.

Examples 3 In the first example, both Theorem 1 and Sabatini and Vil-
larini’s method work. In the second example we illustrate the advantage of
using Theorem 1 instead of looking for commutators.

3.1 In [4], the vector field

X(x, y) = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
= y

(
−1+

44

9
x− 16

27
y2

) ∂

∂x
+

(
x+

8

9
y2

) ∂

∂y

is studied; a normalizer U and a scalar function µ are found to be, respec-
tively:

U(x, y) =
1

27

(
27x − 60x2 − 144y2 + 880xy2

) ∂

∂x
+

1

9
y

(
9 + 40x + 80y2

) ∂

∂y

µ(x, y) =
20

3
Q(x, y).

In that reference, the authors construct a new normalizer U − 20 y
3

X which is
effectively a commutator of X. As a consequence of Sabatini and Villarini’s
result they get isochronicity. By using Theorem 1, the isochronicity follows
just seeing that:∫ T

0

µ(x(t), y(t)) dt =
20

3

∫ T

0

Q(x(t), y(t)) dt =
20

3

∫ T

0

dy(t)

dt
dt

=
20

3
[y(T ) − y(0)] = 0,

where γ = {(x(t), y(t)), 0 ≤ t ≤ T} is a periodic orbit of X of period T.

3.2 Consider the potential system with Hamiltonian H(x, y) = y2/2 + V (x),
where V (x) = x2(x − 2)2/(x − 1)2, that is,

X(x, y) = −y
∂

∂x
+ V ′(x)

∂

∂y
, .
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We will see how by using Theorem 1 we can give a proof of its isochronicity.
On the other hand it seems not so easy to find a commutator vector field for
it in order to apply Sabatini’s and Villarini’s result. Define, thus,

U(x, y) =
V (x)

V ′(x)

∂

∂x
+

y

2

∂

∂y
and µ(x, y) =

x(x − 2)

(x2 − 2x + 2)2
.

It is easy to check that [X,U ] = µX. In Sections 3 and 4, see also Re-
mark 7 and Example 8, it is explained a constructive way to get the above
example and their associate normalizer. Let us apply Theorem 1. Denote by
{(x(t), y(t))} the time parameterization of a solution associated to the closed
level curve H(x, y) = h of X, and by Th its period. Denote by xm(h) (resp.
xM (h)) the negative (resp. positive) solution of the equation V (x) = h, for h
positive small enough. Then∫ Th

0

µ(x(t)) dt =
√

2

∫ xM (h)

xm(h)

µ(x)√
h − V (x)

dx = (∗),

and by using the change of variables u = g(x) := x(x − 2)/(2(x − 1)), with
inverse x = g−1(u) = 1 + u −√

1 + u2, we get

(∗) =
√

2

∫ √
h/4

−
√

h/4

µ(x)√
h − V (x)

8

V ′(x)

∣∣∣∣∣
x=g−1(u)

u du

= −
√

2

2

∫ √
h/4

−
√

h/4

u√
h − 4u2(1 + u2)3/2

du = 0.

Notice that the above change is constructed in order to have V (g−1(u)) = 4u2.
This example has been already studied by using other methods in [14] and
in [10, Eq. 7.17].

Finally, we use our results on quadratic-like Hamiltonian systems to give
solutions to a classical mechanical problem: suppose that we have a particle
moving in the (z, x)−plane on a C2 plane curve, z = h(x), without friction,
on which only the gravitational force acts, see Figure 1. Its Hamiltonian
formulation, supposing that both the mass of the particle and the gravity
acceleration constant are 1, is

(1.2) H(x, y) =
1

2

1

1 + h′(x)2
y2 + h(x).

At least three physical problems involving time are worth to be considered
in this framework:
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Figure 1: Ball moving on a plane curve.

• Braquistochronicity: Describing the shape of h(x) that minimizes the
time the particle takes from P to the origin, whatever the point P is.
This problem was proposed in Acta eruditorum (1696) by Johann
Bernouilli and solved by himself and many other famous mathemati-
cians: Leibnitz, Newton, Jacob Bernouilli and de l’Hôpital. It was
already considered by G. Galilei. It is well known that z = h(x) is
given by a family of cycloids.

• Tautochronicity: Describing the shape of h(x) such that the time to go
from P to the origin does not depend on the point P . This problem was
solved by Huygens in Horologium oscillatorium (1673). See Lemma 13
in Section 4. In this case the solution of this problem is also given by
a family of cycloids. As far as we know, although braquistochronicity
and tautochronicity problems have the same solutions there is not an
easy explanation of this fact.

• Isochronicity: Describing the shape of h(x) such that the time to go
from P to P ′ does not depend on the point P .

Of course, when h(x) is symmetric, the last two problems coincide. The third
problem was studied by Keller in [5]. Nevertheless, to our knowledge, no
text gives explicit examples of the non-symmetric case which has a clear
physical meaning. Here, we give one, see Example 14.
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2. Proof of Theorem 1

We assume by hypothesis that [X,U ] = µX.
Suppose first that X has an isochronous centre at p. By the result of

Sabatini (see [13]), we know that there exists a vector field Y transversal to
X in a punctured neighbourhood of p and such that [X,Y ] = 0. Since U
and X are also transversal in P \{p}, Y can be expressed as Y = f U + g X
for some scalar functions f and g. Then,

(2.1) [X,Y ] = f [X,U ] + X(f)U + X(g)X = (µ f + X(g))X + X(f)U = 0.

Since X and U are transversal, both coefficients must vanish and f, g and µ
satisfy :

(2.2)
µf = −X(g) ,

X(f) = 0 .

From the second equation we get that f is either a first integral of the vector
field X or a constant nonvanishing function. Set x = (x, y). Let γ = {x(t)}
be a periodic orbit of X of period Tγ included in P . Observe that from the
first equation, using that f is constant on γ,

0 =

∫ Tγ

0

(f µ)(x(t))dt +

∫ Tγ

0

X(g)(x(t))dt

= f(x(0))

∫ Tγ

0

µ(x(t))dt + g(x(t))|Tγ

0 = f(x(0))

∫ Tγ

0

µ(x(t))dt.

If f(x(0)) = 0 then X would be parallel to Y on γ. Hence,

∫ Tγ

0

µ(x(t))dt = 0

for any γ in a neighbourhood of p, as we wanted to prove.

Let us prove the converse. Consider a small neighbourhood of p and as-
sume that γ is a Tγ-periodic orbit of X contained in it. We claim that there is
a ring-shaped neighbourhood D of γ, such that all the periodic orbits of X
have the same period Tγ. Clearly this fact will imply the isochronicity of X.

To prove the claim we will construct a commutator Y of X of the form
Y = U + gX on D. Once Y is constructed the claim will follow arguing as
in [13].

Note that, by using (2.1), the existence of Y is a consequence of the
existence of a function g such that µ = −X(g), defined in D. In other
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words, Y will exist if we can construct a solution g(x) (global in all D) of
the first order quasi-linear partial differential equation

(2.3) gx(x)X1(x) + gy(x)X2(x) = −µ(x).

Consider the above partial differential equation with the initial condition

(2.4) g(x)|Σε = 0,

(any other initial condition will lead to a suitable g, but we choose the
simplest one) where

Σε = {u(s), −ε ≤ s ≤ ε},
being q a point of γ and u(s) the solution associated to the vector field U,
which passes through q when s = 0.

By using the characteristic method, the surface solution of (2.3) in the
(x, g)−coordinates, satisfying (2.4) is given by the parametric expression

(2.5)




x = α(t, s) := ϕ(t,u(s)),

g = β(t, s) := −
∫ t

0

µ(ϕ(w,u(s))) dw

being ϕ(t,x0) the solution of the Cauchy problem{
dx(t)/dt = X(x(t)),

x(0) = x0.

The transversality of X and U on Σε implies, by using the Implicit
Function theorem, that the surface (x, g) = (α(t, s), β(t, s)) for |s| ≤ ε and
ε and t small enough can be expressed as g = g(x) for some smooth g.
To define globally g on some ring D, containing γ, consider

D :=
⋃
|s|≤ε

{ϕ(t,u(s)), t ∈ R} and R := {(t, s) : |s| ≤ ε, t ∈ R/[0, Ts]}.

The fact that fixed any s ∈ (−ε, ε), the orbit ϕ(t,u(s)) is Ts-periodic, implies
that the map α : R → D is smooth and bijective. On the other hand, the
map β is well defined in R because, by hypothesis,∫ Ts

0

µ(ϕ(w,u(s))) dw = 0.

Therefore g = g(x) := β(α−1(x)) is a solution of (2.3) defined in D, and the
claim follows. �
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3. Isochronicity in quadratic-like Hamiltonians.

We will now face to the applications of Theorem 1 to the problem of isochron-
icity in quadratic-like Hamiltonian systems. That is, we consider H(x, y) =
A(x) + B(x)y + C(x)y2, satisfying C(0) �= 0.

By the symplectic “translation”, (x, y) → (x, y + B(x)/(2C(x))), one
can suppose that B(x) ≡ 0. That is, if we define

(3.1) G(x) :=
4A(x)C(x) − B(x)2

4C(x)
,

then we can write the transformed Hamiltonian as

(3.2) H(x, y) = G(x) + C(x)y2.

At this point we could go further and apply the new symplectic change,

(x, y) →
( ∫ x

0

du√
2C(u)

, y
√

2C(x)

)
,

to transform H into a potential Hamiltonian, that is, of the form H(x, y) =
y2/2 + V (x). However, if we keep using (3.2), we will be able to obtain
characterizations of isochronous centres more directly related to the func-
tions with physical meaning. So, from now on, we will consider as X the
Hamiltonian vector field associated to (3.2), that is:

(3.3) X =

{
ẋ = −2 y C(x),

ẏ = G′(x) + C ′(x) y2,

Without loss of generality we assume that the critical point p is at (0, 0).
The conditions that imply that the origin of (3.3) is a nondegenerate centre
read as:

Hypothesis H. There exists an interval I = [xL, xR]⊂ R, with xL < 0 < xR

where C and G are C2 functions, C is always positive and G satisfies: G(0) =
G′(0) = 0, G′′(0) > 0, G(xL) = G(xR), and xG′(x) > 0 for all x ∈ I \ {0}.

We are interested in the level curves of the Hamiltonian (3.2) ranging
from h = 0 to h = hmax = H(0, xL) = G(xL) = H(0, xR) = G(xR).

Our purpose is to apply Theorem 1 to (3.3) and, at the same time,
obtain specific methods to check or characterize isochronicity for this family
of systems. We have obtained two characterizations based on the knowledge
of the function µ and the use of suitable variables. To state our result it is
convenient to introduce some auxiliary functions

(3.4) g(x) := x

√
2G(x)

G′′(0)x2
, F (x) :=

∫ x

0

dξ√
C(ξ)

.
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Notice that if Hypothesis H is satisfied, then g(x) is invertible in a neigh-
bourhood of 0. Finally we introduce the function q(u), by the equality

(3.5) F (g−1(u)) = α∗u − q(u),

where α∗ is the only real constant such that q(u) starts with second order
terms in a neighbourhood of 0, i. e. such that q(0) = q′(0) = 0.

Theorem 4 Consider the Hamiltonian vector field (3.3),

X =

{
ẋ = −2 y C(x),

ẏ = G′(x) + C ′(x) y2,

and suppose that the Hypothesis H is fulfilled. Then the following conditions
are equivalent:

1. The centre at the origin is isochronous.

2. F
2
−F ′ G

G′ is either 0 or a function of G which vanishes at 0 (recall that
F is given in (3.4)).

3. The function q introduced in (3.5) is either 0 or an even function.

Proof of Theorem 4. Consider the vector field X given in (3.3). First of
all, let us notice that defining the new vector field

(3.6) U =




ẋ =
G(x)

G′(x)
,

ẏ =

(
1 − G(x)

G′(x)

C ′(x)

C(x)

)
y

2
,

and the function

(3.7) µ(x) = −1

2
+

((
G(x)

G′(x)

)′
− G(x)

2G′(x)

C ′(x)

C(x)

)
.

we have that [X,U ] = µX in some neighbourhood of the origin. We will
prove that 2 ⇒ 1 ⇒ 3 ⇒ 2.

(2 ⇒ 1): Assume that F
2
− F ′ G

G′ = ϕ(G), for some function ϕ : R → R

vanishing at 0. Fix an energy level h = C(x) y2 + G(x). Consider the cor-
responding level curve γh and call T its period. Define as xm and xM the
two intersections of γh with the x-axis. Using the symmetry on y in (3.3),
we have that

(3.8)

∫ T

0

µ(x(t)) dt =

∫ xM

xm

µ(x) dx√
C(x)

√
h − G(x)

.
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According to (3.7), the hypothesis and the fact that

µ(x)√
C(x)

= −
(

F (x)

2
− F ′(x)

G(x)

G′(x)

)′
,

it follows that∫ xM

xm

µ(x) dx√
C(x)

√
h − G(x)

= −
∫ xM

xm

d

dx
ϕ(G(x))

dx√
h − G(x)

= −
∫ xM

xm

ϕ′(G(x))G′(x)
dx√

h − G(x)
.

Since G(x) is a parabola-like function and ranges from 0 to h when
H = h, we can split the last integral in two parts and apply in each of them
the change z = G(x). At the end, we obtain that∫ T

0

µ(x(t), y(t)) dt =

= −
∫ 0

xm

ϕ′(G(x))G′(x)
dx√

h − G(x)
−

∫ xM

0

ϕ′(G(x))G′(x)
dx√

h − G(x)

= −
∫ 0

h

ϕ′(z)
dz√
h − z

−
∫ h

0

ϕ′(z)
dz√
h − z

= 0,

and so, by Theorem 1, the origin is an isochronous centre.

(1 ⇒ 3): We directly apply Theorem 1 by computing µ in terms of u = g(x).
Straightforward computations from (3.7) give:

µ(u) =
−u q′′(u)

2(α∗ − q′(u))
.

We impose that the integral of µ must vanish. Then, using again (3.8) and
the definition of F we obtain that

0 =

∫ T

0

µ(x(t)) dt =

∫ xM

xm

µ(x) dx√
C(x)

√
h − G(x)

=

∫ xM

xm

µ(x)F ′(x) dx√
h − G(x)

.

Changing to the variable u = g(x) we have that

1

2

∫ √
h/α

−
√

h/α

u q′′(u) du√
h − αu2

=
1

2

∫ √
h/α

0

u (q′′(u) − q′′(−u)) du√
h − αu2

= 0 .

Now, applying the change u =
√

h/α cos θ, we get
√

h

α

∫ π/2

0

cos θ
(
q′′(

√
h/α cos θ) − q′′(−

√
h/α cos θ)

)
dθ = 0 ,
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for all h ∈ (0, hmax]. Following the Lemma in [7] we get that q′′(u) = q′′(−u)
whenever u ∈ (0,

√
hmax/α]. Then, q′′ is an even function and so q is. Hence

statement 3 holds.

(3 ⇒ 2): Firstly note that by introducing the variable u = g(x) we have
that G(x) = α u2 for some α > 0 and that x = g−1(u) := u − p(u) for
some function p satisfying p(0) = p′(0) = 0. Remember also that F (x) =
F (g−1(u)) = α∗u − q(u) with q(0) = q′(0) = 0 and suppose that q(u) is an
even function. It is clear that

F (x)

2
− F ′(x)

G(x)

G′(x)

∣∣∣∣
x=g−1(u)

=
α∗u − q(u)

2
− (α∗ − q′(u))

(g−1)′(u)

u2 (g−1)′(u)

2u

=
1

2
(u q′(u) − q(u)).

Notice that u q′(u) − q(u), is an even function of u that vanishes at 0. This
means that it is either 0 or that it can be written as a function of u2 and so
as a function of G as statement 2 requires. �

As a consequence of Theorem 4, in next corollary we give two new char-
acterizations of the isochronous systems for the so called potential systems

(3.9)

{
ẋ = −y,

ẏ = v(x),

coming from H(x, y) = 1
2
y2 +V (x), where V a C2 function such that V (0) =

V ′(0) = 0 and V ′′(0) = α > 0 and v(x) = V ′(x). Note that potential
systems correspond to our case G(x) ≡ A(x) ≡ V (x), B(x) ≡ 0, C(x) ≡ 1/2
and F (x) =

√
2 x.

Corollary 5 Consider the vector field (3.9). Then the following statements
are equivalent:

1. The centre at the origin is isochronous.

2.
x

2
− V

V ′ is either 0 or a function of V that vanishes at the origin.

3. The function u − g−1(u) is either 0 or an even function, where g−1 is
the inverse of the map

g(x) := x

√
2V (x)

V ′′(0)x2
.
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Remark 6 A first characterization of potential isochronous centres was

given by Urabe in [14], see next condition 4. Other two equivalent conditions
were given in [3]. See also [6] and [17]. We include these other equivalent
statements here for sake of completeness:

4.
d

dx
V (x)

∣∣∣
x=g−1(u)

= v(g−1(u)) = 2α
u

1 + S(u)
,

where S(u) is an arbitrary smooth odd function.

5. V −1
+ (h) − V −1

− (h) =
2√
α

√
h,

where V −1
+ (h) (resp. V −1

− (h)) is the positive (resp. negative) solution
of V (x) = h for h in a neighbourhood of 0.

6. There exists a strict involution σ such that

V (x) =
α

4
(x − σ(x))2

for all x in a neighbourhood of 0.

4. Examples

Firstly we will give some examples of potential isochronous systems. They
will be constructed from the following consequence of Corollary 5.

Remark 7 Following 3 of Corollary 5, if the origin of a potential system
is isochronous then the function u − g−1(u) has to be either 0 or an even
function in the variable u, say φ(u2). If we introduce the change of variables
u = g(x), it is satisfied that V (x) = αu2. Therefore the parametric expression
of a function V = V (x) associated to any potential isochronous centre is

x = u − φ(u2), V = αu2,

for some α > 0 and some function φ vanishing at zero. Notice also that an
implicit expression for such a V is

V = α
(
x + φ̂(V )

)2

,

where φ̂(V ) = φ(V/α).
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Examples 8 The following choices of φ or φ̂ in the above remark produce
different examples of potential isochronous centres:

8.1 The function φ(z) =
√

1 + z − 1 gives

V (x) = α
x2(x − 2)2

(x − 1)2
,

for some α > 0, which already appears in [14] and in formula 7.17 of [10].

8.2 The function φ̂(z) = βzm, m ∈ N gives that V is a branch of the
algebraic curve

V = α (x + βV m)2 .

For m = 1, the V obtained gives the example of isochronous system given in
formula D.1 of [12].

8.3 The function φ̂(z) = z/(1 + z) gives that V is a branch of the algebraic
curve

(1 + V )2V = α(x(1 + V ) + V )2.

Note that Examples 8.1 and 8.2 define an isochronous centre just in a neigh-
bourhood of the origin, while Example 8.3 defines a global isochronous centre
because the change x = g−1(u) is in this case a global one.

For quadratic-like Hamiltonian systems, we explore as well some ways to
create isochronous centres.

Corollary 9 Let V be a function such that the potential system associated
to H(x, y) = y2/2 + V (x) has an isochronous centre at the origin. Then the
following quadratic-like Hamiltonian systems (3.3) have also an isochronous
centre at the origin.

1. Systems satisfying that G(x) = V (x) and

C(x) =

(
α∗ +

d

dx
Φ(V (x))

)−2

,

where α∗ > 0 and Φ is a smooth function which vanishes at the origin.

2. Systems satisfying that G(x) = V (x) and

C(x) = V (x)
(
βV ′(x) − δ

√
V (x)

)−2

,

where β > 0 and 2β
√

α > δ. Remember that α > 0 is given by the
relation V (g−1(u)) = αu2.
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Proof : (1) Since the potential system has an isochronous centre at the
origin, taking G(x) = V (x) we know, from 3 of Corollary 5 that x = g−1(u) =
u−p(u), with p an even function. Remember that V (g−1(u)) = αu2. On the
other hand

F (x) =

∫ x

0

dz√
C(z)

=

∫ x

0

(
α∗ +

d

dz
Φ(V (z))

)
dz = α∗x + Φ(V (x)).

Therefore

F (g−1(u)) = α∗(u − p(u)) + Φ(αu2) := α∗u − q(u).

So, q(u) = α∗p(u)−Φ(αu2) is also an even function. By using 3 of Theorem
4 we obtain that the centre is isochronous, as we wanted to prove.

(2) Arguing as in case (1) we obtain that

F (x) =

∫ x

0

(
β

V ′(z)√
V (z)

− δ

)
dz = 2β

√
V (x) − δx.

Therefore

F (g−1(u)) = (2β
√

α − δ)u + δp(u)

with p(u) even. Again, by using 3 of Theorem 4 the result follows. �

Examples 10

10.1 Take G(x) = (x(x − 2)/(x − 1))2. By Example 8.1 we have that the
function V = G has associated an isochronous potential system. By using
part 1 of Corollary 9 with Φ(x) ≡ x and α∗ = 8, or part 2 of Corollary 9 we
obtain the quadratic-like isochronous centres given by C(x) =

(x − 1)6

4(x4 − 6x2 + 8x − 4)2
,

or
(x − 1)4

((δ − 2β)x2 − 2(δ − 2β)x + δ − 4β)2 , with δ < 4β,

respectively.

10.2 Take G(x) = x2/2. By using part 1 of Corollary 9 again, with an
arbitrary function Φ(x) and an arbitrary α∗ > 0 we get that the quadratic-like
systems with C(x) = (α∗ + Ψ(x))−2, being Ψ(x) an arbitrary odd function,
have also an isochronous centre at the origin.
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Corollary 11 Take an arbitrary smooth function C(x) such that C(0) > 0,
and an arbitrary positive constant β. Then the quadratic-like Hamiltonian
systems satisfying

G(x) = β(F (x))2 = β

(∫ x

0

dz√
C(z)

)2

have an isochronous centre at the origin.

Proof : Notice that the condition F
2
− F ′ G

G′ = 0 is equivalent to G(x) ≡
β(F (x))2, for some β ∈ R. Therefore from part 2 of Theorem 4 the result
follows. �

Remark 12 (i) Observe that when F
2
−F ′ G

G′ = 0 then µ = 0 and (3.6) is a
commutator of the quadratic-like Hamiltonian system.

(ii) Note also that the relation G = β F 2 given in Corollary 11 (which cor-
responds to F

2
− F ′ G

G′ = 0) is equivalent to the condition of isochronicity,
C(x)G′(x)2 = 4βG(x), given in [3] for quadratic-like Hamiltonian systems.
This condition turns out to be necessary and sufficient when both G and C
are even. We can also prove that this condition becomes necessary in the
following way: using part 2 of Theorem 4 we have that there exists some ϕ
such that F

2
− F ′ G

G′ = ϕ(G).
The evenness of G and C implies the oddness of F and F

2
− F ′ G

G′ . So,
we have that G is even and for some ϕ, ϕ(G) is odd. This can only happen
if ϕ = 0.

As we will see in the next lemma, the above condition particularized
to the Hamiltonian system (1.2), gives the classical solution to the tau-
tochronicity problem. We include it for the sake of completeness.

Lemma 13 Consider the quadratic-like Hamiltonian system (1.2),

H(x, y) =
1

2

1

1 + h′(x)2
y2 + h(x),

and assume that h(x) is an even function vanishing at 0. Then the only so-
lutions of the isochronicity and tautochronicity problems associated to it, are
given by the following family of cycloids

x = k(w + sin w), h = k(1 − cosw),

where k > 0, and w is a parameter which ranges between −π and π.
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Proof : If h is even, then

C(x) =
1

2

1

1 + h′(x)2

is also even and by (ii) of Remark 12 we have that h(x) = βF (x)2 for some
positive β is an equivalent condition to isochronicity. This last equation
writes as √

h(x) =
√

β

∫ x

0

√
2 (1 + h′(z)2)dz,

or equivalently as the following implicit ordinary differential equation

h(x)
(
1 + (h′(x))−2

)
= 2k,

for some positive k. By introducing a new variable w such that h′(x) =
tan(w/2), we obtain that

x = k(w + sin w), h = k(1 − cos w),

which is the parametric expression of a family of cycloids. �
On the other hand, in the mechanical approach of the introduction we

have put special emphasis in the problem of isochronicity in front of that
of tautochronicity. In particular, breaking the symmetry we can achieve
solutions different from cycloids, as next example shows.

Example 14 Consider that

C(x) =
1

2(1 + h′(x)2)

and take h such that h(g−1(u)) = u2 and F (g−1(u)) = α∗u− k
2
u2, for α∗ and

k positive. We then develop both F ′(x) and C(x) in terms of the variable
u = g(x):

dF

dx
=

dF

du

1

1 − p′(u)
=

α∗ − k u

1 − p′(u)
;

C(g−1(u)) =
1

2

1

1 +

(
dh

du

1

1 − p′(u)

)2 =
1

2

(1 − p′(u))2

(1 − p′(u))2 + 4u2
.

Then, imposing that F ′(x)2 =
1

C(x)
, we obtain the equality:

(α∗ − k u)2

(1 − p′(u))2
=

2((1 − p′(u))2 + 4u2)

(1 − p′(u))2
.
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If we take now k = 2
√

2 and α∗ =
√

2 (other values of k would lead to
logarithmic functions and cumbersome expressions), we get that

p(u) = u +
1

6
(1 − 4u)3/2 − 1

6
, for u <

1

4

and thus, from the relation x = u − p(u),

u =
1

4
(1 − (1 − 6x)2/3), for x <

1

6
.

Finally, we obtain:

h(x) =
1

16
(1 − (1 − 6x)2/3)2.

The curve obtained z = h(x) is clearly non-symmetric and so, it is an ex-
ample of isochronicity but not of tautochronicity.
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