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This paper deals with the problem of finding upper bounds on the number of periodic solutions
of a class of one-dimensional nonautonomous differential equations: those with the right-hand
sides being polynomials of degree n and whose coefficients are real smooth one-periodic functions.
The case n = 3 gives the so-called Abel equations which have been thoroughly studied and are
well understood. We consider two natural generalizations of Abel equations. Our results extend
previous works of Lins Neto and Panov and try to step forward in the understanding of the
case n > 3. They can be applied, as well, to control the number of limit cycles of some planar
ordinary differential equations.
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1. Introduction and Main Results

Nonautonomous differential equations of type
dx

dt
= S(t, x), x ∈ Ω ⊂ R

n, t ∈ I ⊂ R, (1)

with additional boundary conditions are encoun-
tered in different problems like variational equations
of periodic orbits of vector fields, plane autonomous
ODE systems (see Sec. 4), control theory (see for
instance [Fossas-Colet & Olm-Miras, 2002]), . . . One
is often interested in particular solutions x(t) of (1)
which are defined in a whole interval I (we take
I = [0, 1] throughout the paper) and such that
x(0) = x(1). In the case when S is one-periodic
in t, observe that these solutions, which are closed
when we consider (1) on the cylinder R

n × [0, 1],

can be called periodic. A periodic solution which is
isolated in the set of all the periodic solutions of (1)
is called a limit cycle of the differential equation.

One of the most challenging questions for
Eq. (1) is the control of the number of limit cycles
in families of equations. Is this number finite? Is it
bounded?

Despite this interest, the simplest situations
are not completely understood yet, as in the one-
dimensional “polynomial” case,
dx

dt
= an(t)xn + an−1(t)xn−1 + · · · + a1(t)x + a0(t),

(2)

where x ∈ R, t ∈ [0, 1] and a0, a1, . . . , an : R →
R, are smooth one-periodic functions. The general
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problem of studying the number of limit cycles
of (2) was proposed by N. G. Lloyd [1973] and
C. Pugh (see [Lins Neto, 1980]). Notice that Eq.
(2) with n = 1 (resp. n = 2) is a linear equation
(resp. a Riccati equation). It is well known that
linear (resp. Riccati) equations have either a con-
tinuum of periodic solutions or at most one limit
cycle (resp. two limit cycles), see for instance [Lins
Neto, 1980; Lloyd, 1975]. When n = 3, Eq. (2)
is called Abel equation. We will also use the term
(d1, . . . , dr)-polynomial, dj ∈ N, to refer to Eq. (2)
where aj(t) ≡ 0 if j �= di for all i = 1, . . . , r.

It is known, for instance, that when a3(t) does
not change sign, the (optimal) upper bound for the
number of limit cycles of the Abel equation is three,
see [Gasull & Llibre, 1990; Lins Neto, 1980; Pliss,
1966]. When a3(t) ≡ 1 this upper bound also holds
taking into account complex limit cycles, see [Lloyd,
1973]. Also, when a0(t) ≡ 0 and a2(t) does not
change sign, it is proved in [Gasull & Llibre, 1990]
that the maximum number of limit cycles of the
Abel equation is again three.

For degrees higher than three, apart from the
results of [Lloyd, 1973], three relevant results are
those of Lins Neto [1980], Il’yashenko [2000], and
Panov [1998]:

(a) In [Lins Neto, 1980], it is proved that there is
no upper bound for the number of limit cycles
for Abel equations, see also [Panov, 1999]. In
particular, it is shown that there are (3, 2)-
polynomial equations with at least � solutions,
for any natural number �; these examples can
be easily extended to (n, 3, 2)-polynomial equa-
tions. The degree of the polynomials, however,
increases with �; this is why Il’yashenko [2004],
selected the problem of finding an upper bound
in terms of n and the maximum degree of the
polynomials aj(t) as a relevant topic in differ-
ential equations.

(b) In [Il’yashenko, 2000], the case of Eq. (2) with
an(t) ≡ 1 is considered and the author is able
to give an upper bound (nonrealistic in his
own words) for the number of limit cycles of
this equation in terms of the bounds of the
absolute values of the rest of coefficients of
the equation, aj(t), j = 0, 1, . . . , n − 1. This
result is coherent with the result of the (n, 3, 2)-
polynomial equations quoted above; in that
case, the systems having � limit cycles are such
that when we force the leading coefficient to
be one we get that the bounds of the absolute

values of the rest of coefficients increase
with �.

(c) In [Panov, 1998], the author proves that differ-
ential equations of the form

dx

dt
= x2k+1 + a2(t)x2 + a1(t)x + a0(t) , (3)

k ≥ 1, have at most three limit cycles, taking
into account their multiplicities (a nice gener-
alization of the result for Abel equations). See
also [Andersen & Sandqvist, 1999].

Observe that the leading coefficient in the last
two mentioned results is 1. In most cases they are
also valid when an(t) does not vanish. Hence, it
seems that the sign invariance of some of the func-
tions aj(t) is crucial in order to get bounds on the
number of limit cycles of Eq. (2). In each case, how-
ever, the question is choosing the terms for which
the sign invariance ensures a bounded number of
limit cycles.

In Sec. 3.3, we prove the following extension
of the (n, 3, 2)-polynomial case given in [Lins Neto,
1980] and stated above in item (a):

Proposition 1. Given any natural number � and
fixed natural numbers p > n > m ≥ 2, there exist
equations of the form

dx

dt
= ε̃xp + εf(t)xn + a(t)xm + δx , (4)

with f and a trigonometrical polynomials; |ε̃| small
enough or ε̃ = 0, and |δ| also small enough or δ = 0,
which have at least � limit cycles.

An interpretation of Proposition 1 tells us that
the number of limit cycles of a general (p, n,m, 1)-
polynomial equation is not bounded if the sign
invariance is assumed only on a1(t) or on ap(t), with
p ≥ 4. In particular, when ε̃ = 0 and so we con-
sider the (n,m, 1)-polynomial equation, this gives a
hint that the sign invariance must be imposed either
on am(t) or an(t) (concordant with the above men-
tioned results on the Abel equation).

According to the exposed background, the
present paper tries to step ahead in the understand-
ing of the number of limit cycles of Eq. (2) by con-
sidering the natural continuations of the literature:
the (n,m, 1)-polynomial and (n, 2, 1, 0)-polynomial
equations. More precisely, the first family that we
study is of the form

dx

dt
= an(t)xn + am(t)xm + a1(t)x, (5)
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where n > m > 1, and at least one of the functions
an or am does not change sign. The second family is

dx

dt
= an(t)xn + a2(t)x2 + a1(t)x + a0(t) n > 2,

(6)

with the function an not changing sign.
The results that we obtain from Eq. (5)

mimic the following nice corollary of Budan–Fourier
Theorem:

Lemma 2. For any an, am, a1 ∈ R and any n >
m > 1, the polynomial equation

anxn + amxm + a1x = 0

has at most five real solutions if n is odd and at
most four real solutions if n is even. Furthermore,
except for n = 3, the above upper bounds cannot be
improved.

Our results from Eq. (5) are collected in the
next theorem, where we establish the maximum
number of limit cycles. Notice the parallelisms with
Lemma 2 which, in turn, ensures the feasibility of
this maximum number.

Theorem 3. Consider the one-periodic generalized
Abel equation (5),

dx

dt
= an(t)xn + am(t)xm + a1(t)x,

with n > m > 1, and an, am and a1 being C1 func-
tions. Assume that an(t) or am(t) does not change
sign. Then,

(a) If n is odd, Eq. (5) has at most five limit
cycles. Furthermore, apart from the limit cycle
x = x(t) ≡ 0, in each region D+ := {x > 0}
or D− := {x < 0} one and only one of the
following possibilities can occur:

(i) The differential equation has no limit
cycles,

(ii) The differential equation has a unique
hyperbolic limit cycle,

(iii) The differential equation has a unique
semi-stable limit cycle,

(iv) The differential equation has exactly two
hyperbolic limit cycles,

and all them are realizable if n ≥ 5.
(b) If n is even, Eq. (5) has at most four limit

cycles. Furthermore apart from the limit cycle
x = x(t) ≡ 0, in each region D± defined above,
only one of the above possibilities can occur,
taking into account that never more than four

limit cycles can coexist, and that the semi-stable
limit cycle counts as two limit cycles.

Remark 4. When we apply Theorem 3 to Abel dif-
ferential equations, i.e. Eq. (2) with n = 3 and
a0 = 0, we get that when a3(t) does not change
sign, the Abel equation has at most five limit cycles.
As we have already said, this result can be refined
to an upper bound of three limit cycles, see [Gasull
& Llibre, 1990; Lins Neto, 1980; Pliss, 1966]. See
also Theorem 5. Also when n = 3 and a2 does not
change sign, the optimal bound is again of three
limit cycles, see [Gasull & Llibre, 1990].

Our main result about the second family we
consider is the following:

Theorem 5. Consider the one-periodic generalized
Abel equation

dx

dt
= an(t)xn + a2(t)x2 + a1(t)x + a0(t),

with an, a2, a1, a0 being C1 functions. Assume that
an(t) does not change sign. Then,

(a) If n ≥ 3 is odd, Eq. (6) has at most three limit
cycles taking into account their multiplicities.

(b) If n ≥ 4 is even, for any � ∈ N, there is an equa-
tion of type (6) having at least � limit cycles.

Part (a) of Theorem 5 is essentially the same
result as that proved by Panov [1998]. Our proof
is different from the one given there. Part (b) is a
new result. A smart suggestion of Colin Christopher
allowed us to unblock the proof of this result for
n > 4.

Let us end this introduction pointing out a cou-
ple of remarks:

Remark 6. Although the above theorems are stated
for differential equations of the form (2) that are
one-periodic in t, it is easy to see that they also
hold when we remove the periodicity hypothesis
and we consider differential equations of the same
form defined in a neighborhood of the strip {(t, x) ∈
[0, 1] × R}.
Remark 7. Proposition 1 with δ = 0 and Theorem
3 show that the generalized one-periodic Abel equa-
tion

dx

dt
= xn + am(t)xm + aq(t)xq, (7)

where q,m, n are natural numbers satisfying q <
m < n and n > 3, can have an arbitrary number
of limit cycles if q ≥ 2, but cannot have more than



3740 A. Gasull & A. Guillamon

five limit cycles if q = 1. Although the problem is
beyond the aim of this paper, it seems interesting to
elucidate the bifurcation phenomena that can occur
when n, m, am and aq are fixed and q varies along
the interval [1, 2].

The rest of the paper is organized as follows. In
Sec. 2 we give some preliminary results addressed
to prove Theorems 3 and 5. The main results are
proved in Sec. 3. Finally, Sec. 4 is devoted to remark
how these results can be used to study the maxi-
mum number of limit cycles of several families of
autonomous planar polynomial vector fields.

2. Preliminary Results

Consider a smooth one-periodic ordinary differen-
tial equation of the form

dx

dt
= S(t, x), (8)

defined in a neighborhood of the strip {(t, x) ∈
[0, 1] × R}. Let L0 and L1 be the straight lines
{(t, x) : t = 0} and {(t, x) : t = 1}, respectively.
Whenever it is defined, we can consider the return
map h : L0 → L1 given as follows: if y ∈ L0, then

h(y) = x̄(1; y), (9)

where x = x̄(t; y) denotes the solution of (8) such
that x̄(0; y) = y. Notice that the periodic solutions
of the differential equation correspond to the solu-
tions having initial conditions of the form (t, x) =
(0, y), being y fixed points of h. The multiplic-
ity of a periodic solution x = x̄(t; y) is defined
by the multiplicity of y as a zero of the function
h(y)−y. Simple solutions are called hyperbolic limit
cycles.

Next two lemmas will be useful to prove Theo-
rem 3. The first one takes advantage of the structure
of systems of type (5) to simplify the expression of
h′(y). The second one says that, in some sense, a
specific one parametric family of equations of the
form (8) behaves as a rotatory family of planar vec-
tor fields, see Sec. 4.6 in [Perko, 2001].

Lemma 8. Consider the functions Φ,Ψ : I ⊂ R →
R, defined as

Φ(y) = (n − m)
∫ 1

0
an(t)x̄n−1(t; y)dt

+ (1 − m)
∫ 1

0
a1(t)dt, (10)

Ψ(y) = (m − n)
∫ 1

0
am(t)x̄m−1(t; y)dt

+ (1 − n)
∫ 1

0
a1(t)dt, (11)

where x̄(t; y) denotes the solution of the differential
equation (5) such that x̄(0; y) = y. Then,

h′(y)

=




exp(Φ(y)) = exp(Ψ(y)), if y �= 0,

exp
(∫ 1

0
a1(t)dt

)
= exp

Φ(0)
1 − m

= exp
Ψ(0)
1 − n

, if y = 0,

(12)

where h is the return map given in (9).

Proof. For the general Eq. (8) it is known (see
[Lloyd, 1979]) that

h′(y) = exp
∫ 1

0

∂S

∂x
(t, x̄(t; y))dt,

where x̄(t; y) denotes the solution of the differen-
tial equation such that x̄(0, y) = y. In our case, we
obtain

h′(y) = exp
{∫ 1

0
nan(t)x̄n−1(t; y)dt

+
∫ 1

0
mam(t)x̄m−1(t; y)dt +

∫ 1

0
a1(t)dt

}
,

from which the expression of h′(0) in (12) is directly
obtained.

Notice also that, using definitions (10) and (11),
h′(y) can be written as

h′(y) = exp {Φ(y) + mZ(y)}
= exp {Ψ(y) + nZ(y)} ,

where

Z(y) :=
∫ 1

0
an(t)x̄n−1(t; y)dt

+
∫ 1

0
am(t)x̄m−1(t; y)dt +

∫ 1

0
a1(t)dt.

On the other hand, if x = x̄(t; y) is a nonzero
periodic solution of (5) we get

1
x̄(t; y)

(
∂x̄(t; y)

∂t

)
= an(t)x̄n−1(t; y)

+ am(t)x̄m−1(t; y) + a1(t),
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and, integrating from 0 to 1, we obtain

Z(y) =
∫ 1

0
an(t)x̄n−1(t; y)dt +

∫ 1

0
am(t)x̄m−1(t; y)dt

+
∫ 1

0
a1(t)dt

= 0. �

Lemma 9. Consider the one-parametric family of
one-periodic nonautonomous equations

dx

dt
= f(t, x) + ε x, (13)

where f(t, 0) ≡ 0. Assume that for ε = 0 it has a
nonzero semi-stable limit cycle x = x̄(t; y∗). Then
for |ε| small enough and with the suitable sign,
Eq. (13) has at least two limit cycles in a small
neighborhood of x = x̄(t; y∗).

Proof. Define Dε(y) = hε(y) − y as the displace-
ment map associated with the solutions x̄ε(t; y) of
(13) such that x̄ε(0; y) = y.

Let us suppose for instance that x = x̄0(t; y∗) >
0 is a semi-stable limit cycle, stable from below and
unstable from above. The other possible cases can
be studied in a similar way.

This means that D0(y) is positive in a punc-
tured neighborhood of y∗. Take, then, two numbers
y1 � y∗ � y2 such that D0(yi) > 0 for i = 1, 2.
By continuity of the solutions of (13) with respect
to parameters, for |ε| small enough, Dε(yi) > 0 for
i = 1, 2.

Since the curve x = x̄0(t; y∗) is a solution of
the differential equation when ε = 0, when we con-
sider the flow of (13) for ε �= 0, we get that the flow
crosses it upwards (resp. downwards) when ε is pos-
itive (resp. negative). So, when ε < 0 we get that
Dε(y∗) < 0, and from Bolzano’s Theorem, Dε has
at least two zeros near y∗; that is to say, the dif-
ferential equation (13) has at least two limit cycles
near the limit cycle, as we wanted to prove. �

3. Proof of the Main Results

3.1. Proof of Theorem 3

Consider first the case n odd. We can restrict our
attention to the region D+ := {(t, x) : 0 ≤ t ≤ 1,
x > 0} and to the case an(t) ≥ 0. This restric-
tion can be achieved by means of one of the follow-
ing changes of variables: (t, x) → (t,−x), (t, x) →
(1 − t, x) or (t, x) → (1 − t,−x).

We will prove that Φ(y) is an increasing func-
tion for y > 0 and we will see how this fact excludes
the possibility of having three limit cycles in D+.

To prove the increase of Φ(y) for y > 0, take
0 < y1 < y2. Of course, the solutions of (5) with
these initial conditions will satisfy 0 < x̄(t; y1) <
x̄(t; y2) and, as a consequence,∫ 1

0
an(t)x̄n−1(t; y1)dt <

∫ 1

0
an(t)x̄n−1(t; y2)dt.

From the expression of Φ given in (10) we get that
Φ(y1) < Φ(y2).

By using h′(y) = exp(Φ(y)) from Lemma 8,
and the fact that two hyperbolic consecutive limit
cycles must have different stability, it turns out
that we could have three limit cycles starting at
the points y1, y2 and y3, with 0 < y1 < y2 < y3,
only if Φ(y1) < Φ(y2) = 0 < Φ(y3); that is, only
if h′(y1) < h′(y2) = 1 < h′(y3). Thus, in case
that the three limit cycles exist the middle one is
semi-stable.

At this point, we can change our equation by
adding the parameter ε as in (13). From Lemma 9,
the new equation, which is again of the form
(5) with the same an(t), has four limit cycles.
This fact is a contradiction with the upper bound
proved above. Hence, the upper bound of two limit
cycles is proved, the closest to the origin being
stable and the other unstable; consequently, the
upper bounds given in the theorem follow when n
is odd.

In the case of n even, the main change in the
proof is that, when an(t) ≥ 0, the function Φ is
increasing for all y ∈ R at which h(y) is defined (in
the case n is odd it has a parabola shape with a
minimum at y = 0). This difference forces the exis-
tence of at most four limit cycles starting at the
points y1 < 0 < y2 < y3. Notice that Φ is negative
at the points y1, 0 and y2, but, by Lemma 8, the
stability of the origin is given by the sign of −Φ(0),
which provides the possibility of sign alternance and
so, the existence of alternate stable/unstable limit
cycles.

It is not difficult to construct examples under
the hypotheses of the theorem presenting each one
of the different configurations of limit cycles stated
in it. It suffices to take into account Lemma 2 and
consider functions an, am and a1 with suitable con-
stant values.

The proof when am(t) does not change sign is
similar. The main difference is that when we use
Lemma 8, we deal with Ψ instead of Φ. �
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3.2. Proof of Theorem 5

Following the same arguments as in the proof
of Theorem 3, in this case we can assume that
an(t) ≥ 0.

Part (a) can be proved by using (see [Lloyd,
1979]) the fact that the third derivative of the return
map h of a differential equation of type (8) satisfies

h′′′(y) = h′(y)

[
3
2

(
h′′(y)
h′(y)

)2

+
∫ 1

0

∂3S

∂x3
(t, x̄(t; y))

× exp
{

2
∫ t

0

∂S

∂x
(s, x̄(s; y))ds

}
dt

]

= n(n − 1)(n − 2)
∫ 1

0
an(t)x(t; y)n−3dt > 0.

Notice that the solutions satisfying x(0) = x(1)
correspond to zeroes of h(y) − y. If h(y) had four
zeroes (taking into account multiplicities), applying
Rolle’s Theorem successively to h(y) − y, h′(y) − 1
and h′′(y), we would infer that h′′′(y) would van-
ish at least once. This would contradict the above
inequality and so, Eq. (6) with odd n can have at
most three solutions satisfying x(0) = x(1), taking
into account their multiplicities.

Notice the importance of the even power in
xn−3, which differentiates part (a) from part (b).

The starting point to prove part (b) is consid-
ering an equation of the form

ż = f̃(t)z3 + ã(t)z2, (14)

with f̃(t) and ã(t) trigonometrical polynomials and
having, at least, � hyperbolic limit cycles. The exis-
tence of this equation is proved in [Lins Neto, 1980],
see also Proposition 1 with ε̃ = δ = 0, m = 3 and
n = 2. As a second step in the proof, we assert that
given any even number n, we can construct another
equation of the form

ż =
(

n

3

)
f(t)n−3z3 + a(t)z2, (15)

having also, at least, � hyperbolic limit cycles and
having the functions f(t) and a(t) of class CM , for
any M ∈ N. Indeed if we only impose f to be con-
tinuous, the result is trivial because it suffices to
take

f(t) = n−3

√
f̃(t)

/(
n

3

)
.

The regularization of the function f will be achieved
through a scaling of the time which increases the
order of the zeroes of f̃ .

Let us prove the above assertion on the exis-
tence of such Eq. (15). Denote by t1, . . . , tr the
zeroes of f̃(t). Fix any natural odd number N ≥ 3
and an integer k ≥ N . Consider also a Ck increasing
function ψ(t) in [0, 1], satisfying ψ(0) = 0, ψ(1) = 1,
ψ(tj) = tj and ψ(d)(tj) = 0 for all j = 1, . . . , r and
all d = 1, . . . , N − 1. We also assume that ψ′ only
vanishes in [0, 1] at the values t1, . . . , tr.

If we apply the change of time t = ψ(τ),
Eq. (14) is written as

z′ = f̃(ψ(τ))ψ′(τ)z3 + ã(ψ(τ))ψ′(τ)z2.

Notice that the zeroes of f̂(τ) := f̃(ψ(τ))ψ′(τ),
are also τ = tj, j = 1, 2, . . . , r. Furthermore, for each
j, τ = tj has at least multiplicity 2N − 1 for f̂(τ).
By defining

f(τ) := n−3

√
f̂(t)

/(
n

3

)

we get a function whose regularity is at least CM ,
M being the integer part of (2N − 1)/(n− 3). Note
that, since N is arbitrary, M can also be chosen
arbitrarily.

Finally we consider the following perturbation
of Eq. (15):

ż =
n∑

k=4

εk−3

(
n

k

)
f(t)n−kzk +

(
n

3

)
f(t)n−3z3

+ a(t)z2. (16)

Equation (16) maintains the � limit cycles for
small |ε| �= 0 and, moreover, carrying out the change
of variables

x(t) = z(t) +
f(t)

ε
,

it is transformed into

ẋ = εn−3xn + Cn,2(ε, t)x2 + Cn,1(ε, t)x

+ Cn,0(ε, t), (17)

with Cn,j(ε, t), j = 1, 2, 3 being polynomial expres-
sions in f(t), f ′(t), a(t) and 1/ε. Equation (17) gives
the searched example because this equation is of the
form ẋ = an(t)xn + a2(t)x2 + a1(t)x + a0(t), with n
even and an(t) �= 0 for all t. �

3.3. Proof of Proposition 1

This proof is an adaptation of the one given in [Lins
Neto, 1980] for the case n = 3, m = 2.

Consider the equation
dx

dt
= εf(t)xn + a(t)xm, t ∈ [0, 1]. (18)
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Define A(t) =
∫ t
0 a(s)ds and take a(t) such

that A(1) = 0. Call A = maxt∈[0,1] |A(t)|. Denot-
ing by ϕε(t, x, ε) the solution of (18), for ε = 0 and
|x| ≤ ((m − 1)A)1/(1−m) we get that

ϕ0(t, x) = x

(
1

1 − (m − 1)A(t)xm−1

)1/(m−1)

.

(19)

We write ϕε(t, x, ε) in powers of ε as

ϕε(t, x, ε) = ϕ0(t, x) + εW (t, x) + ε2R(t, x, ε),

where

W (t, x) =
∂ϕ

∂ε
(t, x, 0), W (0, x) = 0.

Following typical perturbative arguments, one can
see that if W (x) := W (1, x) has a simple root at x0,
then for small values of ε, the function ϕε(t, x, ε)−x
has also a simple root close to x0. The question,
now, is choosing f(t) and a(t) such that W has an
arbitrary number of different simple solutions. We
wish to compute W in terms of f and a; by (18),

∂

∂t

(
∂ϕ

∂ε

)

=
∂ϕ̇

∂ε
=

∂

∂ε
(εf(t)ϕn + a(t)ϕm)

= f(t)
(
ϕ0 + εW + ε2R

)n + εf(t)n(ϕ0

+ εW + ε2R
)n−1 (W + 2εR) + a(t)m(ϕ0

+ εW + ε2R
)m−1 (W + 2εR)

= f(t)ϕn
0 + a(t)mϕm−1

0 W + O(ε). (20)

Restricting to ε = 0 and using (18), we get:

dW (t, x)
dt

= f(t)ϕn
0 + m

ϕ̇0

ϕm
0

ϕm−1
0 W, (21)

which can be written as:

d

dt

(
W

ϕm
0

)
= f(t)ϕn−m

0 . (22)

Integrating on both sides of Eq. (22), we get:

W (x)

= xn

∫ 1

0

f(t)

(1 − (m − 1)A(t)xm−1)(n−m)/(m−1)
dt.

(23)

Set y = xm−1, α := (n − m)/(m − 1) and
a(t) = (2π/(m − 1)) cos(2πt). Instead of studying
the zeroes of W (x) we consider the function

Hf (y) :=
∫ 1

0

f(t)
(1 − (m − 1)A(t)y)α dt

=
∫ 1

0

f(t)
(1 − sin(2πt)y)α dt.

Fix � ∈ N and an arbitrary polynomial of degree �,
p(y); we will prove that there exists f(t) of the form

f(t) =
�∑

j=0

βjfj(t),

where

fj(t) = sinj(2πt), βj ∈ R,

such that

Hf (y) = p(y) + O(y�+1). (24)

From the above result, the fact that Hf (y) has at
least � simple zeroes in a small neighborhood of the
origin is a straightforward consequence of Lemmas
1 and 2 of [Lins Neto, 1980]. From the definition of
Hf(y) the same result holds for W (x), as we wanted
to see.

Hence it remains to prove (24). We strongly use
that Hf is linear with respect to f. Notice that

Hfj
(y) =

�∑
k=0

[(
α + k − 1

k

)∫ 1

0
sinj+k(2πt)dt

]
yk

+ O(y�+1)

=:
�∑

k=0

cj,ky
k + O(y�+1).

Observe also that if we define the matrix C =
(cj,k)�j,k=0, then

detC =
�∏

k=0

(
α + k − 1

k

)
detG,

where G is a new matrix, G = (gj,k)�j,k=0, with
gj,k =

∫ 1
0 sinj+k(2πt)dt. Since the matrix G is

the matrix of the inner product in 〈f0, f1, . . . , f�〉
defined by f · g =

∫ 1
0 f(t)g(t)dt we get that detG �=

0. Thus from the linearity of Hf it is clear that
given any polynomial p(y) there exist unique values
β0, . . . , β� such that its associated f satisfies (24),
as we wanted to prove.
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To end the proof of Proposition 1, it suffices to
consider the following perturbation of (18):

dx

dt
= ε̃xp + εf(t)xn + a(t)xm + δx. (25)

Take then a system with ε̃ = δ = 0 and � simple
limit cycles. For |ε̃| and |δ| small enough, we can
ensure that all of them persist. �

4. Consequences for Planar Vector
Fields

The Abel equation has been specially used to study
the maximum number of limit cycles of several fam-
ilies of autonomous planar polynomial vector fields.
In particular, the study of the number of limit cycles
surrounding the origin of systems with homoge-
neous nonlinearities (see [Carbonell & Llibre, 1988;
Cherkas, 1976; Lins Neto, 1980]), or the so-called
quadratic-like cubic systems (see [Gasull & Pro-
hens, 1996] and [Lloyd et al., 1997]),{

ẋ = −y + λx + p(x, y) + xf(x, y),
ẏ = x + λy + q(x, y) + yf(x, y),

with p, q and f homogeneous quadratic polynomi-
als, can be reduced to the study of the number of
limit cycles of (2), with n = 3.

The study of the limit cycles of other families
of planar polynomial systems can also be reduced
to the study equation of (2). We describe some of
these families in the sequel:

• The family of systems{
ẋ = Pn+m(x, y) + xf(x, y),
ẏ = Qn+m(x, y) + yf(x, y),

where f(x, y) = fn−1(x, y) +
∑k

i=2 fn+im−1(x, y),
n,m, k ∈ N, k ≥ 2, Pn+m and Qn+m being homo-
geneous polynomials of degree n+m and the func-
tions fj(x, y) also homogeneous polynomials of
degree j. This family is an extension of the one
considered in [Giné & Llibre, 2004].

• The so-called polynomial rigid systems (see
[Conti, 1994]),{

ẋ = −y + xf(x, y),
ẏ = x + yf(x, y),

(26)

where f is an arbitrary polynomial function.
• The cubic polynomial systems studied in [Devlin

et al., 1998].

For each one of the above families our results
on (2) can be applied to get a criterion for an upper

bound, under some additional hypotheses, of the
number of limit cycles of the corresponding planar
differential system. Instead of carrying this out case
by case we only present a representative example:

Consider the particular case of system (26) with
f(x, y) = f0+fm−1(x, y)+fn−1(x, y), fi(x, y) being
homogeneous polynomials of degree i and 0 < m <
n. In this case, in polar coordinates, the system is
written as

dr

dθ
= fn−1(cos θ, sin θ)rn

+fm−1(cos θ, sin θ)rm + f0r, (27)

which is a differential equation of the form (5).
Hence, Theorem 3 implies that when either fn−1

× (cos θ, sin θ) or fm−1(cos θ, sin θ) does not change
sign, the differential equation (26) has at most two
limit cycles, a result already proved in [Freire et al.,
2006]. Notice that the upper bound of two limit
cycles comes from Theorem 3 because R

2 corre-
sponds to the region r ≥ 0. Hence the limit cycles
appearing in the region r ≤ 0 for (27) do not corre-
spond with real limit cycles of (26). It can be easily
seen that this bound is indeed attained for some
planar polynomial systems.
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