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We consider the Lotka]Volterra system as a Hamiltonian one and study a
special perturbation of it. For this perturbed system we get results on the number
of limit cycles. The main tools used are Abelian integrals and degenerate Hopf
bifurcation. Q 1996 Academic Press, Inc.

1. INTRODUCTION

The classical model of Lotka and Volterra

x s x a y b y ,Ž .˙
1Ž .q q½ y s y g x y m , a , b , g , and m g R ; x , y g R ,Ž .˙

is the source of the evolution of the study of deterministic predator]prey
systems using ordinary differential equations. Without quitting the two-

Ž .dimensional case, we find a wide range of models arising from 1 . The first
ones evolved from trying to give a more general character to the system,

Žwhere the positive constants were replaced by more general functions see
w x.5, 8 . A lot of later models have given more specific shapes to those
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functions, according to the concrete biological problems in which they
Ž w x.applied see 6, 10]12, 16, . . . . However, in most of the cases, the

‘‘essence’’ of the Lotka]Volterra system has not been left behind. In other
words, the conditions imposed on the above-mentioned functions imply

Ž .that a lot of models are not ‘‘far’’ from 1 .
Taking into account this fact, the study of perturbations of the

Lotka]Volterra system acquires a more global interest. A lot of
Ž .predator]prey systems can be thought of as perturbations of 1 . This

w xapproach is used, for instance, in 15, Chap. 3 , where the authors start
Ž .from the transformation of 1 into a Hamiltonian system with Hamil-

Ž . Ž x . Ž y .tonian function H x, y s d e y x q e y y . Then, known results on
such systems can be applied to study the number of limit cycles that

Ž .bifurcate from closed orbits of 1 .
w x Ž .In 15 this technique is used in a generalization of 1 consisting of

Ž . Ž .taking a general function V x , putting it in 1 instead of b x and changing
Ž . qg x by kV x , where k g R . This new function has a special biological

significance since it represents the amount of prey consumed by one
predator in a unit of time. Moreover, the system obtained after introducing
Ž .V x can be understood as a perturbation of the Hamiltonian version of

Ž .1 , included in the following general family:

­ H¡
x s y y ew x f y ,Ž . Ž .˙

­ y~ 2Ž .
­ H

y s q ec x .Ž .¢̇
­ x

One of the most interesting problems for such families is the knowledge of
their number of periodic orbits. In this work we will study this problem.

Ž .Our first result asserts that in the class 2 , the number of limit cycles
Ž .isolated periodic orbits is not bounded. In Section 3, we provide examples

Ž .of 2 with an arbitrary number of limit cycles bifurcating from periodic
Ž .orbits of 1 .

We use Abelian integrals to find out the number of limit cycles in a
Ž . Ž . Ž .three-parameter perturbation of 1 of type 2 see Sections 4 and 5 . The

meaning of the perturbation function is discussed in Section 2. The use of
Ž w x.Abelian integrals in Hamiltonian systems comes from Pontryagin see 13

and has taken on an important impulse in recent years. They have been
studied mainly when both the Hamiltonian function and the perturbation
function are polynomials. Nevertheless, in this paper both functions are
not polynomials and the study presents different difficulties. In order to
have a more precise description of the bifurcation diagram we relate the
approach via Abelian integrals to the study of the degenerate Hopf
bifurcation at the origin, see Section 5 and Appendix A.
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2. FORMULATION IN TERMS OF ABELIAN INTEGRALS

Ž w x. Ž .It is known see 15, Section 3.6 that system 1 can be transformed into
a Hamiltonian system by means of the following change of variables:

kb b g
T s a t ; X s ln x ; Y s ln y , where k s . 3Ž .

m a b

As we pointed out above, we are interested in the number of limit cycles of
Ž .predator]prey systems sufficiently close to 1 . Then we consider the

system

x s a x y V x y ,Ž .˙
4Ž .½ y s y kV x y m ,Ž .Ž .˙

where a , k, and m are positive parameters x, y g Rq. We may suppose
Ž . 1that V x is a C -function.

Ž .This is one possible generalization of 1 in which we allow a more
precise description of the predator functional response.

Ž . qIf we assume that V 9 x / 0, there exists a unique x g R such that0
Ž . Ž . Ž .V x s mrk. Set y s a x rV x s karm x . The change of variables0 0 0 0 0

x y
T s a t ; X s ln ; Y s ln 39Ž .

x y0 0

Ž .transforms 4 into the next system in which we have replaced the notation
of capital letters by t, x, and y again,

x s 1 y w x e y ,Ž .˙
5Ž .x½ y s d w x e y 1 ,Ž .Ž .˙

Ž . Ž Ž ..Ž Ž x. x.where x, y g R. d s mra , and w x s x rV x V x e rx e s0 0 0 0
Ž x. Ž Ž . x.V x e r V x e .0 0

Ž .We observe that in the Lotka]Volterra system the function V x is
Ž . Ž .linear and so w x ' 1. Instead of doing the generalization of 1 by
Ž . Ž . Ž .means of system 4 , we can consider a system close to 1 as like 5 having

Ž . Ž . Ž . 1w x s 1 q ew x , where e is a small parameter and w x a C -function
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Ž . Ž .such that w 0 s 0. Then, 5 writes as

x s 1 y e y y ew x e y ,Ž . Ž .˙
6Ž .ex x½ y s d e y 1 q edw x e ,Ž . Ž .˙

or, equivalently,

­ H¡
yx s y y ew x e ,Ž .˙

­ y X~ 6Ž .e­ H
xy s q edw x e .Ž .¢̇

­ x

Ž . Ž x . Ž y .where H x, y s d e y x q e y y . Then, when e s 0, we have the
Ž . Ž .Lotka]Volterra system obtained applying 3 to 1 . For e / 0 we have

Ž .systems close to it, all of them included in the family 2 . Observe that

m
x x xV x e s 1 q ew x V x e s e 1 q ew x ,Ž . Ž . Ž .Ž . Ž .Ž .0 0 k

or, similarly,

m x x
V x s 1 q ew ln , x ) 0.Ž . ž /ž /k x x0 0

Ž .It is easily seen that all the solutions of 6 are periodic. In the following0
Ž w x.we describe the well-known method of Pontryagin see 13, 14 for

studying the existence of periodic orbits for

­ H¡
x s y y e f x , y ,Ž .˙

­ y~ 7Ž .
­ H

y s q e g x , y ,Ž .¢̇
­ x

and e small enough.
� Ž .4 Ž .We have a continuum of level curves G [ G h , where G h is thehg J

Ž . Ž . Ž Ž .set of the points x, y such that H x, y s h note that in 6 the0
.solutions lay on these curves . Taking a transversal section S of G

parameterized by h, we can compute the return map

p : U ; S ª S

h ¬ p h ,Ž .

where U is an open set of S.
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Ž .Let G h be a solution curve of the general perturbed system passinge

Ž . Ž . Ž .through G h l U at time t s 0. Consider F h s p h y h. The zeros of
Ž . Ž .F h represent the intersection between U and the periodic orbits of 7 . It

can be proved that

F h s eM h q o e ,Ž . Ž . Ž .
where

M h [ f x , y dy y g x , y dx.Ž . Ž . Ž .H
Ž .G h

Ž . Ž . y Ž . Ž . xObserve that in our case, f x, y s yw x e and g x, y s dw x e and
therefore

M h s y w x d e x dx q e y dy .Ž . Ž . Ž .H
Ž .G h

Ž Ž . Ž .. Ž .Let x t , y t be the time parameterization of G h and t the period ofh
y Ž x .this closed curve. Therefore, dxrdt s 1 y e , dyrdt s d e y 1 , and so

th xŽ t . yŽ t . yŽ t . xŽ t .M h s y w x t d e 1 y e q e d e y 1 dtŽ . Ž . Ž . Ž .Ž . Ž .H
0

th xŽ t . yŽ t .s y w x t d e y 1 y d e y 1 dtŽ . Ž . Ž .Ž . Ž .H
0

t dy dxh
s y w x t y dtŽ .Ž .H ž /dt dt0

s y w x dy. 8Ž . Ž .H
Ž .G h

w xWe also need the following results, see 13 :

Ž . Ž . Ž .PROPOSITION 2.1. a M h s 0 is a necessary condition for G h to gï e
Ž .rise to periodic solution after perturbations. And M9 h / 0 is a sufficient

Ž . Ž .condition. More precisely, if M h s 0 and M9 h / 0, then there exists0 0
Ž . 1 Ž . < < Ž . Ž .e h ) 0 and a C -function F e defined for e - e h , with F 0 s h0 0 0

Ž .and such that 6 has a periodic solution cutting the section S at the pointe

Ž .h s F e .
Ž . Ž . Ž . Žky1.Ž . Žk .Ž .b If M h s M9 h s ??? s M h s 0 and M h / 0,0 0 0 0

Žthen for small e / 0 we ha¨e at most k limit cycles multiplicities taken into
. Ž .account which tend to G h as e tends to 0.

Ž . Ž . Ž .We call w x the perturbation function. When both H x, y and w x
Ž .are polynomials, the integral 7 is called the Abelian integral. Our case will

be distinct, but we will extend the use of this term to it.



GASULL ET AL.708

Ž .First of all, it will be seen that systems of class 2 can be constructed
having an arbitrarily large number of limit cycles.

3. SYSTEMS WITH ANY NUMBER OF LIMIT CYCLES

The purpose of this section is to prove:

PROPOSITION 3.1. Gï en k an arbitrary positï e integer, there are systems
Ž .of type 2 with at least k limit cycles.

Proof. First, consider a system of type

x s yf x ,Ž .1̇ 2 2 9Ž .½ x s f x .Ž .2̇ 1 1

Ž . x1 Ž . x 2 Ž . Ž . Ž .If we take H x , x s H f s ds q H f s ds \ F x q F x , then1 2 0 1 0 2 1 1 2 2
Ž .9 can be seen as a Hamiltonian system.

Ž .Suppose that F x , j s 1, 2, are concave functions near the origin andj
monotonically increasing to infinity as x ª "`.

Ž . Ž .Note that system 6 is a particular case of 9 .0
Ž . Ž . Ž w x.Defining g x and G x in this way see 17 ,j j

2 y1G x s F x ; g x s G x , for j s 1, 2,Ž . Ž . Ž . Ž .Ž .j j j j

Ž .and the new variables j , j s 1, 2, as those such that x s g j , we obtainj j j j
that

F g j s j 2 , for j s 1, 2, 10Ž .Ž .Ž .j j j j

dx djj j iq1Xs g j s y1 f x , for i , j s 1, 2, i / j. 11Ž . Ž . Ž .Ž .j j i idt dt

Ž .From 10 we have that

f g j gX j s 2j , for j s 1, 2,Ž . Ž .Ž .j j j j j j

Ž .and joining 11 with the last equality:

iq1dj y1 2jŽ .j is , for i , j s 1, 2, i / j.X Xdt g j g jŽ . Ž .1 1 2 2

X Ž . X Ž .After the change of time dtrdt s 2rg j g j , this equation becomes:1 1 2 2

dj j iq1s y1 j , for i , j s 1, 2, i / j.Ž . idt
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If the variables j and j are renamed u and ¨ , respectively, and a1 2
Ž .perturbation term, e p ¨ u, is added to this system, we get

du¡
s y¨ y e p ¨ u ,Ž .

dt~ 12Ž .d¨
s u ,¢dt

Ž . m my2where e is the perturbation parameter, p ¨ s a ¨ q a ¨ qm my2
??? qa ¨ 2, the power m is even, and a g R, j s 1, . . . , mr2.2 2 j

Ž .The bifurcation function see Section 2 is

M h s y p ¨ u d¨ .Ž . Ž .H
2 2u q¨ sh

If we put h s r 2 and change to polar coordinates, parameterizing the level
curves by the angle, we have

2p m m my2 my2M h s y a r sin u q a r sin u q ???Ž . ŽH m my2
0

qa r 2 sin2 u r 2 cos2 u du.2

m
2p4 iy2 i 2s yr a r sin u cos uÝ Hi

0is1
i even

mr2m
4 iy2 2 ky1s yr a r I s y h a h I , 13Ž .Ý Ýi i 2 k 2 k

is1 ks1
i even

2p 2 k 2 ŽŽ . Ž . .where I s H sin u cos u du s 2p 2k-1 !!r 2k q 2 !! k g N, k G 1,2 k 0
Ž .and y1 !!s 1.

Ž .Obviously, a , k s 1, . . . , mr2, can be chosen such that M h has2 k
Ž .mr2 y 1 simple positive zeros. Hence, system 12 with these parameters

Ž .and e small enough has, by Proposition 2.1 a , at least mr2 y 1 limit
cycles.

Ž .From 12 , unmaking the changes in the particular case when u s
Ž Ž x1 ..1r2 Ž x 2 .1r2d e y x and ¨ s e y x , we arrive at the following system of1 2

Ž .type 2 :
1r2x x¡ 2 2dx p e y x e y 1Ž .Ž .Ž .1 21r2x x2 1s y e y 1 y e d e y x ,Ž . Ž .Ž .1 1r2x 2dt e y xŽ .~ 2

dx2 x1s d e y 1 ,Ž .¢ dt

which proves the proposition.
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The above example shows the difficulty of a general study of the number
Ž . Ž .of limit cycles when dealing with a general perturbation of 1 , like 2 . In

Ž .the next sections, we will come back to the particular case of 2 , system
Ž . Ž .6 , and look for the bifurcation diagram for some special cases of w x .e

The purpose is to use Abelian integrals in easy examples to show which are
the key difficulties we can meet in general.

4. A SIMPLE PERTURBATION FUNCTION

Ž .We start with a simple bifurcation function for 6 , to give an idea ofe

the troubles that we meet when we try to determine the number of limit
cycles arising, after perturbation, from level curves of the Hamiltonian
system. We will prove that:

Ž . 2THEOREM A. Suppose that the perturbation function is w x s ax q bx ,
with a and b g R. Then, for e small enough,

Ž . Ž .a if ab ) 0, system 6 has a unique limit cycle bifurcating from thee

Ž . Ž .le¨el cur̈ es G h , for h g 1 q d , q` .
Ž . Ž .b if ab - 0, system 6 has no limit cycles originated from a periodice

Ž .orbit of 6 .0

Before giving the proof of this result, we introduce some notation and
study technical tools which will be applied afterwards.

Ž . Ž . Ž .According to 7 , we look for the zeroes of M h s H w x dy, theGŽh.
bifurcation function.

Ž . Ž . 2Set I h s H x dy and I h s H x dy. Then1 GŽh. 2 GŽh.

M h s aI h q bI h s I h a q bp h , 14Ž . Ž . Ž . Ž . Ž . Ž .Ž .1 2 1

Ž . Ž . Ž . Ž .where p h [ I h rI h , for 1 q d - h - q`. Observe that I h s2 1 1
H x dy s H H dx dy ) 0.GŽh. int GŽh.

Ž .From now on, we set J s 1 q d , q` .
Ž .Observe that for any h g J and any fixed y , G h has two intersection1

Ž . Ž . xpoints x F 0, x G 0 with the line y s y see Fig. 1 satisfying e y x s˜ 1
x̃e y x.̃

Ž . xBy considering the auxiliary function h x s e y x, we can see that
Ž . Ž . < < < <h x y h yx ) 0 if x ) 0. Then, it must be x F x . This fact is stated in˜

the following remark:

x x̃ < < < < Ž .Remark 4.1. If e y x s e y x, x F 0, x G 0, then x F x Fig. 1 .˜ ˜ ˜
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Ž .FIG. 1. Definition of x x .˜

We also introduce two technical lemmas:

Ž . 1 Ž . �Ž . Ž .LEMMA 4.2. Let f x, y be a C -function on G h s x, y : H x, y s
Ž x . Ž y . 4d e y x q e y y s h . Then

d f x , yŽ .x
f x , y dy s dy.Ž .H Hdh H x , yŽ .Ž . Ž .G h G h x

Ž . w Ž .xProof. We parameterize G h by t g 0, t h . Then

d d Ž .t h
f x , y dy s f x t , h , y t , h y t , h dtŽ . Ž . Ž . Ž .Ž .H H tdh dhŽ .G h 0

s f x t h , h , y t h , h y t h , h t9 hŽ . Ž . Ž . Ž .Ž . Ž . Ž .Ž . t

dŽ .t hq f x t , h , y t , h y t , h dtŽ . Ž . Ž .Ž .Ž .H tdh0

s f x t h , h , y t h , h y t h , h t9 hŽ . Ž . Ž . Ž .Ž . Ž . Ž .Ž . t

Ž .t hq f x t , h , y t , h x t , hŽ . Ž . Ž .Ž .ŽH Ž x h
0

qf x t , h , y t , h y t , h y t , hŽ . Ž . Ž . Ž .Ž . .y h t

qf x t , h , y t , h y t , h dt.Ž . Ž . Ž .Ž . .ht

Ž . Ž Ž . .After integration by parts and taking into account that x 0, h s x t h , h
Ž . Ž Ž . .and y 0, h s y t h , h , we reach

d Ž .t h
f x , y dy s f x t , h , y t , h x t , h y t , hŽ . Ž . Ž . Ž . Ž .Ž . ŽH H x h tdh Ž .G h 0

yx t , h y t , h dt.Ž . Ž . .t h
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Ž .The case in which t is exactly the time of the system 6 gives that0

y t , hŽ .t
x t , h y t , h y x t , h y t , h s ,Ž . Ž . Ž . Ž .h t t h H x t , h , y t , hŽ . Ž .Ž .x

and so

d f x t , h , y t , hŽ . Ž .Ž .Ž .t h x
f x , y dy s y t , h dtŽ . Ž .H H tdh H x t , h , y t , hŽ . Ž .Ž .Ž .G h 0 x

f x , yŽ .xs dy.H H x , yŽ .Ž .G h x

We remark that in the transformation t l y we have removable singulari-
xŽ . Ž .ties in the two points in which x s 0, since H x, y s d e y 1 .x

Ž .LEMMA 4.3. With the notation gï en in 14 the following statements hold.
Ž . Ž . Ž . Ž . Ž . Ž 2 2 . Ž .a I h ) 0, drdh I h s T h ) 0 and d rdh I h ) 0, for all1 1 1

Ž . Ž .h g J, where T h is the period of G h .
Ž . Ž . Ž . Ž . Ž 2 2 . Ž .b I h - 0, drdh I h - 0 and d rdh I h - 0, for all h g J.2 2 2
Ž . Ž .qc lim p h s 0.hª Ž1qd .

Ž . Ž . Ž .Proof. a We already know that I h ) 0. Using the link H x, y s h1
Ž . Ž . Ž Ž x ..and Lemma 4.2, we have that drdh I h s H dyrd e y 1 . The1 GŽh.

Ž .integrand always has a positive sign because the orbits of 6 turn0
counterclockwise.

Ž 2 2 . Ž . Ž 2 . Ž x Ž x .3.Observe that d rdh I h s 1rd H ye r e y 1 dy. From this1 GŽh.
expression, it is not easy to conclude that it is positive. Nevertheless, it is

Ž . Ž . Ž .clear that drdh I h is, in fact, the period of G h . Since it is well-known1
Ž w x.see 7, Theorem 2; 17, Theorem 2 that the period in the Lotka]Volterra

Ž 2 2 . Ž .system is strictly increasing, it follows that d rdh I h ) 0.1
Ž . Ž . 2b By Remark 4.1, I h s H x dy is always negative.2 GŽh.

From Lemma 4.2,

d x
I h s 2 dy.Ž . H2 xdh d e y 1Ž .Ž .G h

x x̃Ž . Ž .For x - 0 we know that yx ) x, and so xr e y 1 ) xr e y 1 . This˜ ˜
produces a negative sign in the first derivative. Observe also that the

Ž .integrand is a derivable function on G h . Hence, we can easily do the
second derivative:

d2 2 e x y 1 y xe x

I h s dy.Ž . H22 2 3xdh d Ž .G h e y 1Ž .

Since the numerator is negative for x / 0, this integral becomes negative.
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Ž . Ž . �Ž .4c Recall that G 1 q d s 0, 0 . Using the Green Theorem and the
Mean Value Theorem,

2 H H 2 x dx dy 2 x h H H dx dyH x dy Ž .D DGŽh. h hp h s s sŽ .
H x dy H H dx dy H H dx dyGŽh. D Dh h

6s 2 x h 0,Ž .
hª1qd

Ž .where in the above expression x h is a point in D .h

Ž .The decreasance of p h will play a key role in the final proof. We state
that:

Ž . Ž .PROPOSITION 4.4. The function p h introduced in 14 is strictly decreas-
Ž .ing and, moreo¨er, lim p h s y`.hª`

In order to prove this proposition, we have to see first of all that
Ž . w xp9 h - 0 for all h g J. Our proof is inspired in the ideas introduced in 3 .

Ž . Ž . Ž .Take h g J such that p9 h s 0. If we prove that p h y p h - 00 0 0
< < Ž .when 0 - h y h < 1, we will get a contradiction, and so p9 h - 0 for0

all h g J.
To this end, we define

2 x y p hŽ .0X XL h [ I h y I h p h ; g x [ . 15Ž . Ž . Ž . Ž . Ž . Ž .p 2 1 0 p xe y 1
These two functions satisfy some special properties:

Ž . Ž .LEMMA 4.5. With the definitions of 14 and 15 the following statements
hold.

Ž . < <a Suppose that for all h such that 0 - h y h < 1 we ha¨e0
Ž . Ž . Ž . Ž . Ž . Ž .h y h L h - ) 0. Then, p h y p h - ) 0, for all h: 0 -0 p 0
< <h y h < 1.0

Ž . Ž . Ž . Ž Ž . Ž .. yŽ . Ž .yb L h s 1rd H g x y g x dy, where G h s G h l˜p G Žh. p p
� 4x F 0 .

Ž . X Ž .c g x - 0, for all x / 0.p

Ž . Ž .Ž Ž . Ž Ž ...d drdx g x y g x x - 0, for all negatï e x.˜p p
Ž . Ž . Ž Ž ..e There exists a unique x* - 0 such that g x* y g x x* s 0.˜p p

Ž . Ž . Ž . Ž . Ž . Ž .Proof of Lemma 4.5. a Define j h [ I h I h y I h I h .2 1 0 2 0 1
Ž .Observe that j h s 0. Hence,0

I h I h I h I h y I h I hŽ . Ž . Ž . Ž . Ž . Ž .2 2 0 2 1 0 2 0 1
p h y p h s y sŽ . Ž .0 I h I h I h I hŽ . Ž . Ž . Ž .1 1 0 1 0 1

j h y j h j 9 c h y h h y hŽ . Ž . Ž .0 h 0 0s s s L c ,Ž .p hI h I h I h I h I hŽ . Ž . Ž . Ž . Ž .1 1 0 1 0 1 1

for some c between h and h.h 0
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Ž . Ž .b By Lemma 4.3 and definitions 15 , we know that

2 x y p h 1Ž .0X XL h s I h y I h p h s dy s g x dyŽ . Ž . Ž . Ž . Ž .H Hp 2 1 0 pxd e y 1 dŽ .Ž . Ž .G h G h

1
s g x y g x x dy.Ž . Ž .Ž .˜Ž .H p pyd Ž .G h

Ž . X Ž . Ž Ž x . xŽ Ž . .. Ž x .2 Ž . Ž xc g x s 2 e y 1 q e p h y 2 x r e y 1 [ N x r e yp 0
.2 Ž . xŽ Ž . . Ž .1 . Observe that N9 x s e p h y 2 x . Then, N x has its absolute0

Ž . Ž Ž . . X Ž .maximum at x s p h r2. Since N p h r2 - 0 we have that g x - 00 0 p
for all x.

Ž .d

d
X Xg x y g x x s g x y g x x x9 x .Ž . Ž . Ž . Ž . Ž .Ž . Ž .˜ ˜ ˜Ž .p p p pdx

x x̃ Ž .Recall that e y x s e y x. From this equality, we get that x9 x s˜ ˜
x x̃Ž x .Ž . Ž . Ž . Ž .e y 1 r e y 1 . Then, since x - 0 and x x ) 0, x9 x - 0.˜ ˜

Ž Ž .. Ž .Ž Ž . Ž Ž ...It follows using also c that drdx g x y g x x - 0, for all˜p p
negative x.

Ž . Ž .e Adding to d the facts

2 x y p hŽ .0
lim g x s lim s q `;Ž .p xe y 1xªy` xªy`

lim g x s y`;Ž .pyxª0

and

g x ) 0, for all x ) 0,Ž .p

the assertion follows.

Ž .Proof of Proposition 4.4. Take h ) h . By Lemma 4.5 b , and using the0
Ž .fact that L h s 0,p 0

L h s L h y L hŽ . Ž . Ž .p p p 0

1
s g x y g x dy y g x y g x dy .Ž . Ž . Ž . Ž .˜ ˜Ž . Ž .H Hp p p pž /y yd Ž . Ž .G h G h0
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yŽ . yŽ .Let D be the region bounded by G h , G h , and x s 0. Define D ,h 0 1
D , and D as in Fig. 2. Then, from the above equality,2 3

1 yd e x y 1Ž .
L h s g x y g x dxŽ . Ž . Ž .˜Ž .Hp p p yžd e y 1­ D j­ D1 3

q g x y g x dyŽ . Ž .˜Ž .H p p /­ D2

1 e y
xs g x y g x yd e y 1 dx dyŽ . Ž . Ž .Ž .˜Ž .HH p p 2yžd D jD e y 1Ž .1 3

d
q g x y g x dx dyŽ . Ž .˜Ž .HH p p /dxD2

1
\ J q J .Ž .1 2d

Ž . Ž . Ž .By using Lemma 4.5 e we know that g x y g x - 0 in D j D .˜p p 1 3
Moreover, e x y 1 - 0 in this region. So, J - 0.1

Ž .On the other hand, applying Lemma 4.5 d , J - 0.2
Ž . Ž . Ž . Ž .Hence, L h - 0 and, by Lemma 4.5 a , p h y p h - 0.p 0

The proof when h - h consists of similar computations. Finally, we0
Ž .obtain L h ) 0 due to the clockwise orientation around D in this casep h

Ž . Ž . Ž .see Fig. 2 . Consequently, again by Lemma 4.5 a the decreasance of p h
is proved.

Ž .It remains to see that p h tends to y` when h tends to q`.
Ž . Ž . Ž .We already know that p h s 2H H x dx dy rS h , where D is theD hh

Ž .region surrounded by G and S h is the area of D .h h

Ž .FIG. 2. Regions used in the proof of the decreasance of p h in Proposition 4.4.
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< < Ž .We will prove that lim H H x dx dy rS h s q`.hª` D h
Ž . Ž . Ž . Ž . Ž . Ž .Let a , 0 , b , 0 , 0, j , 0, h , yb , j 9 , yb , h9 be the intersection

points of G with the two axes and with the straight line x s yb ; seeh
Fig. 3. All the coordinates of these points are functions of h and satisfy

a - 0 - b , j - j 9 - 0 - h9 - h ,

h y 1
a b j he y a s e y b s , e y j s e y h s h y d ,

d

e j 9 y j 9 s eh9 y h9 s h y d eyb q b .Ž .

From the last equations it can be deduced easily that ya and b tend to
infinity with h. Moreover, applying Hopital’s rule we get:ˆ

ya b yj h
lim s lim s lim s lim

hrd ln hrd h ln hhªq` hªq` hªq` hªq`Ž .
yj 9 yh9

s lim s lim s 1.
h ln hhªq` hªq`

As an example consider the second limit. First observe that an implicit
Ž . Ž . Ž b Žh. .derivation of b h gives that db h rdh s 1rd e y 1 . Now, assuming

< Ž . <FIG. 3. The construction given to see that p h tends to infinity.
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Ž .that all the limits exist as is proved a posteriori from Hopital’s rule weˆ
have:

b db h rdh hŽ .
lim s lim s lim

b Žh.ln hrd 1rh d e y 1hªq` hªq` hªq`Ž . Ž .

1 e b Žh. y 1
s lim s lim s 1.

b Žh. b Žh.d e db h rdh ehªq` hªq`Ž .Ž .

Ž . Ž .At this point, we divide D into D h and D h which are defined by:h l r

D h s x , y g D : x F yb and D h s x , y g D : x G yb .� 4 � 4Ž . Ž . Ž . Ž .l h r h

Ž . Ž .We call S h and S h their respective areas. By the symmetry, it is clearl r
that H H x dx dy - 0. Furthermore, by construction, H H x dx dy -D Žh. D Žh.r l

Ž .yb H H dx dy s ybS h . Therefore,D Žh. ll

< <H H x dx dy bS h S hŽ . Ž .D l rh G s b 1 y .ž /S h S h S hŽ . Ž . Ž .

Ž . w x w xSince D h is contained in the rectangle yb , b = j , h and D con-r h
Ž .tains the triangle D h depicted in Fig. 3, we finally have that:

< < < <2 H H x dx dy 4b j q hŽ .D h< <p h s G 2b 1 y .Ž . ž /< < < <S h a y b j 9 q h9Ž . Ž . Ž .

Then, from the above limits it is easy to prove that

< <b j q h ln hrdŽ .Ž .
lim s 1,ž /ž /< < < <a y b j 9 q h9 hrdhªq` Ž . Ž .

< Ž . <and hence lim p h s `.hªq`

Now, we can easily prove the main result of this section.

Ž . Ž .Ž Ž ..Proof of Theorem A. Remember that M h s bI h arb q p h and1
Ž . Ž .that I h ) 0 for all h g J. Furthermore, Lemma 4.3 c states that1

Ž . Ž .qlim p h s 0 and Proposition 4.4 gives that p9 h - 0 for allhª Ž1qd .
Ž .h g J and lim p h s y`. From the above considerations and Propo-hª`

Ž .sition 2.1 a , the theorem follows.

Although the ideas and the structure of the last proofs are not easy to
extend to general perturbation functions, in some particular cases they
work. One of them is shown in the next result. In it, we change the

Ž .quadratic part of w x by a function bounded for x ) 0.
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Ž .THEOREM B. Suppose that the perturbation function is w x s ax q
Ž yx .c e y 1 , with a and c g R. Then, for e small enough,

Ž . Ž .a if arc ) 1, system 6 has at most one limit cycle bifurcating frome

Ž . Ž .the le¨el cur̈ es G h , for h g 1 q d , q` .
Ž . Ž .b if arc - 1, system 6 has no limit cycles originated from a periodice

Ž .orbit of 6 .0

The proof of this theorem follows the same structure and type of
preliminary results as the proof of Theorem A, and so we omit it.
However, we should stress that it strongly involves the study of the

Ž . Ž . Ž . Ž . Ž yx .function Q h s I h rI h , where h g J and I h s H e y 1 dy,3 1 3 GŽh.
Ž .which plays an important role, similar to that of p h in the proof of

Ž .Theorem A. In particular, we remark two properties of Q h which will be
used later on:

lim Q h s y1; Q9 h - 0, for all h g J . 16Ž . Ž . Ž .
hª1qd

5. PERTURBATION FUNCTION WITH LINEAR,
QUADRATIC, AND EXPONENTIAL TERMS

In this section we give an example which generalizes those studied in the
Ž .previous section. The new perturbation function will be w x s ax q

2 Ž yx .bx q c e y 1 , with c / 0. We can choose, without lack of generality,
c s 1.

Although positive answers for the previous perturbations have been
obtained, here we find additional obstacles to overcome. Until now, for

Ž . Ž .c s 0 or b s 0, it was enough to know the sign of p9 h or Q9 h , to solve
the respective problems. However, in this general perturbation, we need to

Ž . Ž .link the information about the decreasance of p h and Q h . This fact
requires a deeper knowledge of these functions. Actually, the key point is

Ž . Ž .that there is an essential difference between I h and I h on the one1 2
Ž .hand, and I h on the other; otherwise, it might be possible to find some3

Ž .kind of Picard]Fuchs equations for these integrals, and I h , and go1
Ž w x.further in their study see for instance 4 .

As a result of the above reasons, we are not able to provide a full
description of the bifurcation diagram, but the partial results we have
obtained and some numerical tests allow us to give an approach to this
diagram.

We divide our study into several steps.

( )5.1. Reduction to the Variable p s p h

Rescaling the three parameters, we may suppose that c s 1. Then,
taking into account the bijectivity given by Proposition 4.4, we may take p
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as the parameter of the Hamiltonian function, instead of h. In these terms,
we write the bifurcation function as:

˜M h p s I h p a q bp q Q p \ I h p M p , 17Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .Ž .1 1 1

Ž̃ . Ž Ž .. Ž . Ž Ž ..where Q p s Q h p . The zeroes in y`, 0 of M h p obviously
Ž .coincide with those of M p .1

5.2. Geometrical Approach to the Perturbation Function

According to Proposition 2.1, we have to look for the zeroes of the
Ž . XŽ . YŽ .sequence M p , M p , M p , . . . , where1 1 1

˜M p s a q bp q Q p ,Ž . Ž .1

X ˜M p s b q Q9 p ,Ž . Ž .1

Y ỸM p s Q p ,Ž . Ž .1

Ž . Ž .M p s M a, b; p , and the prime denotes the derivative with respect to1 1
p. Now, suppose that we want to know which are the p-levels where we

Ž .might find two limit cycles after a small perturbation of the system 6 . To0
obtain this, it must be held that:

M p s 0, 18.1Ž . Ž .1

M X p s 0. 18.2Ž . Ž .1

�Ž . Ž .4Observe that the solution of the above system 18.1 , 18.2 on the
Ž . � Ž .4a, b -plane can be thought of as the envelope of the family R p ofp- 0

Ž . �Ž . Ž . 4straight lines R p s a, b : M a, b; p s 0 . We call this envelope EE.1
Ž Ž . Ž ..We can suppose that EE is parameterized by p as a p , b p . Then,

Ž . Ž .from 18.1 and 18.2 we can compute

da dp dp˜s yp y b y Q9 p s y p ,Ž .
Ž . Ž .db db dbM p sM 9 p s0

2d a dp 1
s y s ,2 ˜Ž . Ž . dbdb M p sM 9 p s0 Q0 pŽ .

˜ Ž .using in the last expression that dbrdp s yQ0 p , obtained by derivating
Ž .18.2 .
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Ž .We recall that from Lemma 4.3 c and Proposition 4.4 we know that
Ž . Ž . Ž . Ž .p h F 0 and p9 h - 0; moreover, from 16 we know that Q h F y1

˜ ˜Ž . Ž . Ž .and Q9 h - 0. Consequently, Q p F y1 and Q9 p ) 0.
As a first result, we have that dardb ) 0, and so we can also parameter-

Ž . Ž .ize the envelope as a b . Some aspects about the straight lines R p and
the envelope are established in the following statements:

Ž . Ž . �Ž . 4 Ž .i R p l a, b : a - 0, b ) 0 s B, since the equation of R p is
Ž̃ .a s ybp y Q p , which has a positive slope yp and cuts the b-axis at a

Ž̃ .negative point b s yQ p rp.
Ž . Ž .ii The envelope EE must lay on the half-plane b - 0, since 18.2

˜ Ž .implies that b s yQ9 p - 0 on EE.
˜Ž . Ž Ž .. Ž .yiii lim a b p s 1 because a s ybp y Q p andp ª 0

Ž̃ .ylim Q p s y1.pª 0
Ž . Ž . Ž Ž . .yiv a b is an increasing function of b and lim da b rdb s 0,pª 0
Ž . <since dardb s yp.M Ž p.sM 9Ž p.s0

These remarks give a first approximation of the shape of EE. This shape
is an important factor because it determines how many limit cycles

Ž . Ž .bifurcate from 6 , for each value of a, b . In fact, observe that, given EE0
and a point p g R2, the number of tangent lines to EE passing through p

Ž .coincides, by 18 , with the number of limit cycles bifurcating from periodic
˜Ž . Ž .orbits of 6 . Then, the necessity of knowing Q0 p is also manifest0

because it fixes the sign of d2ardb2 and so the convexity of EE.
Summing up, there remain two important aspects to look into in order

to know the exact graph of EE :
Ž .a Which is the point on a s 1 where the envelope ends? This would

˜Ž . Ž .yimply, from 18.2 , knowing the lim Q9 p , but we cannot solve itpª 0
directly. We compute this limit in Section 5.4.

˜Ž . Ž .b The sign of Q0 p , as it is indicated above, would give the shape of
EE. Numerical experiments, performed using Simpson’s method, suggest

Ž̃ . Ž .that Q p is convex upward, as shown in Fig. 4 a . Under this situation, the
Ž .bifurcation diagram would be like Fig. 4 b .

( )5.3. Hopf Bifurcations in System 6e

Apart from the ‘‘large’’ limit cycles that could arise from the level curves
Ž .G h , we are also interested in the number of small amplitude limit cycles.

Ž . Ž .Since 0, 0 is always a critical point of 6 , we wonder about the locale

bifurcation that occur near the origin.
Ž .Until this point, we have only taken care of what happens near G h ,

when h ) 1 q d . In fact, the local bifurcations can be interpreted as the
Ž . Ž .perturbations of G 1 q d s 0, 0 . However, in this subsection we will not

take into account that e is the parameter of the perturbation. The main
interest point is not the study of the perturbation of the Hamiltonian
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˜Ž . Ž . Ž . Ž . Ž .FIG. 4. a Numerical approach for Q p , defined in 17 . b Envelope of 18 , EE, and
Ž . Ž .number of limit cycles for 6 for e small enough, in the a, b -plane.e

system, but the stability of the origin as a critical point and the determina-
tion of the number of limit cycles near it. Then, we regard system
Ž . Ž6 simply as a four-parametric system depending on the parameterse

.a, b, e , d .
We apply the change of variables

' 'x s d x ; y s y ; t s d t

Ž . Ž . 2 Ž yx .to the system 6 , with w x s ax q bx q e y 1 . Omitting the bars,e

we can write:

x¡ y yx s 1 y e y ew e ,˙ ž /'d~ 19Ž .x' 'x r d x r d'y s d e y 1 q ew e .¢̇ ž /ž /'d

Ž . Ž . Ž .The origin is an elementary critical point and div X 0 s 1rd e 1 y a .
ŽTherefore it is a weak focus if and only if a s 1 of course, we do not

. Ž .Ž .consider the case e s 0 . In other words, a s erd 1 y a is the first1
Liapunov value.

Ž .By using Taylor’s expansion of 19 when a s 1 and using the general
Ž .expressions of the second and third Liapunov values see Appendix A , we

obtain

pe 2
a s 2 1 q b q e 1 q 2b ;Ž . Ž .Ž .3 3r28d
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and when a s 0,3

p
2 'a s 15 y 21e y 20e " 1 y 4e 31e y 15 ,Ž .Ž .5 5r21152d

1where the sign ‘‘"’’ depends on which solution of a s 0, for a fixed e F ,3 4
'Ž . Ž .that we take. These solutions are b e s y2e y 1 " 1 y 4e r4e . As"

Ž . 1 Ž .a function of e , b e is a C -function at e s 0, with lim b e s y1,q e ª 0 q
Ž .whilst b e has asymptotic behavior at e s 0. Both functions take they

1 1 3Ž Ž . .same value at e s b s y ."4 4 2

The fourth Liapunov value a must be computed where a vanishes.7 5
This happens only once and this case is found to be approximately when

Ž .e* f y12.683 and b* [ b e* f y0.339. Since we do not know anyy
expression of a for the general case, we decided to take a numerical7
approach for this Liapunov value. Our main interest was to determine the
role of the parameter d , which has not been significant up to now. In the
previous Liapunov values a , i s 1, 3, 5, this parameter appeared to thei
power of yir2. So, we decided to search for an a of the form M ? d k.7
The numerical experiment we carried out, which is explained with more
detail in Appendix A, leads to the approximations M f y3.22296, k f
y3.49998. So, assuming that a s Mrd 7r2, where M - 0, we can finish7
the description of the bifurcations near the systems having weak focus at
the origin.

Before continuing we observe that the case a s 0 occurs far from the5
Hamiltonian case. Anyway, we follow our study because it shows that

Ž .system 6 can have for this perturbation function at least three limite

cycles.
Table I shows the signs of the Liapunov constants depending on the

values of the parameters and supposing that a s 1.

TABLE I

e , b a a a3 5 7

e ) 1r4 ) 0
e s 1r4 s 0 ) 0

w Ž . Ž .x0 - e - 1r4, b f b e , b e ) 0y q
Ž Ž . Ž ..0 - e - 1r4, b g b e , b e - 0y q

Ž . Ž .0 - e - 1r4, b s b e , b e s 0 ) 0y q
w Ž . Ž .xe - 0, b f b e , b e - 0y q
Ž Ž . Ž ..e - 0, b g b e , b e ) 0y q

Ž .e - 0, b s b e s 0 ) 0q
Ž .e* - e - 0, b s b e s 0 ) 0y

Ž .e - e*, b s b e s 0 - 0y
Ž .e s e*, b s b* s b e s 0 s 0 - 0y
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We summarize the results obtained as follows:

PROPOSITION 5.1. Assume that the Liapunö constant a - 0. Define the7
Ž .following subsets of the a, b, e -parameter space:

V s a, b , e : as1, b / b e , b e , e / 0 ; R3 ;� 4Ž . Ž . Ž .1 y q

Vqs a, b , e : a s 1, b s b e , e / 0 ; R3 ;� 4Ž . Ž .2 q

Vys a, b , e : a s 1, b s b e , e / 0, e* ; R3 ;� 4Ž . Ž .2 y

V s Vqj Vy;2 2 2

V s 1, b*, e* .Ž .3

Then, in any neighborhood of V in the space of parameters there exist tripletsk
Ž .a , b , e such that the corresponding system has k limit cycles.0 0 0

We will give more details about the conclusion of the above proposition
in the next paragraphs.

In a first approximation, we can say that, in a neighborhood of V , only1
Ž .the signs of a and a affect the number of limit cycles. Figures 5 a and1 3

Ž .5 b show this number for planes a s a, with a slightly greater and less˜ ˜
than 1, respectively.

In a neighborhood of V , we must also take into account the sign of a .2 5
Consider the following subsets of the plane a s 1:

R s b , e : bsb e , e* - e - 0 ;� 4Ž . Ž .1 y

R s b , e : b s b e , e - e* ;� 4Ž . Ž .2 y

R s b , e : b s b e , e - 0 ;� 4Ž . Ž .3 q

R s b , e : b g b e , b e , e ) 0 .� 4� 4Ž . Ž . Ž .4 q y

Ž .FIG. 5. Limit cycles of 6 near the origin when a / 0.e 3
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Ž .Call U , for i s 1, . . . , 4, a neighborhood of R in the a, b, e -space. Wei i
˜carry out a graphical description of the number of limit cycles in U [i

� 4 Ž .U l e s k, with k constant . In Fig. 6 left-hand side we show thei
˜ Ždistribution of the number of limit cycles in U , and in Fig. 6 right-hand4

.side we add the information given in Fig. 5 to give a complete description
near a s 1 for a fixed e ) 0. In the next subsection, these results will play
a key role.

5.4. Relation between Abelian Integrals and Hopf Bifurcation

Ž .The previous study about the Hopf bifurcations in system 6 can givee

Ž . Ž .local information on the envelope EE given by 18.1 and 18.2 . Indeed, we
will prove which is the point on a s 1 where EE ends.

� Ž .4PROPOSITION 5.2. The en¨elope EE of the family R p gï en by thep- 0
�Ž .4 Ž . Ž .system 18.i is tangent to a s 1 at the point a, b s 1, y1 .is1, 2

Ž .Proof. Note that 1, y1 is the limit of the codimension 2 Hopf
Ž . qbifurcation curves near b e as e ª 0 , as described in Fig. 6. We wantq

to use this fact to prove our result.
Ž . Ž Ž ..yNote that from system 18 and the fact that lim a b p s 1 andpª 0

� 4dbrda s y1rp ) 0, we know that on EE, the envelope of R , wherep p- 0
˜Ž . �Ž . Ž . 4R p s a, b : a q bp q Q p s 0 , we have:

� 4lim b9 a s q` and lim b a s L, L s R j q` .Ž . Ž .
y yaª1 aª1

We will prove that L s y1. To this end, we observe that the above
Ž .equalities imply that for each p - 0, there exist at least two pairs a , b ,1 1

Ž .with a - 1 and b - L, and a , b , with a ) 1 and b ) L, such that1 1 2 2 2 2
Ž . Ž .a , b g R p for i s 1, 2.i i

Ž .FIG. 6. Limit cycles of 6 near the origin when a / 0.e 5
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In terms of the number of limit cycles, this result means that we can
Ž .always find systems a , b having at least one limit cycle as close to thei i

origin as we desire.
However, if L / y1, this last assertion is impossible, according to what

we saw in Fig. 6 of Section 5.3. Effectively, if L ) y1, the contradiction
Ž . Ž . Žcomes from the points like a , b such that b ) b e similarly when1 1 1 q

.L s q` ; if L - y1, we reach the contradiction from the points like
Ž . Ž . Ž .a , b such that b e - b - b e .2 2 y 2 q

APPENDIX A: COMPUTATION OF THE
LIAPUNOV VALUES

Recall that Poincare gave an algorithmic way to study the stability of the´
Ž . Ž . Ž .origin for a system of type x s yy q f x, y , y s x q g x, y , with f x, y˙ ˙

Ž .and g x, y analytic functions, starting with degree 2 terms. The method
consists of computing the so-called Liapunov values a , a , a , . . . .1 3 5

A general expression for the Liapunov values has only been obtained for
the first ones: the first Liapunov value is the trace of the Jacobian matrix,

Ž .and so is very easy to compute; the expression for the second one a can3
Ž w x. Ž .be found in many references see for instance 1 ; for the third value a ,5

a large number of computations is required, but even so general formulas
Ž .have been given; however, for the fourth value a , as far as we know,7

there is no explicit general expression.
The shortest way that we know to write a and a comes from the3 5

expression of the system in complex variables:

Žw x. Ž .PROPOSITION 2 . Set z s iz q F z, z , with F s F q F q F q ???˙ 2 3 4
2 2 3 2 2Ž . Ž .and F z, z s Az q Bzz q Cz , F z, z s Dz q Ez z q Fzz q˜2 3

3 4 3 2 2 3 4 5Ž . Ž .Gz , F z, z s Hz q Iz z q Jz z q Kzz q Lz , F z, z s Mz q4 5
4 3 2 2 3 4 5Nz z q Oz z q Pz z q Qzz q Rz . Then:

Ž . w Ž . Ž .xi a s 2p Re E y Im AB .3
2Ž . Ž .w Ž . Žii a s pr3 6 Re O q Im 3E y 6DF q 6 AI y 12 BI y 6BJ5

.y8CH y 2CK
2ŽqRe y8CCE q 4 ACF q 6 ABF q 6BCF y 12 B D

y4 ACD y 6 ABD
.q10BCD q 4 ACG q 2 BCG

2 2 2 2 3Ž .xqIm 6 AB C q 3 A B y 4 A BC q 4B C .

Finally, we describe how we get numerically the fourth Liapunov value,
a , used in Section 5.3. It is known that the expression of the Poincaré7
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Ž .return map p x near the origin and when a , a and a vanish is given1 3 5
by

p x y x s a x7 q o x7 ,Ž . Ž .7

�Ž . 4where x is the first coordinate of a point on the half-line x, 0 : x ) 0 .
Then,

p x y xŽ .
r r1 2F x s s a q o x s a q a x q a x q ??? ,Ž . Ž .7 7 1 27x

where r - r - r - ??? and r G 1, for all i g N.1 2 3 i
Ž .Trying to do a direct numerical computation of F x for small x could

be an approximate way to find a . However, the factor x ri can still have a7
significant weight near x s 0. The precision will be greater if we increase
the value of the powers r in some way. This purpose can be achieved byi
using extrapolation procedures, like Richardson’s method, described

w xbelow; see 9, pp. 436]441 .
Ž . Ž . Ž . Ž .From a sequence of values of F x , say F x , F x , . . . , F x , such1 2 m

that x s qx , x s x, i s 1, . . . , m y 1, and q ) 1, defineiq1 i 1

¡F x s F xŽ . Ž .1~ F x y F qxŽ . Ž .j j
F x s F x q , for all j G 1.Ž . Ž .jq1 j r¢ jq y 1

Ž .Then, it can be proved that F x can be written ask

F x s a q aŽk .x rk q aŽk . x rkq 1 q ??? , k F m ,Ž .k 7 k kq1

Ž . Ž .and hence F x , for small x, is a better approximation of a than F x .k 7
Ž . Ž .The images F x , . . . , F x are obtained by using the Runge]1 m

Kutta]Fehlberg method with orders 7 and 8, a tolerance 10y13, an initial
step 10y5, maximum and minimum steps 10y1 and 10y16, respectively, and
an accuracy of 10y16.

Observe that the above descriptions give a three-parameter method,
depending on x, q, and m, to approximate a . Of course, the same idea7
can be used to get numerical approximations of a , a , and a .1 3 5

Ž .We implement our method in the computer for the system 6 takinge

Ža s 1, b f b*, e f e* recall that this was the case for which a s a s1 3
.a s 0 , and d as a parameter. For instance, in this case and for d s 1, we5

obtained that a f 10y7, a f 10y6 , and a f 10y4. This information1 3 5
about the previous Liapunov values is very useful to indicate a suitable
range of parameters where we can get the best approximations, in other
words, what the proper x, q, and m to be chosen in our method are.
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TABLE II

d : 0.5 0.6 0.7 0.8 0.9

Ž .a d : y36.4552 y19.2687 y11.2295 y7.03735 y4.660087

d : 1 1.1 1.2 1.3 1.4

Ž .a d : y3.22276 y2.30898 y1.70259 y1.28658 y0.9925957

The procedure described up to now allows us to compute numerically
Ž .a d , i.e., the fourth Liapunov value for a concrete value of d . The last7

step consists of finding a general expression of a as a function of d . From7
the observation of the role of this parameter in a , a , and a , one can1 3 5

Ž . k Žexpect that a d s M ? d , where M, k g R in fact, it seems that k7
7 . Ž .should be y . We get Table II, where the value of a d chosen is the72

mode of the results obtained for several selected values of x, q, and m,
satisfying x m - 10y10.

In order to know the numerical values of M and k, we take the results
given in Table II and solve a least-squares problem with the entries
Ž < Ž . <.ln d , ln a d . The slope of the regression line is an approximation of k,7

< <while the constant term is approximately ln M , because

< < < <ln a d s ln M q k ln d .Ž .7

In this way, we obtain that M f y3.22296 and k f y3.49998. To deter-
Ž .mine the sign of M we only have to observe the sign of a d which is7

always negative.
Finally, we observe that

10
< < < <ln a 0.5 q i y 1 0.1 y ln y 3.22296Ž .Ž .ŽÝ 7

is1

2 y7y3.49998 ln 0.5 q i y 1 0.1 F 2 ? 10 .Ž .Ž . .
Therefore, it seems reasonable to conclude that

a f y3.22296dy3 .49998 f y3.223rd 7r2 .7
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