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In this paper, we study systems in the plane having a critical point with pure
imaginary eigenvalues, and we search for effective conditions to discern whether
this critical point is a focus or a center; in the case of it being a center, we look for
additional conditions in order to be isochronous. We stress that the essential
differences between the techniques used in this work and the more usual ones are
basically two: the elimination of the integration constants when we consider
primitives of functions (see also Remark 3.2) and the fact that we maintain the
complex notation in the whole study. Thanks to these aspects, we reach with
relative ease an expression of the first three Liapunov constants, v, vs, and v,
and of the first two period ones, p, and p,, for a general system. As far as we

*Partially supported by the DGICYT Grant PB93-0860.
"E-mail address: gasull@mat.uab.es.

*E-mail address: toni@mal.upc.es.

S$E-mail address: manosa@ma3.upc.es.

190

0022-247X /97 $25.00

Copyright © 1997 by Academic Press
All rights of reproduction in any form reserved.



LIAPUNOV AND PERIOD CONSTANTS 191

know, this is the first time that a general and compact expression of v; has been
given. Moreover, the use of a computer algebra system is only needed in the
computation of v, and p,. These results are applied to give a classification of
centers and isochronous centers for certain families of differential equations.

© 1997 Academic Press

1. INTRODUCTION

In the Qualitative Theory of planar differential equations, the problem
of determining whether a critical point with pure imaginary eigenvalues is
a center or a weak focus is known as the center-focus problem.

The solution of the center-focus problem for a particular system involves
the knowledge of the sign of the so-called rerurn map, P(p), in some
neighbourhood of the origin. This sign can be studied by computing the
terms of the series expansion of P( p) which can be obtained recurrently
and are generically called the Liapunov constants. They are usually de-
noted by v,;,,, for i € N, and will be defined accurately afterwards.

There exist several ways to compute the Liapunov constants but all of
them run into troubles from some particular v, on. These troubles are
mainly due to the large amount of computations that are involved which
break down the capacity of the computers.

The method we present is a development of [10]. Its main advantages
are:

(1) Until the last step we do not need to write the constants in terms
of the coefficients of the system. Most of the methods to compute such
constants use the coefficients from the first step on, thereby increasing the
difficulties in handling the formulas.

(2) It maintains the algebraic structure of the constants and helps to
detect relations that avoid some further unnecessary computations.

(3) The treatment in complex coordinates leads obviously to the
shortening of the expressions. This is not only an aesthetic advantage, but
also a practical one because in many particular cases it implies a reduction
of the total number of operations.

In the supposition that we have characterized the centers, it is also
interesting to know whether the center is isochronous or not. A progres-
sive way to find isochronicity conditions for centers is by computing the
terms of the series expansion of the period function, that is to say, the
so-called period constants. They are usually denoted by p,;, for i € N, and
will also be defined afterwards.

In this paper, we obtain a general shortened expression of vs, vs, U5, p,,
and p,. The newest results are the expressions of v, and p, for a general
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system. The expressions of v,, vs, and p, have been calculated in several
ways by many authors (see [2, 3, 6, 10, 12, 14, 16, 17] among others). The
expression of p, (using normal forms) is also obtained in [7, 14].

In Section 2 we give the main statements: the expressions of these
Liapunov (Theorem A) and period (Theorem B) constants. Section 3 is
devoted to their proofs.

To illustrate the use of Theorems A and B we will enunciate in this
introduction four results that are straightforward applications of them.
They will be proved in the last section (Section 4).

Our first application is the study of a system derived from the Fitzhugh
model for the nerve impulse. There are also other reasons to study this
system. In [15], Lloyd proposed new lines to be studied in the field of
Liénard equations; one of them is to give information about the systems
x=F(x) —y, y=g(x), with F(x) and g(x) polynomials of degree n and
m, respectively. Observe that the next system corresponds to the n = 3,
m = 4 case.

THEOREM 1. Consider the system

X = —y+ax® + bx?, )
y=x+dc® + g + hxt,

where a,b,d, g, h € R. Then,

(@) the origin of (1) is a center if and only if one of the following
conditions holds:

@l a=>b=0,
@2 a#0,b=d=h=0,
(@3) ad+0,b=2ad, g =h =0,

(b) the origin of (1) is an isochronous center if and only if b =d =
h =0 and g = 4a*

As we said above, an interesting particular case of system (1) is the
Fitzhugh equation, which is a simplified model of the nerve impulse
proposed by Fitzhugh in 1961 [5] and has been studied by many authors.
Hsu and Kazarinoff in 1976, see [13], computed the first focal value, and
wondered about the possibility of having a second focal value vanishing.
Numerical experiments with the Fitzhugh equation were done in 1979 by
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Gobber and Willamowski [12]. They predicted the possibility of having only
a second order degenerate Hopf bifurcation, that is, only the first focal
value vanishing. In 1981 Golubitsky and Langford [9] predicted, observing
some preliminary calculations not shown, the possibility of having a third
order degenerate Hopf bifurcation, that is, the second focal value vanish-
ing for some choice of the parameters. Finally, in 1990 Gamero [7]
computed the first and second focal values for the equation, showing that
the system has only a second order degenerate Hopf bifurcation. This
result also follows from our study:

ProPosITION 2 (see also [7]). Consider the Fitzhugh model given by

F=A+y+x— 3x°
y = —px = pBy

where B, p € (0,1), and A = 0. Then, for each value of A, at most two limit
cycles can bifurcate from the critical point of the system.

The next application is a generalization of the Liénard equation studied
also in [3]. We give a classification of the centers and of the isochronous
centers.

THEOREM 3. Consider the system
= —y+ax® + bx?,
e 2
y=x+my + ny”,
where a, b, m,n € R. Then,

(@) the origin is a center if and only if b + n = 0 and, moreover, either
a*—m?=0,0rb=am=0.

(b) the origin of (2) is an isochronous center if and only if a = b =
m=n=0.

Finally, in the last application, we study the following predator-prey
model obtained from a perturbation of the Lotka—\Volterra system,

X
yr=1—¢" — —e?,
X e cgo(d)e

(3)
y = d(ex/d -1+ cgo(%)e”d),

where ¢(x) =ax + bx?2 + (e * —1)and a,b,c € Rand d € R™".
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The Lotka—Volterra model written as a Hamiltonian system is the same
as system (3) with ¢ = 0. The system (3) was considered in [8] to study the
number of limit cycles that can appear. To know the cyclicity of the origin,
the Liapunov constants are needed. In [8], the last Liapunov constant that
can vanish for the origin of (3), which is v,, is computed in a numerical
way. Here, we give the exact expression, as a result of Theorem A, and so
we conclude that no more than three limit cycles can be obtained in a
neighbourhood of the critical point for systems (3). Summing up, we have
that:

THEOREM 4. The origin of the system (3) is a weak focus of order at most
three.

2. MAIN RESULTS
We are interested in systems such that the origin is a critical point with

pure imaginary eigenvalues. Such systems can be written in complex
coordinates as

f=iz+ Y F(z,Z), zeC, (4)
k>2

where F,(z, z) are homogeneous polynomials of degree k.
To state the main results, we need to introduce the following notation
for system (4),

F,(z,%Z) = Az* + BzZ + CZ%;

Fy(z,z) = Dz* + Ez%z + Fzz* + GzZ%;

F,(z,2) = Hz* + Iz + Jz?2% + Kzz° + Lz*%;

Fi(z,z) = Mz® + Nz*z + 0z%2% + Pz°z3 + Qzz* + Rz®;
Fy(z,2) = 8z2° + Tz%2 + Uz*z? + Vz°23 + Wz%z* + Xz2° + Y25,

Fi(2,2) = Zz'2% + g,(2,2), (5)

where g,(z, ) does not contain the monomial z*z3.
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THEOREM A. With the notation given in (5), the first three Liapunov
constants of system (4) are

vy = 27(Re(E) — Im( AB)).

vy = g(a Re(0)

- 216

+Im(3E? — 6DF + 6AI — 12BI — 6B] — 8CH — 2CK)
+Re(—8CCE + 4ACF + 6 ABF + 6 BCF — 12B°D

—4ACD — 6 ABD + 10BCD + 4ACG + 2BC(‘;)

+Im(6AB2C + 34282 — 44°BC + 4B°C)).

v

(432Re(Z)

—36 |m(—24Az7 — 12 AV + 36 BU + 24BV + 20CT + 8CW

—6DN + 6DP + 12EO + 18FN
+6FP + 15GM + 3GQ + 12HK + 121])

+9 Re(—48A21V + 72 AA0 — 216 ABN + 72 ABO + 168 ABO
—24ABP — 120ACM + 16 ACN + 48 ACP + 8 ACQ + 24ADI
—48ADJ + 24ADK + 24AEI — 72 AEI + 24AEJ + 24AEJ

—96 AFH + 24 AFI + 48 AFJ + 24AFK + 24AGH + 36 AGK
+24AGL — 216 B*N + 264BBO — 72B?P — 260BCM + 168 BCN
+104BCP — 36 BCQ — 24BDH + 48 BDI — 120BDJ

+96BDK — 168BEI + 24BEI + 24BEJ + 120BEJ — 216 BFH
+144BFI + 72 BFJ + 132BGH + 48BGK + 12BGL + 72CCO

—72CDI + 32CDJ + 48CDL — 104CEH + 24CEH + 24CEK
+56CEK + 56CFI + 64CFJ + 16CFL + 60CGI + 40CGJ
—18D?G — 72DEF + 24DEF + 48DFG — 12E° + 12E’E
+48EFF + 36EGG + 18F°G) — 31m(—72A%Al — 1444°B]

+72 A’BJ + 144A°BH — 72 A’BK + 48 A>CI — 48 A*CL + 36 A’DG
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—36A%DE + 36 A°DE + 36 A’EF — 36 A’EF — 36 A’FG

+216 AABI + 144AABJ + 48 AACH + 48 AACK + 72 AADF
+36AAE? + 432 AB%] — 1008 ABBI + 216 ABBJ — 144ABCH
+372ABCK — 624ABCH + 216 ABCK + 72 ABDD — 432 ABDF
+216 ABEE — 216 ABE? + 360 ABFF + 288 ABGG + 648 AB*’H
— 216 AB?K + 192 ABCI — 384ABCJ — 336 ABCL + 36 ABDG
—216 ABDE + 432 ABDE + 144ABEF — 360 ABEF — 396 ABFG

+96 AC?L — 240 ACCI + 144ACCJ — 24ACDE + 72 ACDE
— 144ACDG + 168 ACEF — 216 ACEF + 192 ACFG + 108 ACD’

—192 ACDF + 96 ACEG — 216 ACEG + 84ACF? — 648B°H
+ 1152 B2?BI + 576 B’BJ + 156 B>CL + 456 B2CI + 552 B*CJ

— 756 B’DE + 252 B’DE + 396 B*DG + 396 B’EF + 396 B’EF
+324B*FG + 1596 BBCH + 408 BBCK + 1224 BBDF + 612 BBE?
+804BCCI + 384BCCJ — 378 BCD? + 600BCDF + 516 BCEG
+360BCEG + 162BCF? — 48BC?L + 612BCDG + 168 BCDE
—T720BCDE + 7T20BCEF + 216 BCEF + 84BCFG + 288C2CH
+72C*CK + 180C?DG + 60C?*FG + 456CCDF + 228CEE2)

+2 Re(54A3BB — 54A?ABD — 54A’ABE + 54A’ABE — 54A°BF
+5424BF + 54A4°BG — 36 A2’ACD — 36 A°CE + 36 A*CE
+36A%ACF + 36 A?’ACG — 108 A’B%E + 27A°B*G

—126 A°BCD — 108 AABCD —18 A’BCE + 162 A*BCE — 162 A’BCF

+108 AABCF + 18 A2BCG — 108 AABCG + 72 A2CCD — 72 A>2CCF

—72A%C%G + 378 AB®D — 1242 ABB*D — 1350 AB’BE
+ 1350 AB?BE — 594 AB°F + 1458 ABB?F — 486 AB®G
+756 AB’CD — 1638 ABBCD + 900 AB*CE — 684 AB2CE
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—1044AB*CF + 1926 ABBCF — 1080 AB*CG + 1854ABBCG
— 720 ABCCD — 1296 ABCCE + 1008 ABCCE + 1296 ABCCF
+588 ABC%G — 396 AC2CD + 396 AC?CF + 396 ACC2G

—1728B°BD + 1404B?B*E — 243B*G + 2286 B2BCD — 1062B°CE
—234B°CE + 1350B2BCF + 414B*BCG — 2214B*CCD

+ 2448 BBCCE + 54B2CCF +297B*C*G + 990BCC?D + 594BCC*F
+198BC?CG + 272C*CE)

2 |m(—36A4Bc _ 544°B® + 544%4AB°B + 72 A*BBC

— 72 A?’AB°C + 144A?ABCC — 432 A’B°B + 101742BB*C
+108 AAB3C — 684 A42B2CC + 540 A2BC?C + 1404AB3B?
—648 AB*C — 1512 ABB3C + 4266 AB*BCC — 1080 AB2C%C

+1064ABC2C? + 657B“BC + 67533cc_:2)).

THEOREM B. With the notation given in (5), the first two period constants
of system (4) are

2 — —
P, = ?(—3 Re(A4B) + 3BB + 2CC — 3Im E)

2wl —ImO

Dy

_ _ 5 _ 4 _ 3 _
+Re(—AI + 3BJ — 2BI + ECK - §CH — DF + FF + ZGG)
2 & _
—Im(—2B2D — EACD + ABD — ?BCD + ABF
_ _ 2 _ 1 _ 29 —_
+5BCF + 4B?F + §ACF + EACG + ?BCG)
_ _ _ 2 _
+Re(AABB + AB?’B — 2B*B? — EAZBC + 3A4B%*C
10 __

1 _ _ 7 - 7 _ _ 4 __
——B3C + =AACC — —ABCC + —BBCC — =C*C?]].
3 3 3 4 9
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From the proof of our results it will be clear that the proposed method
allows us to compute (with a reasonable effort) vs, v, and p, without any
computer algebra system.

3. NOTATION AND PROOF OF THE BASIC RESULTS

First of all, we need to clarify the main notation as well as the
definitions of the constants.

3a. DEFINITIONS.  We start making the change of variables given by
r? = zz and 0 = arctan(Im(z) /Re(z)), to transform Eq. (4) into

dr  Z+z (Fz + Fz)/2r
— =17 - = — .
do 2z —zz 1+ (Fz —Fz)/2ir?

Since F(z,2) = ¥, . ,r*F, (e, %), the equation can be written as

" kZZV"Re(SkW)) o
46 1+ ¥ rfIm(S4(0)) ,EZR"(O)r ! (6)
k>1

where §,(6) = e "F (', ¢~'?). Note that (6) is only defined for r small
enough.

Following [2] we denote by (6, p) the solution of (6) that takes the
value p when 6 = 0. Then, it can be expanded as

r(0,p) =p+uy(0)p®+uy(0)p®+..., with u,(0) = 0 for k > 2.

Let P(p) = r(2m, p) be the return map defined on the § = 0 axis. The
values u,(2), for k > 2, control the behaviour of the solutions of (6) near
the origin. We will say that the system (6) has a center at the origin if and
only if u,(27) = 0, for all kK > 2. On the other hand, it has a focus if there
exists a k such that u,(27) # 0.

It is well known that the first non-vanishing u,(27r) has an odd sub-
script, Kk =2m + 1. We will say that v,,, ., = u,, ,,(2m7) is the mth
Liapunov constant.

In principle, the purpose is to obtain the functions u,(#) and evaluate
them at 6 = 277. When substituting the solution (6, p) into Eg. (6), we
get some recurrent relations among the u,(6). The effect of this process is
displayed in Proposition 3.1.

Assuming that (6) has a center at the origin, the period function, T( p),
at p is defined as the time spent by the closed orbit r(6, p) to turn once
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around the origin. In polar coordinates, we have that

do k-1
— =1+ Im(kg,zr Sk(9))
=1+ Y rFim(S(6)).
k>2
Therefore,
o do
T(p) =f0 1+ Y r(6,p)  Im(S,(0))
k>2

which can be expanded in series as

T(p)—f 1+ X H(0)r(0,p) do

k>1

=27+ Zf H(0)r(0,p)" do

k>1

2w+ ) f 8:(0) dop*.
k>1

If we denote £,(0) = [{g,(¢)dp, we have that T(p) = 27 +
Yoo 1t 2m)pk.

Then, if k =2m and ¢,27) =0 forall j =1,...,k — 1, we define the
mth period constant p,,, as p,,, = t,,,(2m). (It is well known that #,27) =

- =t,;(2m) = 0 implies ¢,;, (27) = 0, for all j € N, see [4])

Apart from the above basic definitions, some other notations will be
used in the proof of Theorem A.

Given a trigonometric polynomial in the variable 6,

p(0) = X pe™ + pg,
kek

where K is a finite subset of Z \ {0}, we set

p(o) = foep(@) de= Y, %( k0 — 1) + p,0, and

k€K
p(0) is the primitive of p(6) without an independent term on 6, )
that is to say,

5(6) = ¥ ety pog,
kekK lk
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Let us now enter into the proof (we only prove Theorem A since
Theorem B can be proved in a similar way).

3b. Proof of Theorem A. The first step consists of substituting the
expression of r(0, p) into the differential equation (6), obtaining a general
relation among the derivatives u}(6) and the previous u;(6):

Y u(0)p = L R,(6)(r(6,p))".

k>2 nx>2

It is not difficult to prove that

(r(0.0)" = [ Zu0) 7]
i1
v ¥ n!
k=n ajtaz+ - tag_;=n al!aZ!'” ak—l!

ay+2a,+ - +(k—Day_,=k
Xuz?(0)ugi(0) - uj=1(0) | p*.

Hence, by comparison of the coefficients of p*, one gets

n!

k
w(0) = X R,(0) r
n=2 ajta,+ - ta,_=n
a1+2a,+ - +(k—Da,_,=k

Xuz2(0)uz(0) - ui=i(0).

This formula gives a recurrent way to compute the «,(6) in terms of the
Rj(e), with j < k. If we carry out the successive integrations we reach the
following proposition, which generalizes the results of [1, 10].

alay! - a,_4!

PrRoOPOSITION 3.1.  The functions u,(0), which define the solution r(6,p) =
p+ u,(0)p?+ul(8)p®+ ... of (6), can be expressed fori = 2,3,4,5,6,7,
in terms of the functions R, (0) as

uy(0) =§2,
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l

Remark 3.2. In fact, the computation of the Liapunov constants con-
sists of evaluating the latest expressions at 6 = 27, supposing that the
previous constants vanish. Since R,(8) = [{R,(¢) d¢ has a term indepen-
dent of 6, that arises from the evaluation of a primitive of R,(6) at 6 = 0,
the successive integration steps that appear in the statement of Proposi-
tion 3.1 could be shortened if this independent term vanished. In the
following proposition we prove that the R/(6#) can be changed by the
R,(0), which have already been defined as primitives of R,(6) without an
independent term, see (7). This fact makes the effective computation of
the constants easier, and settles one of the differences between the
technique that we use and the usual one.
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PropPoSITION 3.3. The first three Liapunov constants for system (4) are
given by

v, = /Oz”Rs(e)de,

_foz”(R5+2R R, + Ry(R,)')(6) do,

2w ~ ~ ~ (2 ~ |3
f (R7 +4RgR, + 2RsR; + 6R5(R,) + 4R,(R;)
0

+4R,RoR, + 2R Ry(R,) + Ry(R,)") (6) do.

Proof. We will show only the proof of v,. Of course, the other cases
are easier. By (7), we have that for i > 2, R, (0) = R, (0) + ¢;, with ¢, € R.
Let us see what would it happen if in the computation of u7(277) we
changed the R by R + ¢;. Proposition 3.1 and the fact that u,(27) =
u2m) =u,2m) =0 imply that R,(27)=R,2m) = (R, + R,R,)2m) =
0. We can compute u,(27) as

2w ~ ~ ~ 2 ~ o~
u,(2m) = /0 (R; + 4ReR, + 2RsR, + 6Ry(R,) + 4R, R, R,

+4R,(R,) + 2Ry(R,) R, + Ry(R ))(e)da
_/ (R T 4Ry(R, + ¢;) + 2Ry(R, + ¢;) + 6Ry(R, + ¢;)
+4R4(R2 + Cz) ( )(R3 + 03) + 2R3(§2 + cz)2

X (Ry + c5) + R?,(I?2 +¢y) )(0) de
2 ~ ~ ~ |2 ~ .3
= / (R7 +4RgR, + 2RsR; + 6R5(R,) + 4R,(R,)
0
~ ~ 2~ ~ |4
+4R, R, Ry + 2Ry(R,) Ry + Ry(R;)')(0) do
2 ~ ~ ~ \2 ~ ~
+ 4c2f0 (R6 +3RsR, + R,Ry + 3R,(R,) + R3R, R,

+R3(§2)3)(0) do
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+2(cy + 3c§)/ (R5 + 2R, R, + Ry(R,) )(e)de

2w ~
+ zcgfo (R3R3)(0) 0 + 4(cycs + )

2 ~ 2
x[o (Rs + RyR,)(0) do + (c5 + 2c§c3)f0 R,(0) do.

Among the above last six integrals, the first one is the v, of the statement,
the second, third, fifth, and sixth ones vanish under the hypothesis v5 =
= 0, while the fourth one also vanishes since v; =0 implies that

U3
Ry@2m) = Ry0). 1

At this point, the problem of the computation of the functions u; (6) has
been reduced to the computation of the functions R; (0), which are easier
to express in terms of the coefficients, but not easy enough

We define the following polynomials in ¢, which will act as the link
between the R;(6) and the coefficients of the system:

Si(0) = e F (e, e7'?);

T.(0) = —iS,(6);

We(8) = —iS2(0);

si(0) = S, (0) —S,(0);

1(0) = T,(0) —T,(0);

wo(0) = W, (0) + Wi(8), forks 2. (8)

Their relation with R;(6) is displayed in the next result:

LEMMA 3.4. The following assertions hold:

n—2

(@ R,=Re(S)— Y Im(S,, )R, ;.
k=1

(b) Consider the trigonometric polynomials U(0), for n > 1, such that
R,(0) = Re(U/0)). Then,

1
v =5, + > 2 Uy 1 (Ske1 = Sii1)- (9)
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Moreover, the polynomials U,(6) can be expressed as U,(6) = X,(6) + Y,(6),
where Re(Y,(60)) = 0 and

X, =S, +iS,S, + s(s 52)
. A (Lece 3
X5=S5+1SZS4+ZS3 + | 585508 — 45585 + SS3
i _
+ 5523(252 -S,),

1
Xe =S¢ + (5,55 +5;8,) — ((SS+ Sg)s2+SSs3+ Ss4)

1 1

' 1
+ sz(szs + 5 (855 +SS))—§SZS§(SZ—ES),

1
X, =8;+ i(5286 + 8,8 + ES})

1 1 1
- E((SZS5 + 8,8,)s, + (5254 + Esg)sg + 8,855, + ESZZSS)

i

1
+3 —8,835,5; — ZS22S4S2

2

1 1 5\ 2
_E(SZSA + §S3)S2 -

1 3 5 1 -
+ ES2S2S3 - ZSZS3 + ZSZSs

1 S
55 + Z52(522 - Szz)s4)
1 1 1, (o 1
- stz(szS3 + 5 (8854 585) | + 5 83s5( 8, - 58

o3

Proof of Lemma 3.4.

(a) It can be easily obtained applying to (6) known results about the
computation of the coefficients of a series expansion of a quotient of
series, see, for instance, [11, p. 14].
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(b) Applying basic rules of calculus with complex numbers to (a), we
have

n—2
R, = Re(U,) = Re(S,) + ¥ Re(iS, . )Re(U, ,)
k=1
1 n—2
= Re| S, + ) YU, i (iSer + (—D)Sii1) ]
k=1

and so the equality given in the statement.

To get the expanded expressions of X,(6), we use the recurrence (9) to
obtain first the U/ (6) (recall that S, =S, = 0). For instance, X, is
computed from

i _ i i
U, = S3 + EUZ(SZ - S2) = S3 + 5522 - ESZSZ'

It is clear that Re((i/2)S,S,) = 0, and so we define X; = S, + (i/2)S?
and Y; = —(i/2)5,S,. 1

Then, using this lemma together with Proposition 3.3 we will be able to
reach the last result, from which Theorem A follows. This result describes
the Liapunov constants in terms of the polynomials given in (8).

THEOREM 3.5. Consider the differential equation (4), with the definitions
given in (8). Then, the first three Liapunov constants vs, vs, and v, can be
written as

2 271'1 2
u3_Refo S3(6)d0—lmf0 =>S3(6) do,
27 27 1 2
Vs = Re[ S(0)do — |m]O $,8. + =55 + 8,1, | ()
3 1 1
+ Re/ ( S,585 — 75385 + 5385 — 8,541, — ZSstz)(O) do
- |m[02”(553(2_ S,) + S 2o(S;7 — 82) - —Sztg)(e) de,

Re

U7

3 2 3 2
Y [Tei(2) - 1)(0)d0) - .m( x v7(zf')<e>de),
j=1 0 j=1 0
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where
v7(1) =S5,

1
07(2) = S¢S, + S,;85 + ES} + 284ty + Scts,

S 1 o\ (53
U7(3) = _(SZSS + S3S4)(? + 2t2) — S2S4 + 553 (? + t3)

§2—-87%2 1 3
—S5(; +—w, + Et%),

3
5 + 141,

S,8, — 5,8
_S - - =
4 4 2

1 ) 1 5 3 ) 1
v,(4) = —|S,8, + 553 252 + 5,1, + Etz + W2
_ 3 1 _3\/1
S,8;5 — ZSZS3 + 25253) 553 + t,

1
2

v

1 1
- Sg(zszszs3 + 8,858, + Sytyts + thzt3)

1 _ 1 1 3 1 5
-5, ESZIZ(SZ + Sz) + sztz + Etz - ZS2S2S4,

1

1
v7(5) = —Szz(—sst + E(SZS3 + SZSQ'))(ZS2 + tz)

1 - 1 1 1_ 3 1
_ZSZ S, — ESZ (ES?) +t] =S, ES2S3 - ZSZSs + ZS2S3

X

1 3 ) 1 1 3 1 )
EWZ + Etz + ESZ ESZSZtZtS + S3W2t2 + S3t2 + ZSZtZtS

1 2 1 2
+§S3[2 w, + Etz ,
1 1 3
t22)

1 _ 1
U7(6) = —ng'(sz - ESZ)(ng + 5,1, + sz + E

1 1 1
+ ESZZ(SZWZZZ + 5,85 + sztzz + Ztg‘).

__Proof. Recall that R, = Re(X,). Here, we wish to write also R, and
R, as the real part of some polynomial. We must resort, then, to the
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definitions of 7, and W, given in (8). Hence,

R, = Re(X,) = Re(S,) = Re §, = Re(iT},),

R, = Re(X,) =Re

i 1~ o
S5 + 553 =ReSg+ERe(zSz) = ReliT; = 5 W, .

From Proposition 3.3, if we want to compute vy, we must do the
following expansions:

R; = ReU; = Re X;,

2R,R, = 2Re U, Re(iT,) = Re(X,(iT, — iT,)) = Re(iX,1,),
~ 2 1
Ry(R,) = —ZRe(X3t22).

Analogously, for v,, we expand
R, = ReU; = Re X7,
4R R, = Re(U;)Re(S,) = 4Re( X;)Re(iTy)
= 2Re(iX,(T, — T3)) = 2Re(iXyt,),

~ 1 1
2RsR, = 2Re(U5)Re(iT3 - EWz) = Re(iX5t3 - EXSWZ),
2 . 2 3 2
») = 6Re(Us)(Re(iT,))" = —ERe(XStZ),
~ A 1
4R,R,R, = 4Re(U4)Re(iT3 - EWZ)Re(iTZ)
i
= Re(—X4t3t2 - EX4w2t2),
3 . 3 1 .3
») =4Re(U,)(Re(iT,))" = —ERe(sz),

ZRe(U3)Re(iT3 - %Wz)(Re(iTz))2

N
SN—"
I

1 1
- ZRe(1X3t3t22 - EX3W2t22)’

1
Re(U;)Re(iT,)" = l—GRe(X3t§).

w’;o
Il
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We substitute the X, in the above expressions according to the equali-
ties provided in Lemma 3.4(b) and we distribute the result by degrees.
Finally, applying Proposition 3.3 the theorem is obtained. |

From the expressions of Theorem 3.5, the computation of the constants
in terms of the coefficients is reduced to substitute the expressions given in
(8). It is very important that the computation of the integrals that appear
in the statements can be done in a very easy way. Observe that all their
integrands are functions of the form C + f(e'?, e~'?), where f(e'?, e %) is
a sum of non-constant trigonometric polynomials. So, when integrating
from 0 to 27, we obtain 27 C. Then, we can take advantage of the option
of some computer algebra systems that allows us to isolate the coefficients
of some specific degree to avoid the step of integration. For instance, the
command Coefficient List of Mathematica has been useful in our work. The
computations of v, vs, and p, can be easily done (without computer
algebra systems).

Proof of Theorem A. The formulas of v, and v, arise directly from the
operations indicated in Theorem 3.5, without any substitution (in v,
because it is not necessary, and in v, by difficulties beyond our goals). On
the contrary, v has been computed and afterwards we have used more
explicitly the fact that v, = 0. Then, of course, the formula we provide for
v; is a little bit shorter than the one that could be obtained directly from
Theorem 3.5. |

4. PROOFS OF THE APPLICATION RESULTS
Proof of Theorem 1.

(a) We consider Eq. (1) in complex notation. Applying Theorem A
we obtain the first three focal values which give the center conditions for

.

The first focal value is vy, = 2w (b — 3ad). When b = %ad we obtain

ma
Ug = §(5dg - 3/’l),

ma

25 (—285dg” + 210a%dg + 240d°g — 200d°h + 171gh — 126a%h).

U; =

The constraints v, = v; = v, = 0 give the three conditions (a.i), with
i =1,2,3, stated in Theorem 1. Case (a.1) corresponds to a Hamiltonian
system. Following Poincaré’s Criterion, in case (a.2), Eq. (1) has a center
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because it is invariant by the change of variables (x, y,t) — (—x, y, —¢).
The last case admits a differentiable integrating factor depending on y and
therefore, it has a center at the origin. Then, (a) is proved.

(b) In case (a.1) the system is gradient. From [4] we know that these
type of systems cannot exhibit isochronous centers unless they are linear.

By Theorem B, the first period constant for system (1) is

a® 5 P 3
2= T 1% T g8
In case (a.2), p, = 0 implies g = ¢a® Furthermore, in this case p, = 0.
This restriction leads to the system

X = —y+ax?,
y=x+ ga’x® (10)

X = X(x), with x = (x, y), for short. We have proved that taking x = Y(x)
as

X=x+ faxy — Sa’x
y=y+ 5x2 + tay? — Za’x*,

wlx w[N

then [ X(x), Y(x)] = 0, where [, - ] denotes the Lie bracket. Then, using the
result of [18] we obtain that the origin of (10) is an isochronous center.
For the case (a.3), if we impose p, = 0, Theorem B gives

8 L, 1905
= —a%d® + ——d* +
Pr= gea? 1728 !

and therefore no isochronous centers can appear. |

Proof of Proposition 2. The Fitzhugh model is given by

Y=A+y+x— 3x°%
y = —px—pBy,

where 8, p € (0,1), and A > 0.

When A = /1 — pB(3 — 23 — pB?) /3P, the system has a unique criti-
cal point (x,,y,) at which the divergence vanishes. We translate this
critical point to the origin, and consider the change given by (X,Y) =
(x, —pBx — wyy), where w, = \/p(l — pB?) . Consider also the rescaling
of time given by ¢ = 7/w, and denote again by a dot the derivative with
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respect to 7. Then, we obtain

; X, 1
X=-Y- —X°—- —X?3,
W, 3w,

[
g

. 1
Y=X+ (X0X2+§X3),
where X, = /1 — pB. This system corresponds to a system of type (1)
with a = =X,/ wy, b = —1/3w,, d = pBX,/w:, g = pB/3w3, and h =
0.

From Theorem A we get

vy = ——2 (B — 2B +1).
3 4(u8

Hence, in our range of parameters v, only vanishes when g € (3,1) and
p= @B —1)/B> For these values vg = 57B/48w,(B — 1) # 0, as we
wanted to prove. |

Proof of Theorem 3. System (2) is written in complex coordinates as

=iz + Az® + 242z + AZ% + dz°® + 3ez’z + 3dzz% + ez,
where 4 = X(a —mi),d = 3(b —n) €R,and e = 3(b + n) €R.

From Theorem A, we know that v; = 2me = (ar/4)(b + n). Imposing
that b + n = 0, we have that v, = (7/24)(a® — m?)(5b — 6am) and v, =
(m/128)(a* — m*)(55b — 42am).

To end the proof of (a) it suffices to observe that the conditions
vy = vs = v, = 0 lead to systems with centers, by using Poincaré’s Crite-
rion, as in the proof of Theorem 1.

To prove (b), it suffices to compute the period constants using Theorem
B. Assuming that e = b + n = 0, we have that p, = (7/3)a® + m?), and
also imposing that p, =0, p, = (3m/4)b?. With these data, the only
possibility of having an isochronous center becomes when a =b =m =
n=20 1

The above result has also been proved in [3], but because of the lack of
formulas for v, and p,, the way of finding the constants was more
industrious.

Proof of Theorem 4. Using Theorem A, we compute first
24+ 2b + ¢ + 4bc + 4b%c
1643 ’
and so from v, = 0 we get the relations b, = (—2c¢ — 1 + V1 — 4c¢)/4c.

Uvg=c
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With these values, we get the respective vq,

v, .= 15 — 21c — 20c¢* F Y1 — 4¢ (15 — 31c¢).

While vs , never vanish, it can be seen that v; = 0 if and only if ¢ is

equal to the only real solution of the equation 300 — 1210c¢ + 1171c¢? +
100¢® = 0:

c*

1171 1734241
300 90000(2283832711,/27000000 — 409051 /6000y3 )"

2283832711  y409051 |\ /¥
27000000  6000v3

Finally, we compute v, by substituting the values » = b_(c*) and ¢ = c¢*.
By reasons of space, we do not produce v, on these pages. Its numerical
approximation (of the final result only) with twenty exact digits is

v, = —1.02592864649341227/d’ .

Then, v, does not vanish and we get the conclusion of the theorem. |

10.
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