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Abstract. We consider the problem of computing the Liapunov and the period constants for a
smooth differential equation with a nondegenerate critical point. First, we investigate the structure of
both constants when they are regarded as polynomials on the coefficients of the differential equation.
Second, we take advantage of this structure to derive a method to obtain the explicit expression of the
above-mentioned constants. Although this method is based on the use of the Runge–Kutta–Fehlberg
methods of orders 7 and 8 and the use of Richardson’s extrapolation, it provides the real expression
for these constants.
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1. Introduction and main results. In this paper we deal with the problem of
computing the Liapunov and period constants for the differential equations{

ẋ = −y + P (x, y),
ẏ = x + Q(x, y),

where P (x, y) and Q(x, y) are analytic functions in a neighborhood of the origin
and begin, at least, with second order terms. These systems can be expressed in the
complex plane using the following notation:

ż = i z + F (z, z̄),(1.1)

where F (z, z̄) =
∑
k≥2 Fk(z, z̄), Fk(z, z̄) =

∑k
j=0 fk−j,jz

k−j z̄j , fk−j,j ∈ C, and the
dot indicates the derivative with respect to t, with t ∈ R.

The problem of determining whether (1.1) has a center or a focus at the origin
can be solved by studying the Poincaré return map. This study can be done (using
the power series of the return map) by means of the computation of infinitely many
real numbers, v2m+1,m ≥ 1, called the Liapunov constants. In fact, we have that if
for some m, v3 = v5 = · · · = v2m−1 = 0, and v2m+1 6= 0, then the origin is a focus
of which the stability is determined by the sign of v2m+1, while if all v2m+1 are zero,
then the origin is a center; see for instance [1].

A closely related problem is the following: Assume that (1.1) has a center at
the origin and consider the period of all its periodic orbits. The origin of (1.1) is an
isochronous center if and only if the period is independent of the orbit. When is the
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origin of (1.1) an isochronous center? It turns out that the solution to this problem
can be obtained (using the power series of the period function) by computing infinitely
many real numbers, P2m,m ≥ 1, called the period constants and by forcing them all
to vanish.

If we look at (1.1) as a family of polynomial differential equations, the constants
can be seen as functions in the coefficients of the system. Moreover, in the case that
(1.1) is a polynomial family of differential equations of fixed degree, the Hilbert basis
theorem implies that a finite number of Liapunov constants vanishing is enough to give
the characterization of the centers of the family, just as a finite number of Liapunov
and period constants vanishing is enough to characterize the isochronous centers of
the family.

Many authors have dealt with the problem of computing the constants. With-
out being exhaustive, see for instance [3], [4], [6], [7], [9], [10], [14], or [16]. All the
approaches used to calculate the constants involve a lot of computations. In order
to have an a priori estimation of the complexity of the result, it is very useful to
know properties of the Liapunov and period constants when they are considered as
functions of the coefficients of (1.1).

Before stating our results we need some definitions.

We say that M is a monomial of (1.1) when M =
∏
k,l f

mk,l
k,l fk,l

nk,l
, with mk,l, nk,l

∈ N, where the product is finite and fk,l is any coefficient of Fk+l(z, z̄).

Let v2m+1 be the mth Liapunov constant. (Respectively, let P2m be the mth
period constant.) We will also say that a monomial of (1.1), M, is a monomial of
v2m+1 (or of P2m) if either Re(M) or Im(M) appears in the expression of the constant.

We define the degree, deg(M), the quasi degree, qd(M), and the weight of M,
w(M), respectively, as

deg(M) =
∑
k,l

(mkl + nkl), qd(M) =
∑
k,l

(k + l − 1)(mkl + nkl), and

w(M) =
∑
k,l

(1− k + l)(mkl − nkl).

We refer the reader to section 3.1 for examples. Finally, we say that a monomial
of (1.1) of weight zero, M, is basic if M ′|M and w(M ′) = 0 imply that M ′ = ±M .
Roughly speaking, the basic monomials are the prime factors of the monomials of
weight zero.

With the above notation, the following result is well known; see [2], [12], [13],
[17], and [18].

Theorem 1. Let M be a monomial of v2m+1 or P2m. Then, qd(M) = 2m and
w(M) = 0.

The property w(M) = 0 is derived from the fact that the constants are invariant
under rotations of the vector field. Property qd(M) = 2m comes from the effect of
homoteties in the vector field.

Theorem 1 gives some information about the monomials that appear in the Lia-
punov and period constants. In our main result, we improve Theorem 1 by describing
how these monomials are distributed according to their degrees.

THEOREM A. The following statements hold:

(i) Let M1,M2, . . . ,Mk (respectively, Mk+1,Mk+2, . . . ,Mk+l ) be monomials of
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Table 1
Estimations of the number of monomials.

Const. Polynomials From Thm. 1 From Thms. 1 Actual
of deg = 2m and A number

v3 119 7 2 2
v5 91.389 79 28 22
v7 156.238.907 310 259
P2 119 7 5 4
P4 91.389 79 40 29

v2m+1 with even degree (respectively, odd degree ). Then

v2m+1 =
k∑
i=1

αiIm(Mi) +
k+l∑
i=k+1

βiRe(Mi)

for some αi, βi ∈ R.
(ii) Let M1,M2, . . . ,Mp (respectively, Mp+1,Mp+2, . . . ,Mp+q) be monomials of

P2m with even degree (respectively, odd ). Then

P2m =

p∑
i=1

γi Re(Mi) +

p+q∑
i=p+1

δi Im(Mi)

for some γi, δi ∈ R.
The proof of Theorem A appears in section 2. It is an improvement of Theorems 1

and 2 of [2]. Observe that for any vector field, v2m+1 and P2m are real numbers. Hence,
if M is a monomial of (1.1), v2m+1 = αM + ᾱM̄ + N , where N denotes the sum of
the other monomials appearing in its expression, and so v2m+1 = 2Re(α)Re(M) −
2Im(α)Im(M) + N (an analogous argument is valid for P2m). Therefore, Theorem
A reduces by half the estimation of the length of the Liapunov and period constants
obtained using only Theorem 1. To give an idea of this reduction, in Table 1 we
display different estimations of the number of terms of v2m+1 and P2m, considered
polynomials on the monomials Mi. These estimations have been obtained by imposing
progressively the following constraints:

Second column: v2m+1 and P2m are real-valued polynomials of degree 2m.
Third column: The monomials of v2m+1 and P2m satisfy the restrictions of The-

orem 1.
Fourth column: The monomials of v2m+1 and P2m satisfy the restrictions of

Theorem 1 and Theorem A.
Fifth column: The actual number of monomials of v2m+1 or P2m computed in [6].
On the other hand, when we want to compute some exact Liapunov or period

constant, from the above results we know that it is a polynomial in which the only
unknowns are the coefficients of its monomials. It is easy to see from section 24 of [1]
that these coefficients are rational multiples of π and so, multiplying by an appropri-
ate factor (which can be upper bounded), they can be reduced to integer numbers.
The way to compute these coefficients is a key point in our approach since we obtain
them from numerical integrations of some particular cases of the ordinary differential
equation. The process, based on a combination of the Runge–Kutta–Fehlberg method
with variable steps and Richardson’s extrapolation method, is developed in section 3.
In contrast to most of the other methods used to compute the Liapunov and period
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constants, our process does not require the use of computer algebra systems. In our
method we need only to list all the monomials of v2m+1 or P2m, choose appropri-
ate systems that can provide their coefficients, and carry out the numerical process
to obtain them effectively. The last step consists only of solving a system of linear
equations.

In section 3.1, Theorem 3, we illustrate our approach by computing the Liapunov
constant v5 for a general system of type (1.1). In section 3.2, as an example of how
the numerical method works and how the round-off errors increase if the method is
applied to the computation of v7, we apply our method to compute v7 for a particular
system. These computations are obtained by using artihmetic of double precision. In
general, to compute higher order Liapunov or period constants, one should work with
quadruple or even higher precision.

Finally, observe that in order to apply our method to a given polynomial system
of the form (1.1), we need to know all their monomials of weight zero. To list them
it would be useful to find a kind of “finite system of generators.” In the appendix we
prove that those generators are the basic monomials defined above. In our opinion,
the use of basic monomials in systems with few coefficients provides an elegant and
compact form with which to present the Liapunov (and the period) constants (see,
for instance, Remark 4).

2. Proof of Theorem A. We need a preliminary result and some notation.

DEFINITION. We denote the following:

(i) P0 is the set of functions of the form Re(P (θ)), where P (θ) writes as

P (θ) =
∑
l

pl(θ)Ml i
deg(Ml);

Ml denotes any monomial of (1.1), and pl(θ) are trigonometric polynomials with real
coefficients, that is, elements of R[eiθ].

(ii) P1 is the set of functions of the form Re(i P (θ)) such that Re(P (θ)) ∈ P0.

When we have an operation ∗ between the elements of two sets A and B, we
denote A ∗B = {a ∗ b : a ∈ A, b ∈ B}.

Lemma 2. The following relations are satisfied:

(i) P0 + P0 ⊂ P0, P1 + P1 ⊂ P1.
(ii) Pi · Pj ⊂ Pi+j , where i, j ∈ (Z2,+).

Proof. The proof of (i) is trivial. Here we prove for instance the case P0 · P0 ⊂ P0

of (ii).

Consider a(θ), b(θ) ∈ P0, that is,

a(θ) = Re

∑
j

pj(θ)Mj i
deg(Mj)

 ,

b(θ) = Re

(∑
k

qk(θ)Nk i
deg(Nk)

)
,

where Mj , Nk denote monomials of (1.1) and pj(θ), qk(θ) ∈ R[eiθ]. Then,
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a(θ) b(θ) = Re

[
1

2

∑
j

pj(θ)Mj i
deg(Mj)

(∑
k

qk(θ)Nk i
deg(Nk) +

∑
k

q̄k(θ)N̄k(−i)deg(N̄k)

)]

= Re

[∑
j,k

(
1

2
pj(θ)qk(θ)MjNk i

deg(Mj ·Nk)

+
1

2
pj(θ)q̄k(θ)(−1)deg(N̄k) MjN̄k i

deg(Mj ·N̄k)
)]
,

where we have used that Re(z) Re(w) = Re(z (w+ w̄))/2 for any z, w ∈ C. Thus the
lemma follows.

Proof of Theorem A. First observe that proving (i) is equivalent to proving that
v2m+1 ∈ P1 (where the trigonometric polynomials involved are constants). To achieve
this result we study to which set, P0 or P1, belong the functions appearing in the
algorithm of computation of the constants given in [1]. We briefly recall it here.

Equation (1.1) can be written in the polar coordinates r2 =zz̄ and θ=arctan Im(z)
Re(z) ,

as

dr

dθ
=

r2Re(S2(θ)) + r3Re(S3(θ)) + · · ·
1 + rIm(S2(θ)) + r2Im(S3(θ)) + · · · =

∑
k≥2

rk(θ)Rk(θ),(2.1)

where Sk(θ) = e−iθFk(eiθ, e−iθ).
Observe that Sk(θ) =

∑k
j=0 fk−j,je

i(k−2j−1)θ =
∑k
j=0 e

i(k−2j−1)θ(−fk−j,j),
ideg(fk−j,j)+1, because deg(fk−j,j) = 1 for all j and k. Hence, it is clear that Re(Sk(θ)) ∈
P1.

The functions Rk(θ) can be computed using the recursive formula for the quotient
of series given in [8] as

Rk(θ) = Re(Sk(θ))−
k−2∑
j=1

Im(Sj+1(θ))Rk−j(θ).(2.2)

We also have that Im(Sj+1(θ)) = Re(−iSj+1(θ)) ∈ P0. By using Lemma 2, it is
easy to prove by induction that Rk(θ) ∈ P1.

Let r(θ, ρ) = ρ +
∑
j≥2 uj(θ)ρ

j be the solution of (2.2) for which r(0, ρ) = ρ.

Consider the Poincaré map given by Π(ρ) = r(2π, ρ) = ρ +
∑
j≥2 uj(2π)ρj . It is well

known that if Π(ρ) is not the identity, the first nonvanishing term in the power series
corresponds to an odd order term. When u2(2π) = u3(2π) = · · · = u2m(2π) = 0 and
u2m+1(2π) 6= 0, the mth Liapunov constant is v2m+1 = u2m+1(2π).

Recall also that when u2(2π) = u3(2π) = · · · = un−1(2π) = 0, the functions uj(θ)
are trigonometric polynomials for j ≤ n− 1 and

u′n(θ) =

n∑
k=2

Rk(θ)

∑
a∈Dkn

k!

a1!a2!a3! · · · an−1!
ua2

2 (θ)ua3
3 (θ) · · ·uan−1

n−1 (θ)

 ,(2.3)

where Dk
n is the following subset of indices (see [2] for more details):

Dk
n = {a = (a1, a2, . . . , an−1) ∈ Nn−1 such that a1 + · · ·+ an−1 = k,

a1 + · · ·+ j aj + · · ·+ (n− 1)an−1 = n}.
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We claim that

un(θ) = Qn(θ) + Pn θ,

where Qn(θ) ∈ P0 and Pn(θ) ≡ Pn ∈ P1. Furthermore,

Pn = Re

(∑
l

plMl i
deg(Ml)+1

)
, Qn(θ) = Re

(∑
l

ql(θ)Ml i
deg(Ml)

)
,

where Ml denote monomials of (1.1), pl ∈ R, and ql(θ) ∈ R[eiθ].
Observe that if this claim is proved, then Theorem A follows because when n =

2m+ 1, since v2m+1 = u2m+1(2π) =
∫ 2π

0
u′2m+1(θ) dθ, we obtain that v2m+1 ∈ P1, as

we wanted to prove.
We now prove the claim by induction. We have that for n = 2

u2(θ) = Im

[
f20e

iθ − f11e
−iθ − f02

3
e−3iθ − f20 + f11 +

f02

3

]

= Re

[
(1− eiθ)f20 i+ (e−iθ − 1)f11 i+

1

3
(e−3iθ − 1)f02 i

]
∈ P0.

Suppose that the claim is true for uj(θ) with j = 2, . . . , n− 1. Since the functions
uj , for j ≤ n − 1, are trigonometric polynomials (that is, they do not contain terms
with the factor θ), applying the induction hypothesis we get that uj(θ) ∈ P0, for
j ≤ n− 1. Since u′n(θ) is obtained from (2.3), considering Lemma 2 and the structure
of Rk(θ), we obtain that u′n(θ) ∈ P1.

We distinguish two types of terms in u′n(θ): those of the form Re(CM ideg(M)+1)
and those of the form Re(C eiαθM ideg(M)+1), with C, α ∈ R, α 6= 0, and M a
monomial of (1.1).

By integrating between 0 and θ, the terms of the first form are transformed into

Re(CM ideg(M)+1) θ,

and so they are terms of the form p θ, with p ∈ P1, as we wanted to prove.
The integration of the second form terms between 0 and θ leads to expressions

like

Re

(
C

iα
eiα θM ideg(M)+1 − C

iα
M ideg(M)+1

)

= Re

(−C
α
eiα θM ideg(M)+2 − −C

α
M ideg(M)+2

)

= Re

(
C

α
eiα θM ideg(M) − C

α
M ideg(M)

)
,

and so they belong to P0, as we wanted to prove. Hence, the claim is proved and, as
a consequence, the proof of (i) is finished.

The proof of (ii) is similar and we just establish the differences. Assume that (1.1)
has a center at the origin. Consider (1.1) expressed in polar coordinates. The period
function, which gives the period of the orbit of (2.1) for which r(0, ρ) = ρ, can be
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expressed as

P (ρ) = 2π +
∑
k≥1

∫ 2π

0

Hk(θ)r(θ, ρ)k dθ

= 2π +
∑
k≥1

tk(2π) ρk,

where the functions Hk(θ) can be calculated using the recursive formula

Hk(θ) = −
k∑
j=1

Im(Sj+1(θ))Hk−j(θ)(2.4)

and the functions tk(θ) satisfy the following recurrence:

t′k(θ) = H1(θ)uk(θ)+

k∑
m=2

Hm(θ)

[ ∑
a∈Dm

k

m!

a1!a2!a3! · · · ak−1!
ua2

2 (θ)ua3
3 (θ) · · ·uak−1

k−1 (θ)

]
.(2.5)

See [2] for more details.
It is well known that the first nonvanishing term in the power series of P (ρ)

corresponds to an even order term. Therefore, if t2(2π) = t3(2π) = · · · = t2m−1(2π) =
0 and t2m(2π) 6= 0, the mth period constant is P2m = t2m+1(2π).

In the above notation, the proof of (ii) follows from arguments similar to those in
(i) but considering the recursive formula (2.4) instead of (2.2) and considering (2.5)
instead of (2.3).

3. The analytic-numerical method with applications. Here we present a
method to compute the general formula of the constants. Let us suppose, for instance,
that we want to find the expression for v2m+1. We proceed as follows:

Step 1. By using Theorems 1 and A and the appendix, we list all the monomials
involved in v2m+1. That is, we write v2m+1 as a linear function of products of basic
monomials (see Remark 4).

Step 2. Once the monomials are listed, we look for all the undetermined coeffi-
cients by computing the constant for some particular systems. To do this, we use the
Runge–Kutta–Fehlberg 7–8 method to calculate the Poincaré return map. Afterward,
we apply the Richardson’s extrapolation method in order to reduce the error.

The above procedure will be followed in the next subsection to compute the
expression of v5 for a general system of type (1.1). Step 2 can also be used to obtain
numerically the mth Liapunov constant for a particular differential equation of type
(1.1). This has already been done in [5], but here we also study the behavior of the
round-off errors. In subsection 3.2 we present how to compute the third Liapunov
constant, v7, for a quadratic system.

First, let us describe Step 2 more carefully in the case of the computation of v5.
It is known that when v3 = 0, the Poincaré map Π(x) near the origin is given by

Π(x) − x = v5 x
5 + o(x5),

where x is the first coordinate of a point on the semiaxis {(x, 0) : x > 0}. Then,

F (x) =
Π(x) − x

x5
= v5 + o(x) = v5 + a1x

r1 + a2x
r2 + · · · ,
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Table 2

Degree Monomials of quasi-degree 4 and weight 0

1 O

2 DD̄, F F̄ ,GḠ,DF,AĪ, AJ,BI,BJ̄, CH,CK̄, E2, EĒ

3 A2F,A2D̄, B2D,B2F̄ , AB̄F,AB̄D̄, ACD,
ACF̄ ,BC̄F,BC̄D̄, AC̄G,BCḠ AĀE,BB̄E,CC̄E,ABE,ABĒ

4 A3C,A2B̄C,AB̄2C,B3C̄, A2Ā2, ABĀB̄,
ACĀC̄, A2ĀB,B2B̄2, BCB̄C̄, AB2B̄, C2C̄2, ABCC̄,A2B2

where 1 ≤ r1 < r2 < r3 < · · ·.
The constant v5 could be approximated by a direct computation of F (x) for x

small enough, but the factor xri might not be small enough near x = 0. We can obtain
a better precision by increasing the powers ri. This can be done by the Richardson’s
extrapolation method, described next.

From a sequence of values of F (x), namely F (x1), F (x2), . . . , F (xm), such that
xi+1 = q xi, x1 = x, i = 1, . . . ,m− 1, and q > 1, we define{

F1(x) = F (x),

Fj+1(x) = Fj(x) +
Fj(x)−Fj(qx)

qrj−1
for all j ≥ 1.

Then, it can be proved that

Fk(x) = v5 + a
(k)
k xrk + a

(k)
k+1x

rk+1 + · · · , k ≤ m.

Therefore, Fk(x) is a better approximation for v5 than F (x), for x small enough.
(See [11] for more details.)

The images F (x1), . . . , F (xm) are obtained by using the Runge–Kutta–Fehlberg
7–8 method, with tolerance ε1 = 10−13, and an initial step hi = 10−5, with maximum
and minimum steps hM = 10−1 and hm = 10−16, respectively, and a precision of
10−16. Observe that this is a three-parameter method, with parameters x, q, and m.

3.1. Computation of the second Liapunov constant. In this subsection,
by using the above procedure we compute the expression of the second Liapunov
constant v5. This gives the following well-known result (see [1], [2], [4], [7], [9], and
[15]).

Theorem 3. Consider the equation ż = iz+F (z, z̄) with F2(z, z̄) = Az2 +Bzz̄+
Cz̄2, F3(z, z̄) = Dz3+Ez2z̄+Fzz̄2+Gz̄3, F4(z, z̄) = Hz4+Iz3z̄+Jz2z̄2+Kzz̄3+Lz̄4,
and F5(z, z̄) = Mz5 +Nz4z̄ +Oz3z̄2 + Pz2z̄3 +Qzz̄4 +Rz̄5. Then

(i) v3 = 2π [Re(E)− Im(AB)],
(ii) v5 = π

3 [6 Re(O) + Im(3E2 − 6DF + 6AĪ − 12BI − 6BJ̄ − 8CH − 2CK̄) +
Re(−8CC̄E+4ACF̄+6AB̄F+6BC̄F−12B2D−4ACD−6AB̄D̄+10BC̄D̄+4AC̄G+
2BCḠ) + Im(6AB̄2C + 3A2B2 − 4A2B̄C + 4B̄3C)].

By using the appendix, we start listing the monomials satisfying Theorem 1. They
are given in Table 2.

By Theorem A, the real monomials of even degree (DD̄, FF̄ , GḠ, EĒ, A2Ā2,
ABĀB̄, ACĀC̄, B2B̄2, BCB̄C̄, C2C̄2) do not appear in v5. Moreover, imposing that
v3 = 0, i.e., ReE = Im(AB), we can consider that Im(ABCC̄) = CC̄Im(AB) =
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Table 3
Determination of the coefficients of v5.

Equation ż = iz + F (z, z̄), Linear equation in αk
where F (z, z̄) is:

1 z3z̄2 α1 = 6
2 z3 − izz̄2 −α2 = 6
3 z2 − iz3z̄ α3 = 6
4 z2 + iz2z̄2 α4 = 0
5 zz̄ − iz3z̄ −α5 = 12
6 zz̄ + iz2z̄2 −α6 = 6
7 z̄2 − iz4 −α7 = 8
8 z̄2 + izz̄3 −α8 = 2
9 z2 + zz̄2 α10 = 0
10 zz̄ − z3 −α11 = 12
11 zz̄ + zz̄2 α12 = 0
12 z2 + zz̄ + zz̄2 α10 + α12 + α13 = 6
13 z2 + zz̄ − z3 −α11 − α14 = 18
14 z2 + z̄2 − z3 −α15 = 4
15 z2 + z̄2 + zz̄2 α10 + α16 = 4
16 zz̄ + z̄2 + zz̄2 α12 + α17 = 6
17 zz̄ + z̄2 + z3 α11 + α18 = −2
18 z2 + z̄2 + z̄3 α19 = 4
19 zz̄ + z̄2 + z̄3 α20 = 2
20 iz2 + z̄2 −α24 = 0
21 zz̄ + iz̄2 −α27 = 4
22 z2 + izz̄ + (1 + i)z2z̄ α21 + α22 + 2α9 = 6
23 z2 + (1 + i)zz̄ + (1 + i)z2z̄ 2α9 + α21 + 2α22 + 2α28 = 12
24 (1 + i)z2 + zz̄ + (1 + i)z2z̄ 2α9 + 2α21 + α22 + 2α28 = 12
25 z2 + (1 + i)zz̄ + z2z̄ α21 + 2α22 + 2α28 = 6
26 z2 − izz̄ + z̄2 − z2z̄ −α21 − α22 − α23 + α25 + α27 = 0
27 iz2 + zz̄ + z̄2 + z2z̄ α21 + α22 + α23 − α24 + α26 = −2
28 iz2 + izz̄ + z̄2 −α24 + α25 − α26 − α27 = −6

Re(CC̄E), and so the monomials ABE, ABĒ, A2ĀB, AB2B̄, and ABCC̄ can be
eliminated. On the other hand, since the systems of type ż = iz + Az2 + Dz3 are
isochronous centers, we can also deduce that the monomial A2D̄ does not appear.
Taking all this into account, we end Step 1 and we have that

v5 =
π

3

[
α1ReO + Im

(
α2DF + α3AĪ + α4AJ + α5BI + α6BJ̄ + α7CH + α8CK̄ + α9E

2
)

+Re
(
α10A

2F+α11B
2D+α12B

2F̄+α13AB̄F+α14AB̄D̄+α15ACD+α16ACF̄

+α17BC̄F+α18BC̄D̄+α19AC̄G+α20BCḠ+α21AĀE+α22BB̄E+α23CC̄E
)

+ Im
(
α24A

3C+α25A
2B̄C+α26AB̄

2C+α27B
3C̄+α28A

2B2
)]
.

Now we must search for the undetermined coefficients αj , for j = 1, . . . , 28.
From formula (2.3) we can deduce that the coefficients αj of the monomials of

v5 have a common factor π. We also introduce a handling which permits a higher
reliability on the numerical results, since we have observed that taking a system with
integer coefficients and multiplying by 3

π the numerical approximation of the constant
obtained from Step 2, we get a result very close to an integer number. In fact, we
obtain numbers v such that there exist n ∈ Z satisfying |v − n| < 10−3. Then, it is
clear which is the integer result we must consider to be the correct one. For instance,
if we take system 1 of Table 3 and apply to it Step 2 of our method, we have that
3
π v5 ≈ 5.9999984. Therefore we consider that 3

π v5 = 6.
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We choose 28 differential equations for which v3 = 0 and for which many of the
monomials appearing in v5 vanish. We compute the value of the constant applying
the numerical method explained above and we reach a linear system of 28 equations
where each component of the independent vector is the result of one of the 28 numer-
ical experiments, rounded off to the closer integer number. In Table 3, we show the
differential equations chosen and the linear equations derived from them.

Solving the linear system, we obtain the coefficients of the expression of Theorem
3(ii). Of course, it coincides with the results obtained in the previous works, although
this procedure cannot be strictly considered as a proof. A similar idea could be used
to find the period constants.

In general, the problem of choosing which differential equations we have to con-
sider to obtain the linear system of equations can be reduced to a problem of mul-
tivariate interpolation with multidimensional grid. Nevertheless, this approach gives
rise to many redundant linear equations. In the present case, we have chosen the set
of differential equations simply by looking at the nonzero monomials of v5.

3.2. Computation of third Liapunov constant for a particular system.
In this example, we apply the numerical method to compute v7 for the particular
quadratic system {

ẋ = −y + x2 + 2xy,
ẏ = x+ x2 + 3xy − y2,

for which it is known (see Remark 4) that v3 = v5 = 0 and v7 = 25π
32 ≈ 2.45436926.

We are going to show how we obtained an approximation of this value from the
numerical procedure explained at the beginning of this section without using that v7

is a rational multiple of π. The final value obtained from that procedure, after fixing
x, q, and m, will be called v7(x, q,m).

We consider x ∈ Ix = [0.01, 0.065], q ∈ Iq = [1.075, 1.425], and m ∈ Im =
{4, 5, 6, 7}. Then, with the values of v7(x, q,m) obtained for (x, q,m) ∈ Ix × Iq × Im,
we make a simple statistical estimation of the value of v7.

The estimator we consider is the sample mode. The main reason is that we believe
that when the (x, q,m)-process works, it gives good approximations of v7; however,
when it does not work (for instance, because of the numerical instability), the error
can be big and often with the same sign. This is a definitive argument against the
consideration of the mean and the median in our problem.

To display the accuracy of this example, we give some graphics of the frequencies
(see Figure 1), considering from graphic to graphic one more digit of the values. In this
way, it can be observed that (for this example) the method adjusts statistically up to
the third digit. In the third graphic (corresponding to the fourth digit; see Figure 1(c)),
we can appreciate a great dispersion of the values, which indicates the reliability of
the method only up to the third digit, with a relative error of δ ≈ 5

2.45 10−3 ≈ 2 ·10−3.
Obviously, this numerical conclusion is valid only for this example, but the proce-

dure can be applied to any other system. To compute v2k+1, notice that for the set of
values given above, π(x) − x ≈ v2k+110−2(2k+1). On the other hand, remember that
for the Runge–Kutta–Fehlberg 7–8 method, T/h ≈ |w − w̃|, where w and w̃ are the
approximations given the RK7 and RK8 methods and T is the tolerance. Hence, if
we want to compute v2k+1 with relative error 10−t (assuming step size in the Runge–
Kutta–Fehlberg 7–8 method of order 10−5), roughly speaking, it is necessary to work
with a tolerance T ≈ 102−t−4k.
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Fig. 1. Frequencies for the value of v7 increasing the number of digits of precision.
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Appendix. Finiteness of basic monomials. In this appendix we prove the
following result.

PROPOSITION B. The number of basic monomials associated with system (1.1)
with F (z, z̄) polynomial is finite.

Remark 4. Denote by B the finite set of basic monomials associated to a poly-
nomial system (1.1). Observe that the above result implies that the Liapunov con-
stants are real-valued polynomials in the ring C[B]. For instance, consider system
ż = iz+f20z

2+f11zz̄+f02z̄
2. The basic monomials associated with it are B1 = f20f̄20,

B2 = f11f̄11, B3 = f02f̄02, B4 = f20f11, B5 = f3
20f02, B6 = f̄3

11f02, B7 = f2
20f̄11f02,

B8 = f20f̄
2
11f02, and their conjugates. Furthermore, also applying Theorems 1 and A

we get that

v3 = α1ImB4,

v5 = ImF0,

v7 =
3∑
i=1

BiImFi + Im(B4F4 + B̄4F5),

where Fi = Fi(B5, B6, B7, B8) are linear functions in all the variables.
Indeed, it is a known fact that for quadratic systems

v3 = −2π Im(B4),

v5 = −2π

3
Im(2B7 − 3B8 − 2B6),

v7 = −5π

4
(B2 − B3) Im(2B8 + B6).

We will use the next technical result to prove Proposition B.
Lemma 5. Consider α1, α2, . . . , αs ∈ Z. Then, there exists a positive integer m,

0 ≤ m ≤ s, and a reordering {β1, . . . , βs} of the numbers α1, . . . , αs such that

m∑
i=1

βi ≡ 0 (mod s).

Proof. Consider Sk :=
∑k
i=1 αi for all k ≤ s. If Sk ≡ Sj (mod s) for some k 6= j

(let us suppose k > j), then Sk − Sj = αj+1 + · · · + αk ≡ 0 (mod s), and so the
lemma would be fulfilled. Otherwise, S1, S2, . . . , Ss belong to different classes in Zs
and therefore one of them must be 0̄ ∈ Zs. Then, the lemma also follows.

Proof of Proposition B. Denote by B = Cα1
1 · · ·Cαnn a basic monomial of (1.1),

where C1, . . . , Cn, are the coefficients of the system, and suppose that |w(Ci)| = i for
all i. In fact, Ci is a generic label representing any coefficient of (1.1) of weight ±i,
while αi is the number of coefficients taking into account the repetitions (in a basic
monomial of degree greater than two, there cannot coexist coefficients of weight i and
−i). Then, Proposition B follows if we are able to prove that

(A.1) α1 + 2α2 + · · ·+ nαn = 0

has finitely many minimal solutions, where we say that a solution α := (α1, . . . , αn) ∈
Zn is a minimal solution of (A.1) if there does not exist any other solution (β1, . . . , βn)
such that |βi| ≤ |αi| and sign(βi) = sign(αi) for all i = 1, . . . , n.
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In particular, the finiteness of minimal solutions will be proved if we prove that
any minimal solution α of (A.1) satisfies that |αi| ≤ n for all i = 1, . . . , n.

Suppose that αk > n for some k ∈ {1, . . . , n}. First, we will see that this implies
that αj ≥ −n for any j. Otherwise, if for some j we have αj < −n, we can write
αk = j +Nk and αj = −k −Nj , where Nk and Nj are positive numbers. Then,

α = (α1, . . . , αj , . . . , αk, . . . , αn)

= (α1, . . . ,−Nj , . . . , Nk, . . . , αn) + (0, . . . , 0,−k, . . . , j, 0, . . . , 0),

and this situation breaks the property of minimality of α.
Now, we keep the assumption that αk > n for some k ∈ {1, . . . , n}. Since α

must be a solution of (A.1), we deduce that there must exist αj1, . . . , αjr, all of them
negative, such that σk :=

∑r
i=1 ji αji < −kn. We can write

(−αj1) (−αjr)
σk = − (j1 + · · ·+ j1 + · · ·+ jr + · · ·+ jr) .

Since ji ≤ n for all i and σk < −kn, the number of terms involved in the last expression
of σk is greater than or equal to k. Then, we choose any string of k terms in σk and
we call it σ′k. It is obvious that

σ′k =
r∑
i=1

ji αj
′
i with 0 ≥ αj ′i ≥ αji for all i.

Then, since σ′k is a string of length k, we can apply Lemma 5 to it and deduce

that it contains a partial sum, σ
′′
k , such that σ

′′
k ≡ 0 (mod k). Then, if we write

σ
′′
k =

∑r
i=1 ji αj

′′
i = −kµ, with 0 < µ ≤ n, we can construct the following solution

β := (β1, . . . , βn) of (A.1):

βi =

αj
′′
i if i ∈ {j1, . . . , jr},

µ if i = k,
0 if i 6∈ {k, j1, . . . , jr}.

From their definitions, it is clear that 0 ≥ αj
′′
i ≥ αji for all i ∈ {1, . . . , r}. On the

other hand, 0 < µ ≤ n < αk. Then, β is a solution which breaks again the minimality
of α and gives the contradiction we were searching for. Therefore, the proposition is
proved.

Remark 6. Observe that the proof of Proposition B provides the bound (2n+1)n

for the maximum number of monomials of the form Cα1
1 . . . Cαnn , because |αi| ≤ n for

all i = 1, . . . , n. Furthermore, note that if the degree of F in system (1.1) is d, then
n = d+ 1. As can be seen in Remark 4, the bound (2d+ 3)d+1 is not a sharp one.

Acknowledgment. We are very grateful to Francesc Mañosas for the stimulat-
ing discussions and his ideas to prove the results of the appendix.
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