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1. Introduction

In this paper we study the phase portraits of Hamiltonian systems of the form

ẋ =−Hy(x; y);

ẏ = Hx(x; y); (1)

where H (x; y) = (x2 + y2)=2 + Hn+1(x; y), and Hn+1 is a homogeneous polynomial of
degree n+1. The solutions of system (1) are contained in the level curves {H (x; y)=h;
h∈R}. Furthermore, the origin is a nondegenerate center.
The knowledge of phase portraits of Hamiltonian systems is useful for several rea-

sons. We comment on some of them in the sequel.
(i) Small polynomial perturbations of them give rise to polynomial systems with

limit cycles. For instance, the cubic system with 11 limit cycles presented in [15]
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uses this idea. Therefore the knowledge of the number and distribution of centers
that a Hamiltonian system can have gives information about the number of limit
cycles and the way in which they can be nested for general polynomial planar
systems.
(ii) For Hamiltonian systems or systems which can be transformed to them (like

the Lotka–Volterra one), a problem which is frequently studied is the problem of the
variation of the period of the closed orbits in terms of the energy, see for instance
[13] or [18] and references therein. The simplest case, also of interest (see [8]), is
the one in which the period of the orbits is constant for all the period annulus of the
center (which for us will be the largest neighborhood of the center entirely covered
by periodic orbits.) In this case, the critical point is called an isochronous center and
as it has already been noticed (for instance in [8]) that isochronous centers can only
exist if the period annulus of the center is unbounded. Therefore, for some families
of Hamiltonian systems, the fact that all their period annulus are bounded will prevent
the existence of isochronous centers (this will be the case of our family (1) with n
even). See [13,21].
(iii) The knowledge of the phase portrait of Hamiltonian systems of the form

H (x; y) = [(F(x; y))2 + (G(x; y))2]=2, where F and G are polynomials such that

@F
@x
@G
@y

− @F
@y
@G
@x

≡ 1;

will prove or disprove the celebrated Jacobian Conjecture in R2 proposed by O. Keller
in 1939, see [4,19].
Other questions are addressed just to understand planar polynomial Hamiltonian sys-

tems of degree n better. Among the others we want to recall these two questions (see
[9,10]): Which is the maximum number of centers that such systems can have in terms
of n? Which kind of boundaries can have the period annulus of Hamiltonian centers?
Both questions are solved in this paper for the special family (1), see Proposition 1 in
the next section.
Our procedure to obtain the phase portrait of (1) is di�erent from previous ap-

proaches used for n = 2, see [3] or [20]. It is presented in Section 3 as an algorithm
which allows to depict the phase portrait of any system of type (1) in terms of the
shape of g(�) = Hn+1(cos �; sin �). Furthermore, this approach allows to get the full
bifurcation diagram of (1) when some parameters � are involved in it, in terms of
the bifurcation diagram of their associated function g�(�). The bifurcation diagram
of g�(�) is made taking into account their zeroes, maxima, minima, inexion points,
and the value of g�(�) at these points, as will be explained in Sections 3 and 4.
We also will see that the bifurcation diagram of the function g�(�) contains, in gen-
eral, more bifurcation surfaces than the one of system (1) because there are di�erent
shapes of g�(�) which produce the same phase portrait for (1), see Remark 6 in
Section 3.3.
We want to stress that our approach to describe the phase portrait reminds the

study of conservative systems with one degree of freedom, that is Hamiltonian systems
with Hamiltonian function of type H (x; y) = y2=2 + V (x). For these systems, one can
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determine their dynamics by observing the behavior of the potential function V (x), see
[2] for instance, as we determine the dynamics of (1) from g(�).
As an application of our algorithm, in Section 4 we obtain all the phase portraits

of (1) for n = 2 and n = 3, as well as two bifurcation diagrams: the complete one
for n = 2 and the one corresponding to reversible systems of type (1) for n = 3.
We have already commented that the case n = 2 is well-understood [3,20] but as far
as we know the case n = 3 was not yet studied. The result that we obtain can be
inscribed inside a collection of papers trying to get all phase portraits for some partic-
ular polynomial families of ordinary di�erential equations, see, for instance, [6,11,12],
or [17].
To end this introduction, we would like to explain that, when a �rst version of

this paper was ended, the authors presented it as a poster in the “Symposium on
Planar Vector Fields” that took place in Lleida in November 1996. The lecture that
D. Schlomiuk gave there about an algebro-geometric way to characterize bifurcation
diagrams (see [20]) motivated us to enlarge the �rst version of our work includ-
ing an analysis of bifurcations (Section 4), with the aim of showing the role of g(�)
in them.
The next section is devoted to proving the results on the type of singularities (�nite

and in�nite) of (1) in a suitable compacti�cation. These results are the key part of the
paper.

2. Statements and proofs of the main results

Before stating our results we introduce a variation of the Poincar�e compacti�cation.

2.1. Compacti�cation of the system

In order to get a complete description of the topological behavior of the ow in a
neighborhood of an in�nite or a �nite critical point, we will use a compacti�cation in
which the global phase portrait is similar to the one on the Poincar�e’s disk, see [5,14],
and which is inspired in [7,11].
Bringing system (1) to polar coordinates we obtain

ṙ =−g′(�)rn;
�̇= 1 + (n+ 1)g(�)rn−1;

(2)

where g(�)=Hn+1(cos �; sin �) is a homogeneous trigonometrical polynomial of degree
n+ 1. This system is de�ned on the cylinder C =R+ × S1 = {(r; �): r ∈R+; �∈ S1 =
R=2�Z}.
We make the following transformation in order to simplify (2):

R=
rn−1

1 + rn−1
:
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In this way, system (2) can be written as

Ṙ=−(n− 1)R2g′(�);

�̇= 1 + (n+ 1)
R

1− R g(�):

Observe that the circle (0; �) has been mapped onto itself, while the in�nity has been
mapped onto the circle given by R=1. To avoid the singularity on R=1 in the second
equation, we make the change of time:

dt
d�
= 1− R: (3)

We continue calling the derivatives with respect to � as ẋ and ẏ. With this new time
the system is transformed into

Ṙ=−(n− 1)R2(1− R)g′(�)=:F(R; �);
�̇= 1 + R((n+ 1)g(�)− 1)=:G(R; �): (4)

Observe that R=0 is always an invariant circle. Undoing the changes of variables, this
circle is transformed into the center at the origin. We are interested in the phase portrait
of (4) just in the disk {R≤ 1}. The interior of this disk, {R¡ 1}, will be called the
�nite part and (4) the modi�ed polar compacti�cation of (1). In this region there are
critical points (R; �), which will be called �nite critical points, when g′(�)=0; g(�)¡ 0
and R=1=(1−(n+1)g(�)). When R=1, the critical points (1; �) must satisfy g(�)=0;
we call them in�nite critical points.

2.2. Main results in the classi�cation of �nite and in�nite critical points

Finite critical points of planar Hamiltonian systems are well known. In fact, their
indices, which satisfy i ≤ 1, classify the type of critical point. More concretely, if the
index is 1 (resp. i¡ 1) then the critical point is a center (resp. a critical point with
2|i|+ 2 hyperbolic sectors). The next result is a particularization of the general result
for systems of type (1).

Theorem 1. For systems of type (1); there are only three possible types of �nite
critical points: center points; saddle points (4 hyperbolic sectors); and those with
2 hyperbolic sectors. Moreover; if p = (r∗; �∗) is a critical point; then g(�∗)¡ 0,
g′(�∗) = 0; rn−1∗ =−1=((n+ 1)g(�∗)) and
(a) p is a center if and only if �∗ is a local maximum of g(�).
(b) p is a saddle point if and only if �∗ is a local minimum of g(�).
(c) p is the union of two hyperbolic sectors if and only if �∗ is an inexion point

of g(�).

As we will see in the next subsection, the proof of the generic case (g′′(� ∗) 6=0)
is trivial, while the proof in the general case takes more computations and is based
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on the use of the modi�ed polar compacti�cation and on the classi�cation result of
degenerate singularities due to Andreev (see [1]). We remark that in the usual polar
coordinates or in the cartesian coordinates the proof of the result would be much more
di�cult.
In�nite critical points in the Poincar�e compacti�cation are more complicated. In

[9,13] they are studied and, among other things, it is proved that hyperbolic sectors
with �nite separatrices are not very frequent. In the next theorem we classify them in
the modi�ed polar compacti�cation of system (1) in terms of g.

Theorem 2. Suppose that q is an in�nite critical point of the modi�ed polar com-
pacti�cation of system (1); associated to the critical direction �∗. Then; q has one
and only one sector in the �nite part which is
(a) elliptic if and only if �∗ is a local maximum of g(�).
(b) hyperbolic if and only if �∗ is a local minimum of g(�). Moreover; the sepa-

ratrices of this sector lie on R= 1.
(c) parabolic repelling (resp. attracting) if and only if g(�) is monotonically in-

creasing (resp. decreasing) in a neighborhood of �∗.

In the proof of the above theorem the coordinates introduced in the generalized polar
compacti�cation play again a key role.
A consequence of Theorems 1 and 2 is the following result.

Proposition 1. The following statements hold.
(i) The maximum number of centers for a system of type (1) is n=2+1 (resp n+2)

when n is even (resp. odd).
(ii) The origin of (1) is either a global center or has a bounded period annulus.

Furthermore; it is a global center if and only if g(�)≥ 0 (and so n is odd). A center
p of (1) di�erent from the origin has a bounded period annulus.
(iii) Given a center of system (1) with bounded period annulus; the maximum

number of critical points in the boundary of its period annulus is n=2+1; if n is even;
and either in�nity or n+1; if n is odd. Furthermore; there are in�nitely many critical
points only when n is odd and g(�) = Hn+1(cos �; sin �) is a negative constant.
Moreover; all the upper bounds stated above are the sharpest ones.

2.3. Proof of Theorem 1

The linear part of (4) at a �nite critical point p= (R∗; �∗) is


 0

(n+ 1)(n− 1)g(�∗)g′′(�∗)
(1− (n+ 1)g(�∗))3

(n+ 1)g(�∗)− 1 0


 :

Thus, we easily get
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Proposition 2. If p = (R∗; �∗) is a critical point of (4); with 0¡R∗¡ 1; such that
g′′(�∗)¡ 0 (resp.; g′′(�∗)¿ 0); then p is a center (resp.; a saddle point) for the
system.

To study the case in which g′′(�∗) = 0, we will apply a classi�cation result due to
Andreev (see [1]), stated in the appendix.
We apply the change of time (�′ will be the new variable):

d�
d�′

=
1

(n+ 1)g(�∗)− 1 ; (5)

which is well-de�ned because g(�∗)¡ 0, but reverses the sense of the ow. After this
change, Eq. (4) turns into

Ṙ=
−(n− 1)R2(1− R)g′(�)

(n+ 1)g(�∗)− 1 =: F̃(R; �);

�̇=
1 + R((n+ 1)g(�)− 1)
(n+ 1)g(�∗)− 1 =: G̃(R; �):

(6)

Lemma 1. Let ’j; k denote the partial derivative @j+k’=@Rj@� k of a function ’(R; �)
at a critical point p= (R∗; �∗). Then; the functions F̃(R; �) and G̃(R; �) appearing in
(6) satisfy
(a)

F̃m;0 = 0; m ≥ 1; F̃0;1 =
−(n+ 1)(n− 1)gg′′
(1− (n+ 1)g)4 ;

F̃0;m =
−(n2 − 1)gg(m+1)
(1− (n+ 1)g)4 ; F̃1;m−1 =

−(n− 1)g(m)(1 + 2(n+ 1)g)
(1− (n+ 1)g)3 ;

F̃2;m−1 =
−(n− 1)g(m)(4 + 2(n+ 1)g)

(1− (n+ 1)g)2 ; F̃3;m−1 =
−6(n− 1)g(m)
(1− (n+ 1)g) ; m ≥ 2;

F̃ k;m−k = 0; k ≥ 4; m ≥ k + 1:

(b)

G̃1;0 = 1; G̃0;1 = 0;

G̃m;0 = 0; G̃0;m =
−(n+ 1)g(m)
(1− (n+ 1)g)2 ; m ≥ 2;

G̃1;m−1 =
−(n+ 1)g(m−1)
1− (n+ 1)g ; m ≥ 2; G̃k;m−k = 0; k ≥ 2;

where g := g(�∗); g′ := g′(�∗); : : : ; g(k) := g(k)(�∗).
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The proof of the above lemma follows from straightforward derivations and substi-
tutions at p.
The proof of Theorem 1 follows directly from the next result.

Lemma 2. For systems of class (6); there are only three possible types of �nite
critical points: center points; saddle points (4 hyperbolic sectors); and those with 2
hyperbolic sectors. Moreover; if p= (R∗; �∗) is such a critical point; then g(�∗)¡ 0;
g′(�∗) = 0; R∗ = (1− (n+ 1)g(�∗))−1 and
(a) p is a center if and only if �∗ is a local maximum of g(�∗).
(b) p is a saddle point if and only if �∗ is a local minimum of g(�∗).
(c) p is the union of two hyperbolic sectors if and only if �∗ is an inexion point

of g(�∗).

Proof. Applying Lemma 1, we can write system (6) using the series expansions of
F̃(R; �) and G̃(R; �). After a rotation if necessary, we can take �∗ = 0. In these new
variables, the critical point p = (R∗; �∗) can be written as p = (R∗; 0), where R∗ =
1=(1− (n+ 1)g(0)).
Suppose now that g′(0) = g′′(0) = · · · = g(m)(0) = 0 and g(m+1)(0) 6=0, for m ≥ 2.

Then, also performing the translation �= R− R∗,

�̇=
−(n2 − 1)g(0)g(m+1)(0)
m!(1− (n+ 1)g(0))4 �

m +
−(n− 1)g(m+1)(0)(1 + 2(n+ 1)g(0))

m!(1− (n+ 1)g(0))3 �� m

+
−(n2 − 1)g(0)g(m+2)(0)

(m+ 1)!(1− (n+ 1)g(0))4 �
m+1 + o(m+ 1);

�̇= �+
−(n+ 1)g(m+1)(0)

(m+ 1)!(1− (n+ 1)g(0))2 �
m+1

+
−(n+ 1)g(m+1)(0)

(m+ 1)!(1− (n+ 1)g(0))��
m+1 +

−(n+ 1)g(m+2)(0)
(m+ 2)!(1− (n+ 1)g(0))2 �

m+2

+o(m+ 2): (7)

For the sake of simplicity, sometimes we will write it as

�̇= �0;m� m + �1;m�� m + �0;m+1� m+1 + o(m+ 1)=:X1(�; �);

�̇= �+ �0;m+1� m+1 + �1;m+1�� m+1 + �0;m+2� m+2 + o(m+ 2)=:X2(�; �): (8)

Notice that �0;m�0;m+1 6=0 since we are under the hypotheses g(0)¡ 0 and g(m+1)(0)
6=0. It is clear that the former critical point is now the origin of this system and that
the linear part of it is given by the nilpotent matrix(

0 0

1 0

)
:
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For this kind of points, we can apply the classi�cation result stated in the appendix.
First of all, we must express the solution of X2(�; �)=0 as �=�(�). Then, we must

compute

�1(�) = X1(�(�); �) and �2(�) =
(
@X1
@�

+
@X2
@�

)
(�(�); �):

If we put �(�) =
∑

k ck�
k in X2 = 0, it is easy to see that we must have cj = 0, for

all j = 0; : : : ; m. Thanks to this observation and the kind of powers that appear in X2,
we can avoid the computation of the other cj.
Then,

�1(�) = �0;m� m + �1;m

(∑
k

ck� k
)
� m + �0;m+1� m+1 + o(m+ 1)

= �0;m� m + �0;m+1� m+1�1;mcm+1� 2m+1 + o(2m+ 1);

�2(�) = (�1;m + (m+ 1)�0;m+1)� m + (2�2;m + (m+ 1)�1;m+1)�(�)� m

+(�1;m+1 + (m+ 2)�0;m+2)� m+1 + o(m+ 1)

= (�1;m + (m+ 1)�0;m+1)� m + (�1;m+1 + (m+ 2)�0;m+2)� m+1 + o(m+ 1)

= (�1;m + (m+ 1)�0;m+1)� m + o(m):

Hence, according to the notation used in Andreev’s Theorem (see appendix), we set
K = �0;m; � = m and � ≥ k.
In case m is odd, � = 0 is either a local maximum or a local minimum of g(�);

if gm+1(0)¿ 0 – that is, a minimum of g – then we have K ¿ 0 and, since � is an
odd number, by Andreev’s Theorem 2, (R∗; 0) is a topological saddle. If gm+1(0)¡ 0
– that is, a maximum of g – then we have K ¡ 0, and since � is an odd number with
�¡ 2� + 1, then again by Andreev’s Theorem 3(c), the origin is either a focus or a
center; however, since (1) is a Hamiltonian, it cannot be a focus and so we have that
(R∗; 0) is a center.
In case when m is even, since �¡ 2�+1, by Andreev’s Theorem 1(b), (R∗; 0) is a

cusp.

2.4. Proofs of Theorem 2 and Proposition 1

For the in�nite critical points p= (1; �∗) of (4), where g(�∗) = 0, we have that the
Jacobian matrix is(

(n− 1)g′(�∗) 0

−1 (n+ 1)g′(�∗)

)
:
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As in the �nite case, the generic situation g′(�∗) 6=0 is very easy. In fact, it is an
attracting node if g′(�∗)¡ 0, and a repelling one if g′(�∗)¿ 0.
The di�culties arise when g′(�∗) = 0. Then, the linear part can be written as(

0 0

−1 0

)
;

and we can use the same technique of the �nite case. The results and proofs are also
similar:

Lemma 3. Let ’j; k denote the partial derivative @j+k’=@Rj@� k of a function ’(R; �)
at a critical point p = (R∗; �∗). Then; the functions F(R; �) and G(R; �) appearing in
(6) satisfy
(a)

F1;m = (n− 1)g(m+1); F2;m = 4(n− 1)g(m+1);
F3;m = 6(n− 1)g(m+1); Fm;0 ≡ 0; m ≥ 4;
F0;m ≡ 0; m ≥ 1:

(b)

G1;0 =−1; G1;m = (n+ 1)g(m); m ≥ 1;
Gm;0 ≡ 0; m ≥ 2; G0;m = (n+ 1)g(m); m ≥ 1;

where g := g(�∗); g′ := g′(�∗); : : : ; g(k):=g(k)(�∗).

The proof of Theorem 2 follows directly from the following result.

Lemma 4. Suppose that (R; �) = (1; �∗) is an in�nite critical point for the system
(4); and assume also that g(�∗) = g′(�∗) = · · · = g(m)(�∗) = 0 and g(m+1)(�∗) 6=0;=
with m ≥ 0. Then; the critical point has one and only one sector in the �nite part
which is
(a) elliptic if and only if m is odd and g(m+1)(�∗)¡ 0.
(b) hyperbolic if and only if m is odd and g(m+1)(�∗)¿ 0. Moreover; the separatri-

ces of this sector lie on the circle R= 1.
(c) parabolic – in fact the critical point has a repelling node (resp. an attracting

node) in the �nite part – if and only if m is even and g(m+1)(�∗)¡ 0 (resp. g(m+1)(�∗)
¿ 0).

Proof. By rotation, if necessary, we can take �∗=0 (the critical point, now, is p=(1; 0))
and, by the translation R − 1 = �, the critical point becomes (�; �) = (0; 0). We also
reverse the sign of the time by d �=d�′ = −1, in order to have the standard nilpotent
linear part at the critical point.
Suppose now that g(0) = g′(0) = g′′(0) = · · · = g(m)(0) = 0 and g(m+1)(0) 6=0. As

for the �nite points, using Lemma 3 and series expansions of F(R; �) and G(R; �),
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we obtain

�̇=−n− 1
m!

g(m+1)�� m −
(

n− 1
(m+ 1)!

g(m+2)�� m+1

+
2(n− 1)
m!

g(m+1)�2� m
)
+ o(m+ 2)=:X1(�; �);

�̇= �− (n+ 1)
(m+ 1)!

g(m+1)� m+1 − (n+ 1)
(m+ 1)!

g(m+1)�� m+1

− (n+ 1)
(m+ 2)!

g(m+2)� m+2 + o(m+ 2)=:X2(�; �): (9)

Following the same notation as in (8), we also note that the �rst coe�cient of
X1(�; �) does not vanish, �1;m = −((n − 1)=m!)g(m+1) 6=0, since we are under the hy-
pothesis g(m+1)(0) 6=0. We will apply again the classi�cation criterion for this kind of
critical points.
Analogously to the �nite case, we put �(�) =

∑
k ck�

k in X2 = 0. It turns out that

�(�) =
n+ 1
(m+ 1)!

g(m+1)� m+1 + o(m+ 1):

Then,

�1(�) =− (g
(m+1))2(n2 − 1)
(m+ 1)!m!

� 2m+1 + o(2m+ 1);

�2(�) =−2n
m!
g(m+1)� m + o(m):

The �rst nonvanishing term of �1(�) has odd degree and negative coe�cient.
So in accordance with the notation used in Andreev’s Theorem, we set

K =− (g
(m+1))2(n2 − 1)
m!(m+ 1)!

¡ 0; � = 2m+ 1; L=−2n
m!
g(m+1)(0) and �= m:

Observe that

� = 2�+ 1 and L2 + 4K(�+ 1) =
4(g(m+1)(0))2

(m!)2
¿ 0:

In case m is odd, �=0 is either a local maximum or a local minimum of g(�); since
� is odd, �= 2�+ 1 and L2 + 4K(�+ 1)¿ 0, then by Andreev’s Theorem the critical
point is formed by the union of an hyperbolic sector and an elliptic sector. We must
only take care of the sign, to ensure that the hyperbolic sector or the elliptic sector
lies on the �nite part.
In case m is even, �=0 is an inexion point of g(�); since � is odd, �=2�+1 and

L2+4K(�+1)¿ 0, we have by statement 3a of Andreev’s Theorem that, if gm+1(0)¿ 0
then L¡ 0, and the critical point is a stable node (remember that we have reversed
the time and so the point is actually an unstable node for the original system); and, if
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gm+1(0)¡ 0 then L¿ 0, and the critical point is an unstable node (so a stable node
for the original system).
Now we prove the last part of statement (b).
The separatrices of the hyperbolic sector are not �nite since otherwise the description

of the separatrices obtained applying Andreev’s Theorem would be in contradiction
with the description of the separatrices which go to in�nity given in Theorem 2:2(ii)
of [9,13].

Proof of Proposition 1. Let us prove (i). Since g(�) is a homogeneous trigonometric
polynomial of degree n+1, in [0; 2�) there are at most 2n+2 oscillations of g(�) and,
since g(�+ �) = (−1)n+1g(�), if n is even, at most n+ 1 oscillations can be negative
(indeed, at most n=2 of them can be maxima). So, including the origin, system (1)
can have at most n=2 + 1 centers. Otherwise, if n is odd, all the 2n+ 2 oscillations of
g(�) can be negative. So, there can exist at most n + 1 negative maxima of g(�). In
this situation, system (1) would have at most n+ 2 centers.
Now we prove (ii). A center p cannot have an unbounded but not global period

annulus since this implies the existence of a hyperbolic sector at in�nity having at
least one �nite separatrix, which is in contradiction with Theorem 2(b). Furthermore,
notice that from Theorem 1, the origin is a global center of (1) if and only if g(�) =
Hn+1(cos �; sin �) ≥ 0, and this can only occur when n is odd.
To prove statement (iii), we recall that if g(�) is a homogeneous trigonometric poly-

nomial of degree n + 1, there can be at most 2n + 2 oscillations of g(�) in [0; 2�).
Using the same argument as in (i), we have that if n is even, at most n + 1 os-
cillations can be negative (indeed, at most n=2 + 1 of them can be on the same
level curve of g(�)). If n is odd, all the 2n + 2 oscillations of g(�) can be nega-
tive. So, there can exist at most n+ 1 negative oscillations of g(�) on the same level
curve.
It is easy to see that, from Eq. (2), there are in�nitely many critical points if and

only if g(�) ≡ C¡ 0 (and this can only occur if n is odd). In this case, all the points
of the circle de�ned by

rn−1 =
−1

(n+ 1)C

are critical points.

3. An algorithm to depict the phase portrait

3.1. Preliminary questions

This section is devoted to obtain a useful algorithm in order to depict the phase
portrait of (1). We intend to face the practical side of the problem.
The knowledge of the Hamiltonian on some special curves is crucial to study the

phase portrait, and so we �rst stress some trivial properties concerning them:
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Fig. 1. Two basic sectors de�ned by a concrete g(�): 
1 and 
2.

Remark 1. Suppose that g(�0) = 0, for some �0 ∈ [0; 2�). Then, H (r; �0) = 1
2 r
2 and

�̇|�=�0 ≡ 1.

According to this remark, we de�ne a basic sector as follows:

De�nition 1. A region


 = {(r; �) : �m ≤ � ≤ �M ; g(�m) = g(�M ) = 0; g(�)¡ 0 for all �∈ (�m; �M )};
will be called a basic sector of the phase portrait of (2), see Fig. 1.

Of course, on the two boundaries of a basic sector 
, � = �m and � = �M we will
have in�nite critical directions. In the sectors where g(�)¿ 0, the vector �eld has no
critical points and so, the ow is very easy to describe. In fact, by virtue of Remark
1, if g(�1)=g(�2)=0 and g(�)¿ 0 for all �∈ (�1; �2), then the Poincar�e map between
{�= �1} and {�= �2} de�ned by the ow and parameterized by h is well de�ned and
onto.
We will represent the phase portrait on the disk {R≤ 1}. Its representation will

be given separately on every basic sector (if they exist). In this case the complete
description comes from joining all the basic sectors. Furthermore, when n is odd, the
function g(�) has even symmetry and so, it su�ces to analyze the phase portrait for
�∈ [0; �]; when n is even, g(�) has odd symmetry and it is better to analyze it for
�∈ [0; 2�].
Another important factor is the localization of the curve �0:={(r; �): �̇ = 0} inside

each basic sector. Directly from (2), we can deduce that

Remark 2. The curve �0 can be parameterized by � as

r(�) =
( −1
(n+ 1)g(�)

)1=(n−1)
: (10)

It passes, of course, through every critical point and

lim
�→�+m

r(�) = lim
�→�−M

r(�) = +∞;

see Fig. 2.
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Fig. 2. In a basic sector, the isocline �0 = {(r; �): �̇ = 0} connects all the critical points (both �nite and
in�nite) and can be parameterized by �.

In the next lemma, we see several properties that will be very helpful in the de-
scription of the phase portrait:

Lemma 5. The Hamiltonian H (r; �) restricted to the curve �0 is a positive-valued
increasing function of r(�) (in fact; it depends only on the value of g(�)). As a
consequence; two points (ri; �i); for i = 1; 2; situated on �0 belongs to the same level
curve if and only if g(�1) = g(�2).

Proof. Substituting expression (10) into the expression of the Hamiltonian, we obtain

H (r(�); �) =
1
2
r(�)2 + r(�)n+1g(�) = r(�)2

(
1
2
+ r(�)n−1g(�)

)

= r(�)2
(
1
2
− 1
n+ 1

)
¿ 0 since n ≥ 2: (11)

Using this equation the proof is trivial.

From this lemma we will be able to decide, for instance, whether two �nite saddles
connect or not.
Finally, we establish the last preliminary result:

Lemma 6. The Hamiltonian function restricted to a noncritical direction �= �∗ has
a unique maximum which is located at {� = �∗} ∩ �0 and; moreover; limr→+∞
H (r; �∗) =−∞.

The knowledge of the topology of the separatrices of the saddle points and of the
points with only two hyperbolic sectors determines the full phase portrait, see [16].
The next section deals with this problem.

3.2. Study of saddle points and their separatrices

In this study, it will be important to distinguish between systems having basic sectors
and systems not having them.
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Fig. 3. The saddle s1 satis�es both properties (LS−) and (LS+), while the other one, s2, satis�es only
(LS+).

If the system does not contain basic sectors, this can be due to two facts:

• g(�) ≥ 0 for all �;
• g(�)¡ 0 for all �.

In the �rst case, the next discussion is not necessary because we do not have �nite
critical points. The second case can be treated using similar ideas as used in the present
section.
Let 
 = {(r; �): �m ≤ � ≤ �M} be a basic sector. It is clear, by Remark 2, that the

curve �0 divides 
 into two disjoint open subsets, 
+ and 
−, such that 
+ ∪ 
−=

and �̇¿ 0 in 
+ (resp., �̇¡ 0 in 
−), see Fig. 2.

Lemma 7. In a neighborhood of a saddle sA ∈
; two of its separatrices (one stable
and one unstable) lie in 
+ and the other two (one stable and one unstable) lie
in 
−.

Proof. We prove it only for 
+. The other case is identical.
Take a saddle point at s=(r∗; �∗). Let s(�) be a separatrix of s, which lies on 
+ at

least for �∈ (�∗−�; �∗). Since �̇ is positive, it must be a stable separatrix. By the same
reason, there cannot be unstable separatrices of s de�ned in 
+ for �¡�∗. Similarly,
the region of 
+ where �¿�∗ cannot contain stable separatrices of s. Then, by the
alternation of stable and unstable separatrices, there can only be one stable separatrix
of s and one unstable in 
+.

Among the saddle points we will distinguish two behaviors, see also Fig. 3.

De�nition 2. Let 
 = {(r; �): �m ≤ � ≤ �M} be a basic sector and sA = (rA; �A)∈
 a
saddle of this sector.
We say that sA ful�lls property (LS−), the lowest saddle from the left, if it satis�es

g(�A)¡g(�), for all �∈ (�m; �A).
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Analogously, we say that sA ful�lls property (LS+), the lowest saddle from the right,
if it satis�es g(�A)¡g(�), for all �∈ (�A; �M ).

If some saddle sA ful�lls property (LS−), then the stable separatrix lying on 
+

must leave the basic sector for negative time, otherwise it would intersect the curve
�0 in some point sA′ = (rA′ ; �A′) with �A′ ∈ (�m; �A). But, from Lemma 5, this would
imply that g(�A′) = g(�A), a contradiction with (LS−). Therefore, the stable separatrix
must intersect (for negative time) the line � = �m. By similar arguments, on 
−, the
unstable separatrix leaves sA and dies at the in�nite critical point in the direction �=�m.
If it ful�lls (LS+), it can be deduced in an analogous way that the unstable separatrix

of sA lying in 
+ must cut the line � = �M , while the stable separatrix in 
− comes
from the critical point in the direction �= �M of in�nity and goes to sA.
Let us suppose now that property (LS−) is not ful�lled for some saddle, then, we will

prove that this yields the existence of some homoclinic or heteroclinic loop. Suppose
then, that the saddle sA = (rA; �A) does not ful�ll (LS−), see saddle s2 in Fig. 3. In
this case, let sA′ be the closest saddle with �A′ ¡�A that ful�lls property (LS−). From
the above reasonings we know that there is a negatively invariant region I, de�ned
by � = �M , the stable separatrix of sA′ coming from in�nity, and the unstable one
quitting the basic sector through � = �M . One unstable separatrix of sA can leave I
through �= �M , but the other unstable one must remain inside this region; otherwise,
Lemma 6 will be violated (in particular on �= �M ). Since the system is Hamiltonian,
the unstable separatrix that remains in I must form either an homoclinic loop or an
heteroclinic connection. The heteroclinic connection takes place if and only if there is
a saddle other than sA between sA and sA′ on the same energy level.
The symmetric situations are performed if property (LS+) is not ful�lled (formation

of homoclinic or heteroclinic loops surrounding the left-closest center).
Collecting all these remarks, we can reach the following algorithm to depict the

phase portrait of a system of type (2).

3.3. The algorithm

(A) If g(�) ≥ 0 for all �; then the origin is a global center.
(B) If g(�)¡ 0 for all �; then basic sectors are not de�ned. If g(�) is constant;

the phase portrait is a “global” center but with a closed curve full of critical points.
Otherwise; there exists a set S = {�1¡ · · ·¡�2 J}; J ≥ 1; of absolute minima of
g(�). Denote by sk = (rk ; �k) the corresponding saddle points. Then, two separatrices
of sk coincide with two separatrices of sk−1; and the other two with two of sk+1; for
k ∈{1; : : : ; 2J} (s2 J+1:=s1; s0:=s2 J ): The phase portrait inside the 2J invariant sets
de�ned by the above heteroclinic connections can be obtained following steps 3 and
4; taking into account that there are no saddle points satisfying (LS−) or (LS+).
(C) Otherwise
1. Plot the curve �0. The local minima of this curve are saddle points; while the

maxima are center points.
2. All the separatrices of saddles which satisfy (LS−) and (LS+) leave (some

times for negative times) the basic sector: one through � = �m; another one through
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Fig. 4. The transition from a saddle-center con�guration to a point with only two hyperbolic sectors.

� = �M and those lying in 
− go to the in�nite critical points of the sector, see
Fig. 3.
3. Any saddle sA not satisfying (LS−) has a homoclinic loop which also passes

through the closest point (rB; �B)∈�0 in the same basic sector such that g(�A)=g(�B)
and �B ¡�A. If the new point is also a saddle point sB; the loop becomes heteroclinic.
This loop surrounds at least one center region in between and; eventually; other
homoclinic or heteroclinic loops as well as more centers.
4. Any saddle sA not satisfying (LS+) has a homoclinic loop which also passes

through the closest point (rB; �B)∈�0 such that g(�A) = g(�B) and �B ¿�A. Again;
if the new point is also a saddle point sB; the loop becomes heteroclinic.
5. If there are some critical points with only two hyperbolic sectors, we can do the

phase portrait as if these critical points do not exist and, afterwards, insert them at
the corresponding places.
6. Fill all the regions in which {R¡ 1} is divided by the separatrices using the

local behaviors of the critical points described in Theorems 1 and 2.

The following remarks try to clarify some degenerate situations.

Remark 3. The �nite critical points with two hyperbolic sectors can be understood as
the merging of a �nite saddle and a �nite center, see Fig. 4. The period annulus of
the center shrinks to a single point and so, two of the four hyperbolic sectors of the
saddle are lost.

Remark 4. The hyperbolic sectors at in�nity can be thought as the merging of two
in�nite nodes and one �nite saddle. At the limit, the nodes disappear and the inner
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Fig. 5. The transition from a �nite center to an elliptic sector at in�nity.

separatrices of the saddle collapse to in�nity. Then, the presence of a hyperbolic sector
at in�nity does not alter the topological phase portrait, except for this point.

Remark 5. The points having elliptic sectors at in�nity can be obtained from a �nite
center c:=(r∗; �∗) moving to in�nity, see Fig. 5, as if all the points (r; �∗) with r ≥ r∗
collapsed to the point at in�nity corresponding to the direction �= �∗.
More precisely, the boundary of the elliptic sector with associated critical direction

�∗, situated between two saddles si = (ri; �i) and si+1 = (ri+1; �i+1) (�i ¡�∗¡�i+1) is
formed by
(a) two orbits going from p to si and from si to p; if g(�i)¡g(�i+1).
(b) two orbits going from p to si+1 and from si+1 to p; if g(�i)¿g(�i+1).
(c) three orbits going from p to si, from si to si+1 and from si+1 to p, if g(�i) =

g(�i+1).

Remark 6. From the algorithm, it is clear that, given a g(�), the key points to plot the
phase portrait are their zeroes, extrema and inexion points, and the values of g(�) at
them. We want to stress that g(�) with di�erent qualitative behaviors (in the previous
sense) can give rise to the same phase portrait, see Fig. 6.

4. Examples and applications of the algorithm

In this section, we will apply the algorithm described in the previous section to obtain
all the phase portraits for n = 2 and n = 3. We also want to discuss the bifurcation
diagram in the quadratic case and in a particular family of cubic systems.
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Fig. 6. A phase portrait that arises from di�erent shapes of g.

If we want to discuss the bifurcation diagram of a system of type (1) with associated
nontrivial function g(�) a (k +1)-parametric trigonometric polynomial of degree n+1
– that is we consider a family with k ≤ n + 1 varying coe�cients – notice that by
using rescalings of the type u= �x; v = �y the parameter space can be considered as
Sk – the k-dimensional sphere. Observe that as g(�) has degree n + 1, if n is even,
this implies that the phase portraits of two opposite points in Sk are equivalent and so
the parameter space can be considered as RP(k) – the k-dimensional projective space
– that is, we only need to know the bifurcation diagram in a closed half-sphere of Sk .
When n is odd, it is necessary to study the whole sphere.

4.1. The quadratic case

We apply the algorithm presented in Section 3 to give a classi�cation of quadratic
systems of type (1), which is depicted in Fig. 7 (a more complete classi�cation,
including also those Hamiltonian systems without a critical point at the origin, can
be found in [3]). In our case, the clue is to study the di�erent possible shapes of
g(�) = H3(cos �; sin �). For this classi�cation, we follow the notation introduced in
[22] and also used in [3], where the di�erent phase portraits are called Vulpe-j, with
j∈ J ⊂N.
Moreover, it is also possible to obtain the bifurcation diagram for the Quadratic

Hamiltonian Systems (QHS) with a critical point at the origin in terms of the variation
of g(�). We summarize this part in Theorem 3 and in Fig. 8.
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Fig. 7. Phase portraits of quadratic Hamiltonian systems.

4.1.1. Classi�cation of phase portraits
Since g(�) is an odd trigonometric function, there must exist some point �0 such

that g(�0) = 0. We can always take �0 in order that g′(�0)¡ 0, except when g(�0) =
g′(�0) = g′′(�0) = 0, in which case the phase portrait is topologically equivalent to
Vulpe-2. Accordingly, we consider the set

G′:={�∈ (�0; �0 + �): g′(�) = 0}: (12)
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Fig. 8. Bifurcation diagram on the sphere �2 + �2 + 2 = 1,  ≥ 0; for  ≤ 0, the diagram is the same
changing the sign of �. Since it is a symmetric diagram and in order to clarify the display, we have marked
on �¡ 0 only the structurally stable systems, with the corresponding Vulpe type topological equivalence
in capital letters, Vj , and, on �¿ 0 only the unstructurally stable ones, with the equivalence in lower case
italic letters, vj , if they are of codimension one, and in bold letters, vj, if they are of codimension two.

In case that #G′=3, we assume that the three elements satisfy �1¡�2¡�3. By (12),
we know that sign g(�1) = sign g(�3) =−1, and so only the sign of g(�2) can change;
we de�ne � = sign g(�2) and gi = |g(�i)|, for i = 1; 2; 3.
With this notation, we can state:

Proposition 3. Suppose that there exists a �0 such that g(�0) = 0 and g′(�0)¡ 0.
Then; the phase portrait of a system (1); with n = 2; is topologically equivalent to
Vulpe-j (see Fig. 7); where

1. j = 2; if #G′ = 1.
2. j = 7; if #G′ = 2.
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3. j∈{3; 4; 5; 6; 8; 9; 10; 11}; if #G′ = 3. More precisely;
(a) j = 3; if � =−1 and g1 = g3.
(b) j = 4, if � =−1 and g1 6= g3.
(c) j = 5, if � = 0 and g1 = g3.
(d) j = 6, if � = 0 and g1 6= g3.
(e) j = 8, if � =+1 and gi = gj ¿gk ; with {i; j; k}= {1; 2; 3}.
(f) j = 9, if � =+1 and gi = gj ¡gk ; with {i; j; k}= {1; 2; 3}.
(g) j = 10, if � =+1 and gi = gj = gk ; with {i; j; k}= {1; 2; 3}.
(h) j = 11, if � =+1 and gi 6= gj; for i 6= j.

If �0 does not exist; then j = 2.

4.1.2. Bifurcation diagram
Observing Fig. 7 and also the conditions stated in Proposition 3, one can notice that

Vulpe-4,11 are structurally stable systems inside the family (1), while Vulpe-3,6,7,8,9
have one degree of structural instability and Vulpe-5,10, two degrees. Notice that
Vulpe-2 can be either structurally stable or structurally unstable of codimension 2. It
is also evident that the structural instability is produced by one of the three following
facts:

• Two of the three critical points have the same absolute value of g(�). As we have
studied in Section 3.2, this fact leads to a connection between saddles.

• One of the critical points (in fact, �2 in the above notation) is also a zero of
g(�). This means that a �nite critical point is converted into an in�nite critical
point.

• One of the critical points has multiplicity two (the second derivative of g(�) also
vanishes). This represents a collision between a center and a saddle, and gives a
critical point with two hyperbolic sectors.

Of course, codimension-two bifurcations can only appear when two of these facts hold
simultaneously.
Then, to obtain the bifurcation diagram, we must give the equations of the curves

on which these codimension-one bifurcations occur, in some set of parameters. To
avoid cumbersome notations, we have chosen to depict the bifurcation diagram in
terms of the coe�cients of g′(�) instead of those of g(�). We �rst notice the following
fact:

Lemma 8. Given a trigonometric homogeneous function g(�) of degree 3; it is always
possible to express its derivative as

g′(�) = sin �(� cos2�+ � cos � sin �+  sin2�); (13)

by means of a translation of the variable �.

The proof of this lemma follows from the fact that, since g(�) is of odd degree,
it has always a local extremum (call it � ∗), which can be moved to the origin by a
change of type �̃= �− � ∗.
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Theorem 3. Consider the Hamiltonian systems whose Hamiltonian function is
H3(r; �)= 1

2 r
2+r3g(�): Suppose that g′(�)=sin �(� cos2 �+� cos � sin �+ sin2 �); and

�; �; ∈R; satisfying �2 +�2 + 2 6=0: When  6=0; de�ne �̃=�=; �̃=�=; �= �̃2−4�̃
and Ti = (−�̃ + (−1)i+1

√
�)=2.

Then; there appear bifurcations of codimension at most two inside this family of
systems. More precisely; in the space (�; �; ):

1. The codimension-two bifurcation points are the intersections of the codimension-one
curves; and are the following: (�̃; �̃)= (0; 0); �= =0 and �= =0 (Vulpe-2);
(�̃; �̃)= (0;−2); (�̃; �̃) = (−√

2;−4) and (�̃; �̃) = (
√
2;−4) (Vulpe-5); and; (�̃; �̃)

= (0;−3) (Vulpe-10).
2. The codimension-one curves are (except for the codimension-two points stated
above):
(a) �−�==0; � ·� 6=0 or �+�==0; � ·� 6=0; where a heteroclinic connection
of saddles takes place (Vulpe-3);
(b) �̃¿ 0 and −(�̃+�̃Ti)(�−�̃2)−�̃2=0; for i=1; 2; where a heteroclinic connection
of saddles takes place (Vulpe-3);
(c) �̃¡ 0; and �̃=0 or −(�̃+ �̃Ti)(�− �̃2)− �̃2=0; for i=1; 2; where a heteroclinic
connection of saddles takes place (Vulpe-3; 8 or 9); and the sequence on each of
these curves is; in some parameterization; Vulpe-3–5–8–10–9;
(d) �̃=−2 or �̃2 =−4=(2 + �̃); where degenerate critical points at in�nity appear
(Vulpe-6);
(e) �̃=0 or �=0; where a �nite critical point with two hyperbolic sectors is formed
(Vulpe-7):

3. The rest of the points in the bifurcation space correspond to structurally stable
systems. In particular; the systems are topologically equivalent to Vulpe-j; with
(a) j = 4; if = 0; not satisfying statements (1) or (2).
(b) j = 2; if �¡ 0.
(c) j = 4; if �¿ 0 and �̃¿ − 2; or �̃¡ − 2(2 + �̃2)=�̃2; not satisfying statements
(1) or (2).
(d) j = 11 if −2(2 + �̃2)=�̃2¡�̃¡− 2; not satisfying statements (1) or (2).

This theorem describes completely all the bifurcations and can be abridged in the
diagram given in Fig. 8.

Proof of Theorem 3. We only give the sketch of the proof, avoiding the straightforward
computations.
The main step consists in �nding the curves where the codimension-one happens.

This question can be analyzed by solving the equations:

1. g(0) = 0.

2. g(�i) = 0, where tan �i=:Ti =
(
−�̃ + (−1)i+1

√
�̃2 − 4�̃

)/
2.

3. |g(�1)|= |g(�2)|.
4. |g(0)|= |g(�i)|.



A. Gasull et al. / Nonlinear Analysis 42 (2000) 679–707 701

The �rst condition easily leads to �̃=−2, see statement (2d) of the theorem.
Using

g(�i) =
1

3
√
1 + T 2i

(�̃Ti − 2) for i = 1; 2; (14)

the second condition becomes �̃Ti − 2 = 0 which can be expressed as

(2 + �̃)�̃2 + 4 = 0;

see also statement (2d). Again by (14), the condition |g(�1)|= |g(�2)| can be reduced
to �̃(4�̃− �̃2) = 0: Then, �̃= 0 contributes to statement (2c) while �= �̃2 − 4�̃= 0 is
not really a saddle-connection curve, since on it �1 =�2. In fact, it belongs to a critical
point with only two hyperbolic sectors, as it is explained in statement (2e). Similarly,
when �̃=0, one of these critical points collides with the origin, and we have the same
type of bifurcation.
On the other hand, still using (14), |g(0)|= |g(�i)| can be written as

T 2i (�̃
2 − �̃2 − 4�̃)− �̃2 = 0;

or, equivalently, as the expression given in statements (2b) and (2c).
The remaining of situations (statements (1) and (2a)) belong to the case = 0, and

follow more easily.

The bifurcation diagram given in Fig. 8 shows the projections of the curves described
in Theorem 3 on the half-sphere �2 + �2 + 2 = 1;  ≥ 0. Of course, the bifurcation
curves of case = 0 appear in this diagram as single points on the boundary.

4.2. The cubic case

In the following section we �rst give a complete classi�cation of the phase portraits
that can appear when a Hamiltonian with a quartic nonlinearity is considered. Eventu-
ally, we have included the study of the bifurcation diagram for reversible systems.

4.2.1. Classi�cation of phase portraits
A straightforward application of our techniques gives the following result for general

cubic systems:

Theorem 4. The phase portrait of any Hamiltonian system of type (1) with n= 3 is
topologically equivalent to one of the 23 con�gurations given in Fig. 9.

The classi�cation has been obtained from the di�erent possible shapes of g(�) and
applying the above remarks, up to rotations and the symmetry given by �→ �− �.
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Fig. 9. Phase portraits of cubic Hamiltonian systems.

4.2.2. Bifurcation diagram of cubic reversible systems

De�nition 3. A planar system of di�erential equations is called a reversible system if
it is invariant under a rotation and a reparametrization of the time given by t̃ =−t.
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A straightforward computation shows that a reversible cubic Hamiltonian system of
type (1), arises from a Hamiltonian of the form

H (x; y) =
x2 + y2

2
+ ax4 + bx2y2 + cy4:

Following a procedure with the same spirit as in Section 4.1.2, we have the following
result.

Theorem 5. Consider the Hamiltonian systems whose Hamiltonian function is
H4(r; �) = 1

2 r
2 + r4g(�): Suppose that g(�) = a cos4 � + b cos2 � sin2 � + c sin4 �; and

a; b; c∈R; satisfying a2+b2+c2 6=0: When b¿ 0; de�ne ã=a=b; c̃=c=b: When b¡ 0;
de�ne �a= a=b; �c = c=b.
Then; there appear bifurcations of codimension at most two inside this family of

systems. More precisely; in the space (a; b; c):

1. The codimension-two bifurcation points are the intersections of the codimension-
one curves; and are the following (see Fig. 10): (ã; c̃) = (0; 0) (Cubic-4); (ã; c̃) =
(−1=2;−1=2) (Cubic-15); ( �a; �c) = (1=2; 1=2) (Cubic-4); ( �a; �c) = (0; 0) (Cubic-15);
( �a; �c) = (0;−1=2); ( �a; �c) = (−1=2; 0) (Cubic-6); ( �a; �c) = (−1=2;−1=2) (Cubic-1);
a= b=0; c 6=0 (Cubic-3 if c¿ 0 and Cubic-6 if c¡ 0); c= b=0; a 6=0 (Cubic-3
if a¿ 0 and Cubic-6 if a¡ 0):

2. The codimension-one curves are (except for the codimension-two points stated
above):
(a) a= c; b= 0; a¡ 0; c¡ 0 (Cubic-12)
(b) ã=0 (Cubic-3 if c̃¿ 0 and Cubic-7 if c̃¡ 0); c̃=0 (Cubic-3 if ã¿ 0 and Cubic-7
if ã¡ 0):
(c) ã= c̃; ã¡ 0; c̃¡ 0 (Cubic-14 if c̃¿− 1=2 and Cubic-12 if c̃¡− 1=2):
(d) c̃ = 1=(4ã); ã¡ 0; c̃¡ 0 (Cubic-9):
(e) �a = 0 (Cubic-10 if �c¿ 0; Cubic-19 if �c∈ (−1=2; 0); Cubic-6 if �c¡ − 1=2);
�c = 0 (Cubic-10 if �a¿ 0; Cubic-19 if �a∈ (−1=2; 0); Cubic-6 if �a¡− 1=2):
(f) �a= �c; �a¡ 0; �c¡ 0 (Cubic-12):
(g) �a=−1=2; �c¡ 0 or �c =−1=2; �a¡ 0 (Cubic-11):
(h) �a=−1=2; �c¿ 0 or �c =−1=2; �a¿ 0 (Cubic-5):
(i) �c = 1=(4 �a); �a¿ 0; �c¿ 0 (Cubic-4):

3. The rest of points in the bifurcation space correspond to structurally stable systems.
In particular; the systems are topologically equivalent to Cubic-j; with
(a) j = 2; if b= 0; a¿ 0; c¿ 0.
(b) j = 5; if b= 0; a · c¡ 0.
(c) j = 13; if b= 0; a¡ 0; c¡ 0; a 6= c.
(d) j = 2; if ã¿ 0; c̃¿ 0.
(e) j = 5; if ã · c̃¡ 0.
(f) j = 8; if c̃¿ 1=(4ã); ã¡ 0; c̃¡ 0; ã 6= c̃.
(g) j = 13; if c̃¡ 1=(4ã); ã¡ 0; c̃¡ 0; ã 6= c̃.
(h) j = 2; if �c¿ 1=(4 �a); �a¿ 0; �c¿ 0.
(i) j = 14; if �c¡ 1=(4 �a); �a¿ 0; �c¿ 0.
(j) j = 18; if �a¿ 0; �c∈ (−1=2; 0); or �c¿ 0; �a∈ (−1=2; 0).
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Fig. 10. Bifurcation diagram on the sphere a2 + b2 + c2 = 1, c ≥ 0 and c ≤ 0. Since the diagrams are
symmetric with respect the ã= c̃ and �a= �c lines, and in order to clarify the display, we have marked only
on one side of the bifurcation diagrams the corresponding type of topological equivalence: the structurally
stable systems, with the topological class of equivalence in capital letters, Cj ; the structurally unstable ones,
with the equivalence in lowercase italic letters, cj , if they are of codimension one, and in bold letters, cj, if
they are of codimension two.

(k) j = 12; if ( �a; �c)∈ (−1=2; 0)× (−1=2; 0); �a 6= �c.
(l) j = 5; if �a¿ 0; �c¡− 1=2 or �c¿ 0; �a¡− 1=2.
(m) j = 11; if �a¡− 1=2; �c∈ (−1=2; 0); or �c¡− 1=2; �a∈ (−1=2; 0).
(n) j = 13; if �a¡− 1=2; �c¡− 1=2; �a 6= �c.

Proof. The main step consists again in �nding the codimension-one curves. First, we
can consider that always �=0 and �= �=2 are critical points of g, although there can
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Fig. 10. continued

also appear two other critical points of g given by

tan �i = (−1)i+1
√
2a− sign b
2c − sign b :

First of all we have to determine when �1 and �2 are de�ned, that is, when

2a− sign b
2c − sign b ¿ 0:

In which case it is easy to check that g(�1) = g(�2). Taking into account these
previous considerations, we obtain the codimension-one curves by solving the
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following equations:

1. g(0) = 0.
2. g(�=2) = 0.
3. g(�1) = g(�2) = 0.
4. g(0) = g(�1) = g(�2).
5. g(�=2) = g(�1) = g(�2).
6. g(0) = g(�=2).

We present the bifurcation diagram compacti�ed on the sphere a2 + b2 + c2 = 1. We
only give the sketch of the proof for the half-sphere determined by b¿ 0. When b=0
or b¡ 0, the proof can be obtained analogously.
Using g(0)= ã; g(�=2)= c̃, and g(�1)= g(�2)= (−1+4ãc̃)=(4(−1+ã+c̃)), we easily

obtain that the �rst, second and third conditions lead to ã = 0; c̃ = 0 and c̃ = 1=(4ã),
respectively (see statements (2b) and (2d)). The fourth and �fth conditions lead to
ã = 1=2 and c̃ = 1=2 but in these cases �1 and �2 are not de�ned. Finally, the sixth
condition leads to ã= c̃ (see statement (2c)).

The bifurcation diagram contains the projections of the curves described in Theorem
5 on the half-spheres of a2 + b2 + c2 = 1 de�ned by b ≥ 0 and b ≤ 0. The bifurcation
curves of the case b= 0 appear in these diagrams as single points on the boundary.

Appendix

Theorem A.1 (Nilpotent critical point theorem [1]). Let F and G be analytic functions
in a neighborhood of the origin starting with quadratic terms in the variables x and y:
Let (0; 0) be an isolated singular point of the vector �eld (y + F(x; y); G(x; y)); and
let y = f(x) be the solution of the equation y + F(x; y) = 0 in a neighborhood of
(0; 0): Assume that the expansion of the function G(x; f(x)) is of the form �1(x) =
G(x; f(x)) = Kx� + o(�) and �2(x) ≡ (@F=@x + @G=@y)(x; f(x)) = Lx� + o(�) with
K 6=0; � ≥ 2 and � ≥ 1: Then the following statements hold.
1. If � is even and
(a) �¿ 2�+1; then the origin is a saddle-node. Moreover the saddle-node has the
three separatrices tangent to the x-axis; two of them tangent to one half-axis and
the third one tangent to the other half-axis; and all the orbits of the nodal sectors
are tangent to the x-half-axis having a unique tangent separatrix.
(b) �¡ 2� + 1 or �2 ≡ 0; then the origin is a cusp; i.e. a singular point formed
by the union of two hyperbolic sectors. Moreover; the cusp has two separatrices
tangent to the positive x-axis.

2. If � is odd and K ¿ 0; then the origin is a saddle. Moreover; the saddle has two
separatrices tangent to the semi-axis x¡ 0; and the other two tangent to the semi-
axis x¿ 0:

3. If � is odd; K ¡ 0 and
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(a) � is even; � = 2� + 1 and L2 + 4K(� + 1) ≥ 0; or � is even and �¿ 2� + 1;
then the origin is a stable (unstable) node if L¡ 0 (L¿ 0); having all the orbits
tangent to the x-axis at (0; 0).
(b) � odd; �=2�+1 and L2+4K(�+1) ≥ 0; or � odd and �¿ 2�+1; then the origin
is an elliptic-saddle; i.e. a singular point formed by the union of one hyperbolic
sector and one elliptic sector. Moreover; one separatrix of the elliptic-saddle is
tangent to the semi-axis x¡ 0; and the other to the semi-axis x¿ 0:
(c) �=2�+1 and L2 +4K(�+1)¡ 0; or �¡ 2�+1; or �2(x) ≡ 0; then the origin
is either a center or a focus.
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