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a b s t r a c t

We study a generalization of potential Hamiltonian systems (H(x, y) = y2 + F(x)) with
one degree of freedom; namely, those with Hamiltonian functions of type H(x, y) =

F(x) + G(y), which will be denoted by XH . We present an algorithm to obtain the phase
portrait (including the behaviour at infinity) of XH when F and G are arbitrary polynomials.
Indeed, from the graphs of the one-variable functions F and G, we are able to give the full
description on the Poincaré disk, therefore extending the well-known method to obtain
the phase portrait of potential systems in the finite plane. The fact that the phase portraits
can be fully described in terms of the two one-variable real functions F and G allows, as
well, a complete study of the bifurcation diagrams in complete families of vector fields.
The algorithm can be applied to study separable Hamiltonian systems with one degree of
freedom, which include a vast amount of examples in physical applications.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Hamiltonian systems are ubiquitous in mathematical physics, specially in mechanics, but also in control engineering,
biology and other fields. The goals in the study of Hamiltonian systems are diverse, according to the dimension (number
of degrees of freedom) and the complexity of the Hamiltonian function H . In this paper, we deal with a relatively simple
family of Hamiltonian systems (low dimensional and polynomial) but, in compensation, we are able to give an algorithm to
plot the phase portrait including the behaviour at infinity, that is, to provide the full qualitative description of the associated
dynamics. In particular, the algorithm allows the study of families of vector fields and their bifurcations in a rather simple
way. Our object is the Hamiltonian systemwith one degree of freedom and separated variables, and the energy function can
be written as:

H(x, y) = F(x)+ G(y), (1)

where x represents the phase, usually called q in the literature, and y the momentum, usually called p.
The main reason for the choice of this family is the balance between applicability and feasibility: on one hand, there is a

vast literature on separable Hamiltonian systems and, on the other hand, there are no general algorithms to systematically
study them except for the case G(y) = y2/2. Thus, the results presented here can be potentially applied to relevant physical
systems (see next paragraph), by means of a systematic procedure to obtain the full qualitative description of the orbits.

One can find examples of Hamiltonian systems of type (1) in classical textbooks, see for instance [1] and [2, Chap. II], but
also more recent and specific examples can be found, for instance, in relativistic potentials or fluid kinetics. In the context of
relativistic mechanics, [3], for instance, study constant period oscillators in the family H(p, q) =


p2 c2 + m2 c4 − mc2 +
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V (q), where p is the momentum and c the speed of light. In fluid kinetics, Stommel, see [4], used a non-trivial Hamiltonian
system with separable variables with the goal of modelling the behaviour of particles through a fluid flow field without
inertia. When adding a small inertia, the system is no longer Hamiltonian but the information about the phase portrait of
the Stommel’s Hamiltonian is important (see for instance [5]).

Apart from direct examples of type (1), there has been a wide interest in the literature to investigate whether a general
Hamiltonian system can be brought into separated variables, see for instance [6] in the context of Yang–Mills theories
or, in control engineering, [7] and the references therein. It is obvious that such a reduction in a suitable set of variables
facilitates the study of the Hamiltonian system; in particular, there also exists an extensive literature in numerical analysis
concentrated on building up symplectic integration algorithms (thus maintaining the symplectic structure) devoted to
separable Hamiltonian systems; representative examples can be found in [8,9] or [10]. For instance, no explicit symplectic
Runge–Kutta methods exist for general Hamiltonians which are not separable. This numerical approach to systems of
type (1) makes more sense in higher dimensions; in this work, instead, we are concerned to give a complete topological
description of Hamiltonians with separated variables and one degree of freedom. Thus, every one degree of freedom
separable Hamiltonian system, once the canonical transformation has brought it into a separated Hamiltonian, may be a
candidate to apply our method.

Beyond the applications exposed above, which demand a good knowledge of Hamiltonian systems of type (1), these
Hamiltonians have also been thoroughly studied in the context of qualitative theory of differential equations. In general, the
study of phase portraits of Hamiltonian systems is useful for the so-called weakened or infinitesimal Hilbert 16th problem
that asks for the number of limit cycles that may appear when perturbing a polynomial Hamiltonian systems (see for
instance [11]). For this purpose, it is important to know the number and distribution of centres, and the respective period
annuli. Methods to track the orbits of the conservative system that remain closed after perturbation are then applied:
Melnikov functions, averaging, singular geometric perturbations, . . . In the non-perturbed (Hamiltonian) dynamics it is also
relevant the classification of centres (bounded versus non-bounded, global versus non-global, . . . ) for their transcendence to
give properties of the period function associated to them, see for instance [12] for a ‘‘classical’’ reference. Thus, the possibility
of obtaining the phase portraits of a certain family of vector fields provides a direct way to control all the possible types
of centres appearing in such a family. Recently, the knowledge of the period annuli has been also combined with new
techniques to study the period function associated to centres, see [13] or [14] as representative, [15] for the first applications
to the family (1) and [16] for a general formula for the period function and also a number of applications inside the
family (1).

Besides the relevance of the phase portraits of type (1) both for physical/engineering applications and to important
problems in dynamical systems, from a more constructive point of view, it is worthy noting that algorithms to plot general
classes of Hamiltonian vector fields are not easy to obtain. For instance, papers in the recent literature are devoted to obtain
phase portraits of families of lowdegree polynomial vector fields having degree 2 rational first integrals, see for instance [17]
or [18].

The best known andmore classical example is the algorithm to plot the finite phase portrait of potential systemswith one
degree of freedom. The clue to be able to topologically classify this type of Hamiltonian systems is, obviously, the simplicity
of its energy function, H(x, y) = y2/2 + F(x), with F ∈ C1(R) (see Fig. 1).

In potential systems, the fact thatH ‘‘depends’’ basically on F(x) allows to relate the phase portrait of {ẋ = −Hy(x, y), ẏ =

Hx(x, y)} with the graph of the one-variable function F(x). This kind of reduction was also explored in [19] for Hamiltonian
systems of type G(r, θ) = r2/2 + rn+1 g(θ), in which the detailed knowledge of g provides the full information about the
phase portrait of XG (along the paper, we use the notation XE to denote the Hamiltonian vector field obtained from the
Hamiltonian function E, with E defined on some subset of R2).

In this work, we extend this type of results by giving a general algorithm to obtain the global phase portrait Hamiltonian
systems of type (1). By ‘‘global phase portrait’’ we understand the phase portrait including the behaviour at infinity. Observe
that (1) can be written as:

ẋ = −G′(y), ẏ = F ′(x), (2)

where the dot denotes the derivative with respect to time, and the prime denotes the derivative with respect to the phase
variables. We will refer to this vector field as XH . Our description includes the classical classification of finite singular points
of smooth potential systems. The use of the Poincaré compactification to study the infinity forces us to require F and G to be
polynomials; however, most of the results (except those referring behaviour at infinity) are also true for the non-polynomial
case.

We want to stress the fact that we perform this study with F and G being arbitrary polynomials. On one hand, it adds
difficulty to the task of obtaining a complete algorithm that takes into account all the combinations among the energy levels
of the separatrices but, on the other hand, it provides away to study bifurcation diagrams of subfamilies of (2). The key point
is the possibility of reducing the study of the phase portrait to the study of a short number of one-variable real functions;
that is, determining the phase portrait of a vector field from the graphs of F andG; Fig. 2 illustrates this fact. This advantage is
exemplified in this paper throughout some families of vector fields that have not been studied previously; the technique can
be extended to any subfamily of Hamiltonian vector fields of type (2). It is not our goal here to be exhaustive by counting all
the possible configurations of the relative positions of maxima and minima of F and G. This could be a challenging problem
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Fig. 1. Finite representation of the phase portrait of a potential system; minima of F coincide with centre points (•) while maxima coincide with saddle
points (�).

Fig. 2. Example of how the geometry of F and G determines the phase portrait.

but, apart from being a cumbersome combinatorial task, the possible results would not shed more light to the qualitative
description of the phase portraits.

The rest of the paper is divided in other four sections: we start by presenting themost practical and concise version of the
general algorithm in Section 2. For the sake of clearness, details and proofs necessary to understand the paper at a deeper
level are sent to Section 5. In between, Sections 3 and 4 contain examples of global phase portraits of representative vector
fields (Section 3) and examples of bifurcations of families of vector fields (Section 4) obtained from the algorithm just from
the knowledge of the bifurcations of one-variable families of functions.

2. Algorithm

We present the algorithm to plot the phase portrait of systems of type (2) at three levels of description: first, we outline
the general overview of the algorithm (in this section); second, we sketch out the basic steps to perform it (in this section);
and, third, we detailed the proofs of the results used in the second level (see Section 5). This organization allows the reader
to directly apply the algorithm without needing to dive into technical details.

2.1. Algorithm: major steps

At a first level of description, these are the main steps to get the global phase portrait:
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Table 1
Singular points at infinity as a function of degrees and signs of F and G for n > m, see Proposition 4. Legend: A = attractor corner cell at infinity; R =

repelling corner cell at infinity; ∅ = corner cell neither attracting nor repelling; NA = stable node; NR = unstable node; E = elliptic sector; H = hyperbolic
sector. The labels Q σσ ′

refer to the four corner cells (see definition in the text); q−

inf and q+

inf are the two singular points at infinity.
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(a) Determine all the finite singular points, classify them topologically and order them according to the energy levels,
using results given in Section 2.2.

(b.1) Localize and classify the infinite singular points, using Table 1 in Section 2.3.
(b.2) Plot the separatrices connecting infinity with the finite singular points defined in Definition 5, applying Proposition 6

(see Section 2.4.1).
(c.1) Surround all finite centres by their proximal separatrices following Proposition 8 in Section 2.4.2.
(c.2) Identify the bounded extended graphics created in step (c.1) and surround them by separatrices according to

Proposition 11 in Section 2.4.2.
Connect all the remaining separatrices by allowing extended graphics containing singular points at infinity, again
according to Proposition 11.

The following subsections are devoted, respectively, to steps (a), (b) and (c); they deal with finite singular points, singular
points at infinity and organization of separatrices, respectively.

2.2. Finite singular points

Without loss of generality, we will assume that the origin is a singular point of system (2), which implies that F ′(0) =

G′(0) = 0. To fix notation, we write:

F ′(x) = an xn + · · · + a1 x, an ≠ 0; G′(y) = bm ym + · · · + b1 y, bm ≠ 0. (3)

Hence, system (2) is equivalent to:
ẋ = −G′(y) = −(bm ym + · · · + b1 y),
ẏ = F ′(x) = an xn + · · · + a1 x,

with an ≠ 0 and bm ≠ 0.
We will consider only the case n ≥ m. It is obvious that the casem > n can be deduced from it by interchanging the role

of the state variables.
For the hyperbolic singular points (which in this case are the saddles coming from simple zeros of F ′ and G′), it is

obvious that Hartman’s theorem gives a direct classification. On the other hand, singular points of (2) with pure imaginary
eigenvalues are centres. However, there are still other singular points of system (2)which are not hyperbolic or linear centres
and they require ad hoc arguments to be classified. Next result gives the topological description of any finite singular point.

Proposition 1 (Finite Singular Points). Let P = (x0, y0) be a finite singular point of system (2). Then, F ′(x0) = G′(y0) = 0 and

(a) P is a saddle (denoted by (S)) if and only if F has a maximum (resp., a minimum) at x0 and G has a minimum (resp., a
maximum) at y0.
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Fig. 3. Different types of finite singular points, see Proposition 1, according to the topological nature of F and G on their critical values. Here, S stands for
saddle, C for centre and D for degenerate point, either cusp (Dc ) or union of two hyperbolic sectors (Dh).

(b) P is a centre point (C) if and only if one of the two following conditions holds:
(b.1) F has a maximum at x0 and G has a maximum at y0 (denoted by (C−));
(b.2) F has a minimum at x0 and G has a minimum at y0 (denoted by (C+)).

(c) P is a cusp point (Dc) if and only if one of the two following conditions holds:
– F has an inflection point at x0 and G has a maximum or a minimum at y0;
– G has an inflection point at y0 and F has a maximum or a minimum at x0.

(d) P is a singular point formed by the union of two hyperbolic sectors (Dh) if and only if F has an inflection point at x0 and G has
an inflection point at y0.

Proposition 1 covers all the possible cases; so, we can only have saddles, centres, cusps or union of two hyperbolic sectors.
Observe that both the saddles in statement (a) and the centres in statement (b) can be degenerate; that is, the classification
is based on the topological nature of the functions F and G rather than their algebraic nature.

Fig. 3 illustrates in a graphical way how the different types of singular points arise from the topological nature of F and
G on their critical values.

2.3. Singular points at infinity

In order to study the behaviour of system (2) near infinity we use the Poincaré compactification (see for instance [20]).
We denote by {X1, X2, X3} the coordinates on the sphere S2, being X3 = 0 its equator. We will consider the restriction of the
extended/compactified vector field XH to different charts: (Ui, ψi), defined on {Xi > 0}, and (Vi, φi), defined on {Xi < 0}, for
i = 1, 2, 3. Since opposite charts (Ui, ψi) and (Vi, φi) have the same phase portraits (with time-reversals when n is odd), we
will mainly focus on the description of the vector field on the (Ui, ψi) charts. On the other hand, we will represent the phase
portraits on the Poincaré disk (projection of XH for X3 ≥ 0 on D; indeed, chart (U3, ψ3) plus {X3 = 0}). See Section 5.3 for
the details concerning the compactification and the expression of XH on each chart.

Lemma 2. Consider system (2) with n ≥ m. Then,

1. If n > m, the vector field XH has exactly 2 singular points on the equator of the Poincaré sphere: the origin of the (U2, ψ2)
(denoted by q+

inf) chart and the origin of the (V2, φ2) chart (denoted by q−

inf), see Fig. 4 (left).
2. If n = m, the singular points at infinity are given by: z1n+1

= −
an
bn

on the (U1, ψ1) chart and z1n+1
= −

bn
an

on the (U2, ψ2)

chart. More precisely,
(a) if n = m is odd and bn/an < 0, we have 2 singular points on all the charts: (U1, ψ1), (V1, φ1), (U2, ψ2) and (V2, φ2).

However, the 4 singular points on (U1, ψ1) ∪ (V1, φ1) coincide (on the Poincaré sphere) with the 4 singular points on
(U2, ψ2) ∪ (V2, φ2), see Fig. 4 (centre);

(b) if n = m is odd and bn/an > 0, we have no singular points at infinity, see Fig. 4 (right);
(c) if n = m is even, we have 2 singular points at infinity (denoted by q̃+

inf and q̃−

inf), diametrally opposed, but different from
q+

inf and q−

inf. The points q̃
+

inf and q̃−

inf tend to q+

inf and q−

inf, resp., when bm → 0.
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Fig. 4. Singular points at infinity on the Poincaré disk. For n > m, the point q+

inf is the origin of the chart (U2, ψ2) whereas q−

inf is the origin of the chart
(V2, φ2), see (a). When n = m, there can exist either four (q1, q2, q3, q4), see (b), two (a pair q̃+

inf, q̃
−

inf , see (c), or q2, q4) or zero singular points. The boundary
of the disk (X3 = 0) is always invariant. All the global phase portraits will be shown on the Poincaré disk. We leave the notation (x, y) to see the directions
of the original variables.

Fig. 5. Different types of cells. Three cells highlighted; from left to right: semi-rectangular, rectangular and corner cell.

In some steps of the algorithm it is useful to ‘‘dissect’’ the dynamics into ‘‘minimal’’ units. In fact, given the separability
of variables in H(x, y), the finite singular points are arranged in a reticular way thus defining special cells whose corners are
the finite singular points, see Fig. 5.

Definition 3. Let us suppose that F ′(x) vanishes at xi for i = 1, . . . , r , andG′(y) vanishes at yj for j = 1, . . . , s. In the reticular
division of the plane, we distinguish the following types of cells (see also Fig. 5):

• Rectangular cells. Given a pair (i, j), with i < r and j < s, we denote by Rij the finite rectangle of the plane whose vertices
are the points (xi, yj), (xi, yj+1), (xi+1, yj+1) and (xi+1, yj).

• Corner cells are the unbounded cells whose borders are the union of the half-lines Lx := { x ≥ (≤) xσ , y = yσ ′} and
Ly := {x = xσ , y ≥ (≤) yσ ′} with the singular point {(xσ , yσ ′)}, where (σ , σ ′) ∈ {(1, 1), (1, s), (r, 1), (r, s)}. The sign ≤

in the definition of the borders applies when σ = 1 or σ ′
= 1, and the sign ≥ applies when σ = r or σ ′

= s. We label
each of the four corner cells as Qσσ ′

if in this cell we have that (−1)σ x > 0 and (−1)σ
′

y > 0.
• Semi-rectangular cells are unbounded cells that are not corner cells; that is, those having on its border two finite singular

points of the form {(xσ , yσ ′)}, where σ ∈ {1, r} and σ ′
∈ {1, s}.

In the absence of inflection points of F and G, the finite singular points alternate between saddles and centres (also
alternating type C+ and type C− in each row/column). In fact, when we have a degenerate point (cusp or two hyperbolic
sectors), we can run the algorithm just ignoring them and adding them at the end, so that we can assume (without loss of
generality) that the finite singular points are either saddles or centres, see also Remark 12.

The study of the vector field on the corner cells gives enough information to classify the singular points at infinity. Their
topological type basically depends on the parity of both functions F and G and the sign on the leading monomials. We
have chosen here the shortest way to show this classification. There are, of course, analytical methods to analyse it (use
of Hartman’s Theorem plus blow-up techniques . . .with no a priori bounds!) or more topological ones taking advantage of
index theory and additional reasonings, see Remark 15. The result is given in the next proposition and abridged in Table 1;
the resulting types of singular points on the Poincaré sphere are displayed in Fig. 6.
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a b c d

Fig. 6. Possible topological types of singular points at infinity on the Poincaré sphere. On the Poincaré disk, only one of the two sectors is visible, depending
on the parity of the vector field, see Table 1.

Fig. 7. Some properties of the critical points of F and G, see Definition 5.

Proposition 4. Let us consider system (2) on the Poincaré disk, with the notation given in (3), and n > m. Then, according to the
parities of n and m, and the sign of an and bm, the singular points of (2) at infinity have the topological types defined in Table 1,
with the following conventions:

• The symbol in the entryQσσ ′ of Q (see Table 1) denotes whether the orbits of (2) in the corner cell Q σσ ′

tend to qσ
′

inf in forward
(A) or backward (R) time, or leave the corner cell both in forward and backward time (∅).

• The symbol in the entries of

q+

inf
q−

inf


denotes whether the corresponding singular point at infinity in the Poincaré disk presents

an attracting nodal sector (NA), a repelling nodal sector (NR), a hyperbolic sector (H) or an elliptic sector (E).
• In the case n = m the singular points with hyperbolic sectors disappear, whereas those with elliptic sectors split into two nodes.

The stability of these nodes is determined by the corresponding Q matrix of Table 1.

2.4. Organization of separatrices

2.4.1. Special saddle points and separatrices: connecting finite points to infinity
One of the crucial steps to obtain the global phase portrait is to determine which separatrices connect with singular

points at infinity. For this purpose, we need to distinguish special maxima and minima of functions F and G, which will be
specially interesting in the case that S∗

= (x∗, y∗) is a saddle. Let us, then, introduce some vocabulary.

Definition 5. Given a real-valued continuous function F , we say that:

• x∗ satisfies the property fl (resp., Fl) if F(x∗) is a minimum (resp., maximum) of F and F(x) > F(x∗) (resp., F(x) < F(x∗))
for each x < x∗.

• x∗ satisfies the property fr (resp., Fr ) if F(x∗) is a minimum (resp., maximum) of F and F(x∗) < F(x) (resp., F(x∗) > F(x))
for each x > x∗.

The same rules are used to define gl,Gl, gr and Gr .
A saddle point S∗

= (x∗, y∗) will be said to be of type (A, B) if x∗ satisfies property A (A ∈ {fl, fr ,Fl,Fr}) and y∗ satisfies
property B (B ∈ {gl, gr ,Gl,Gr}). Observe that a saddle is either not classifiable with this criterion or is of one of the following
types: (fl,Gr), (fl,Gl), (fr ,Gr), (fr ,Gl), (Fl, gr), (Fl, gl), (Fr , gr), (Fr , gl) (Fig. 7).

The four separatrices of any saddle are organized in a topographical way so that we can distinguish them according to
the cell through which they reach the saddle. Accordingly, we define the ll-separatrix of S∗ (respectively, lr-, rl- and rr-) to
be the left-down separatrix (respectively, left-up, right-down, right-up) of S∗.

When these properties apply to our functions F and G, we can distinguish special landmarks of the phase portrait of
system (2):
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Fig. 8. Graphical representation of the four types of separatrices.

Proposition 6. Consider a finite saddle point S∗
= (x∗, y∗) of system (2). Suppose that S∗ is of type (fl,Gl) or (Fl, gl)

(respectively, (Fl, gr) or (fl,Gr); (Fr , gl) or (fr ,Gl); (fr ,Gr) or (Fr , gr)). Then,

1. when n > m, its ll- (resp., lr-; rl-; rr-) separatrix tends to or comes from q−

inf (resp., q
+

inf, q
−

inf, q
+

inf).
2. when n = m is even, its ll- (resp., lr-; rl-; rr-) separatrix tends to or comes from q̃−

inf (resp., q̃
+

inf, q̃
−

inf, q̃
+

inf).
3. when n = m is odd and bn/an < 0, its ll- (resp., lr-; rl-; rr-) separatrices tend to or come from q3 (resp., q2, q4, q1).

Observe that Proposition 6 both claims the connection of special finite saddles with the singular points at infinity and
states the stability character of these separatrices with respect to the singular points. A direct consequence is the following
result.

Corollary 7. The elliptic sectors at infinity appear only for n > m and can be formed in the following ways:

1. The point q+

inf has an elliptic sector if and only if there exist finite saddles S∗ both of type (fr ,Gr) and (fl,Gr) (or (Fr , gr) and
(Fl, gr)).

2. The point q−

inf has an elliptic sector if and only if there exist finite saddles S∗ both of type (fr ,Gl) and (fl,Gl) (or (Fr , gl) and
(Fl, gl)).

2.4.2. Structure of the set of separatrices
In Proposition 6, we have already analysed those separatrices forwhichwe can ensure to reach a specific singular point at

infinity. Some other separatrices will reach infinity as well, but no general rule can be stated at this point. Tomake it clearer,
it is useful to study the organization of the separatrices in an increasing order of complexity. In general, they organize
themselves to embrace the different centres or more complex structures of the phase portrait.

The first step is to identify simple rules to surround the finite centre type points.

Proposition 8. Let C = (xi, yj), for some 1 ≤ i ≤ r and 1 ≤ j ≤ s, be a singular point of centre type, S a finite saddle point, and
NC := {(xi′ , yj′) : |i′ − i| + |j − j′| = 1} the set of neighbouring points of C. Then,

(a) if C is of type C+, it is embraced by the proximal separatrices of the neighbouring saddle S∗ (that is, S∗
∈ NC ) which energy

level satisfies

H(S∗) = min
S∈NC

{H(S) : H(S) > H(C)}.

(b) if C is of type C−, it is embraced by the proximal separatrices of the neighbouring saddle S∗ which energy level satisfies

H(S∗) = max
S∈NC

{H(S) : H(S) < H(C)}.

(c) the separatrices of S can only embrace one type of centre, either C+ or C−.

In different words, C+ has to be embraced by saddles with higher energy values and C− has to be embraced by saddles with
lower energy values.

From Proposition 8, it is easy to see that neighbouring centres and saddles can form more complex bounded structures,
the simplest example being the union of a saddle point and its four separatrices forming two homoclinic loops embracing
two different centres, see Fig. 9(a).We could eventually have several saddleswith the same energy level surrounding several
centres as in Fig. 9(b). We name these structures by P0 and remark their basic properties.

Remark 9. LetP0 be a set formed by bounded period annuli of centres surrounded by separatrices of the same energy level.
Then, the set P0 inherits the character of the embraced centres; that is, it can be classified into class P +

0 or P −

0 according to
the preference of being embraced by higher or lower energy levels.

Having defined these basic structures, we generalize them in the next definition.
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a b c

Fig. 9. Examples of bounded extended graphics; cases (a) and (b) correspond to type P0 .

Fig. 10. Extended graphic on the Poincaré disk that reaches a point at infinity.

Definition 10. We call extended graphic to a subset P of the phase portrait in the Poincaré disk whose boundary is formed
by singular points of system (2) and their separatrices. As for the centres, we define the set of the neighbouring points as
NP =


C∈P NC


P c , where P c is the complement of P in the set of singular points.

In fact, extended graphics P are nests of homoclinic and heteroclinic loops starting from type P0 structures, as it can be
seen in Fig. 9(c). Note that this definition allows the separatrices to reach singular points at infinity (see Fig. 10). Observe also
that the boundary of an extended graphic can be embraced by separatrices of other saddles. Thus, starting from the simplest
ones (type P0), extended graphics are formed hierarchically and also inherit the preference to higher (P +) or lower (P −)
energy levels. Instances of these two facts can be found, for example, Fig. 9(c) or Fig. 12.

Taking into account the previous definitions we state the following result.

Proposition 11. Let P be an extended graphic. Then,

(a) if P is of type P +, it is embraced by the proximal separatrices of the neighbouring saddle S∗ (S∗
∈ NP ) which energy level

satisfies

H(S∗) = min
S∈NP

{H(S) : H(S) > H(P )}.

(b) if P is of type P −, it is embraced by the proximal separatrices of the neighbouring saddle S∗ (S∗
∈ NP ) which energy level

satisfies

H(S∗) = max
S∈NP

{H(S) : H(S) < H(P )}.

(c) the separatrices of S can only embrace one type of extended graphic, either P + or P −.

3. Examples: single phase portraits

In order to illustrate the whole procedure we build up the global phase portrait of four representative cases in the
following examples. Afterwards, in Section 4, we will examine how the algorithm can be applied to study bifurcations of
families of vector fields.

Example 1. Consider any system of type
x′

= −y(y − y1),
y′

= x(x − x1)(x − x2),
(4)

with 0 < x2 < −x1 and the energy distribution of finite singular points given in Fig. 11 (right panel).
Under these conditions, the functions F(x) =


x(x − x1)(x − x2) dx and G(y) =


y(y − y1) dy have the qualitative

portraits shown in Fig. 11 (all the comments in the example can be followed in this figure).
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Fig. 11. The graphs of the functions F and G of system (5) together with the distribution, labelling and energy ordering of the finite singular points.

Fig. 12. The global phase portrait of system (4) (right panel) and the last two steps, (c.1) and (c.2), of the algorithm.

We label the critical points according to their energy levels. For instance, the upper-left point in the phase portrait comes
from the first zero of F ′, that is x = x1 and the highest zero of G′, that is y = 0. Observe that: (1) it is a centre since it comes
from two minima, so the label ‘‘C+’’; (2) it is the finite singular with the lowest energy level, so the subindex ‘‘1’’.

Being S2 the neighbouring saddle of C1 with closest energy level, their upper separatrices must embrace C1. Similarly, S4
embraces C3 and S5 embraces C6.

Since n = 3 is odd, m = 2 is even and an, bn > 0, from Proposition 4, we have Q =


∅ ∅

A R


and so q+

inf has a hyperbolic

sector whereas q−

inf has an elliptic sector.
Observe also that the saddle S2 satisfies the properties fr , fl and Gl; from Proposition 6, both lower separatrices of the

saddle S2 tend to q−

inf (elliptic sector) and so the four separatrices of S2 together with q−

inf form an extended graphic, which
we denote by S+

2 .1 Then, the saddle S4 becomes the neighbouring singular point of S+

2 with closest energy and so, it embraces
the extended graphic S+

2 forming a new extended graphic S+

4 . At the end, the saddle S5 embraces S+

4 (alternatively, one could
also use that S5 satisfies fr and Gl, so that its rl-separatrix must connect to q−

inf).

Example 2. We consider a more complex example, to be able to illustrate most of the features studied along the paper:
x′

= −y(y − 4)(y − 9),
y′

= x(x − 1)(x − 3)(x − 6)(x2 + 1). (5)

It is a specific example, but any other polynomial vector field having F and G topologically equivalent to those of (4), with
the same relative positions of the critical points of both functions, would have the same phase portrait.

The comments of this example are based on thepanels of Fig. 13.Wewill not be exhaustive since there aremany repetitive
operations; instead, we are going to highlight salient details. The first three panels are straightforward, as in Example 1.
Departing from the fourth panel, in which neighbouring saddles embrace the centres following Section 2.4.2, we observe
that saddles S10 and S3 become S−

10 and S+

3 , respectively (see Proposition 8) since their four separatrices remain all bounded
and form two heteroclinic loops around centres. In the fifth panel, the saddles S6 and S9 embrace, respectively, the extended
graphics S+

3 and S+

10. Sincem is odd and n is even, from Proposition 4 we note that does not appear elliptic sectors at infinity.

Moreover, since an > 0 and bn > 0 we have that Q =


A ∅

R ∅


and therefore


q+

inf
q−

inf


=


NA
NR


.

Finally, in the last panel, we observe how all the remaining separatrices of the saddles S5,6,8,9 connect with some singular
point at infinity.

1 Although in the definition we denote by P the extended graphics, we prefer to use the notation S+

j to keep track of the saddle that provides the energy
level of P .
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F(x)

Fig. 13. The upper panels show the qualitative plots of functions F and G of system (5). The left panel in the centre row contains the classification, labelling
and energy ordering of the finite singular points. The other three panels represent different steps in the application of the algorithm: first, neighbouring
saddles embracing the centres (central row); second (lowest row, left), the neighbouring saddles embracing the extended graphics S+

3 and S+

10; third, and
last, the global phase portrait (drawn qualitatively for the sake of clarity). Note that the singular points at infinity are nodes, according to Table 1.

In order to focus on the main aspects of the algorithm, along the paper we have concentrated on the generic cases; that
is, no different singular points with the same energy level and no inflection points of F and G. For the sake of completeness,
in Examples 3 and 4 we give instances of these non-generic situations.

Example 3. The following example is special because there exist saddles points with the same level of energy, (see also
panel (c) in Fig. 14).

x′
= −y(y − 1)(y − 2),

y′
= x(x − 2/5)(x − 6/5)(x − 2)(x2 + 1). (6)

In Fig. 14 we first present the graphs of F and G and then the distribution of their energy levels. Note that there are saddles
with the same energy level, and so they create heteroclinic loops. Note that the singular points at infinity are nodes (applying
Proposition 4 with m odd and n even). Moreover, since an > 0 and bn > 0 we have that Q =


A ∅

R ∅


and therefore

q+

inf
q−

inf


=


NA
NR


. The global first portrait of system (6) is presented in the last panel of Fig. 14.

Example 4. To illustrate the algorithm in the presence of degenerate points, we provide the following example. Fig. 15
shows the process to obtain its global phase portrait.

ẋ = −(y − 1)2(y + 5),
ẏ = x(x + 3)2(x − 6).

(7)
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F(x) G(y)

Fig. 14. Graphs of F and G, finite singular points and global phase portrait of system (6). Notice the heteroclinic connections between saddles of the same
energy level.

F(x) G(y)

Fig. 15. Graphs of F and G, finite singular points and global phase portrait of system (7). Notice the presence of degenerate points.

Note that this phase portrait could have been obtained taking into account only the non-degenerate finite singular points
(see Fig. 16) and then ‘‘adding by hand’’ the degenerate points.

4. Application: bifurcation diagrams of families of Hamiltonian vector fields

A strong advantage of reducing the study of vector fields to the studyof one-variable functions is that bifurcationdiagrams
for families of vector fields can be obtained from bifurcation diagrams of functions. It is obvious that bifurcation values for
F or G are the natural candidates to be the bifurcation values of the family of vector fields. However, in our case, since we
have two one-variable functions involved, there will appear other bifurcation values related to the values of the functions
at their critical points. Indeed, moving parameters it is possible to generate a new configuration (taking into account energy
labelling) of singular points without crossing any bifurcation value of the one-variable function.
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Fig. 16. The process to obtain the global phase portrait of system (7) ignoring the degenerate points. Empty circles indicate either the location of inflection
points of F and G or degenerate points. Pictures are just a qualitative description.

A simple (but not yet explored) family to illustrate this claim arises from considering F and G to be nonlinear monomials.
In other words, we consider the family of Hamiltonian systems

x′
= −y − a yp,

y′
= x + b xq, (8)

with a, b ∈ R, p, q ∈ N \ {0, 1} and p ≤ q (the case p > q can be obtained from p < q by switching the variables x and y).
Thus, we have that

F(x) =
x2

2
+ b

xq+1

q + 1
, G(y) =

y2

2
+ a

yp+1

p + 1
,

and the Hamiltonian function is

H(x, y) =
x2 + y2

2
+ b

xq+1

q + 1
+ a

yp+1

p + 1
. (9)

Notice that F ′(x) = 0 if and only if x = 0 or x = (−1/b)1/(q−1). Thus, if q is even, F will have 2 critical points, whereas if
q is odd, F will have 1 critical point if b > 0 and 3 critical points if b < 0. An identical situation happens with the function G.

The values of the energy for the non-trivial critical points (when they exist) will be labelled as:

h1 := F


−

1
b

 1
q−1

, h2 := G


−

1
a

 1
p−1

.

Wewill see below that the curve h1 = h2 plays an important role; in terms of parameters a and b it takes the implicit form:

(−1/a)2/(p−1)

p − 1
p + 1


= (−1/b)2/(q−1)


q − 1
q + 1


, (10)

whenever (−1/a)1/(p−1) and (−1/b)1/(q−1) are well defined.
We want to study the bifurcation scenarios with respect to the parameters a and b. According to other situations

encountered along the paper, it is not surprising that the bifurcation diagrams depend strongly on the parities of p and
q, and that we have to distinguish between p < q and p = q. Therefore, we are going to consider the following six cases: (I)
p odd, q even, p < q; (II) p even, q odd, p < q; (III) p even, q even, p < q; (IV) p odd, q odd, p < q; (V) p = q odd; (VI) p = q
even.

For the sake of simplicity, we will concentrate all the general facts in the first case. In the remaining cases, we will also
point out to specific issues and refer to the corresponding figure/s. The special nature of the functions F and Gwill also yield
to some symmetries in the bifurcation diagram that will be specified for each case.
(I) p odd, q even, p < q.

With these parities, system (8) presents the symmetry (−x,−y,−b) −→ (x, y, b), and therefore we restrict the study
of systems (8) in the ab-plane with b ≥ 0.
Fig. 17 covers all the possible qualitative graphs of F and G in this half plane, indicating the bifurcation curves for the
phase portraits that we will encounter in Fig. 18.
For a ≥ 0 and b > 0, in the finite plane there are two singular points: a centre C = (0, 0) and a saddle S =

((−1/b)1/(q−1), 0), which embraces the centrewith two of its separatrices since, obviously, it is the neighbouring saddle
with the closest energy level (C is of type C+). Following the Table 1, the two singular points at infinity are nodes; the
two free separatrices of S, then, join these nodes. See the phase portraits number 5 and 6 in Fig. 18.
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1

1

Fig. 17. Case I: bifurcation diagrams of the graphs of F and G for (p, q) = (odd, even), taking into account the curve h1 = h2 .

For a < 0 and b ≠ 0 there are six finite singular points:
– the three centres Cα = (0, 0), Cβ± = ((−1/b)1/(q−1),±(−1/a)1/(p−1)), and,
– the three saddles Sα± = (0,±(−1/a)1/(p−1)) and Sβ = ((−1/b)1/(q−1), 0).
Observe that H(Sα+) = H(Sα−) = h2 and H(Sβ) = h1. Thus, the curve h1 = h2 will separate different phase portraits
and so, become a bifurcation curve. Hence, when h1 > h2 (see the phase portrait number 2 in Fig. 18), the saddles Sα±

will be proximal (in energy) to the finite centre with lower energy Cα and will embrace them forming a heteroclinic
connection, whereas Sβ embraces the centres with highest energy, Cβ±; when h1 = h2 (see the phase portrait number
3 in Fig. 18), heteroclinic connections among Sα± and Sβ will arise; and, when h1 < h2 (see the phase portrait number
4 in Fig. 18), the saddle Sβ will embrace the centre Cα , whereas the saddles Sα± will embrace the centres Cβ±.
The case a < 0 and b = 0 (see the phase portrait number 1 in Fig. 18) yields to p > q since the degree of F
becomes two. Although we have ruled out in general this possibility, we will treat the case b = 0 for the sake of
completeness. In the finite plane we have the centre C = (0, 0) and the two saddles Sα± = (0,±(−1/a)1/(p−1)). Since
H(Sα+) = H(Sα+) = h2, they form a heteroclinic connection embracing C (which is a centre of type C+). The other
separatrices form elliptic sectors at infinity. In this case, however, the points at infinity are located at the origin of the
charts (U1, ψ1) and (V1, φ1), instead of (U2, ψ2) and (V2, φ2). This is due to the fact that the degree of G is higher than
the degree of F , see Section 5.3 for more details.
The case a > 0 and b = 0 (see the phase portrait number 7 in Fig. 18), the only singular point is the centre at the origin,
which is global. The only nuance is that there are two hyperbolic sectors at infinity.
The case a = b = 0 appears in all the cases and represents the linear centre.

(II) p even, q odd, p < q.
In this case, system (8) presents the symmetry

(−x,−y,−a) −→ (x, y, a),

and therefore we restrict its study to the ab-plane with a ≥ 0. Working in a similar way than in Case I we obtain
the bifurcation diagrams displayed in Fig. 19. The main difference with Case I is that the singular points are arranged
‘‘orthogonally’’ and so, since the singular points at infinity are placed at the same place, they interact forming different
singular points at infinity (elliptic+hyperbolic instead of nodes), in agreement with Table 1.

(III) p even, q even, p < q.
In this case, system (8) presents the symmetries

(−x,−y,−a,−b) −→ (x, y, a, b), (−x,−t,−b) −→ (x, t, b), (−y,−t,−a) −→ (y, t, a),

and therefore we can restrict the study of systems (8) to the first quadrant of the ab-plane (a, b ≥ 0).
For any pair (a, b) with a b > 0, there are four finite singular points: two centres, (Cα = (0, 0) and Cβ =

((−1/b)1/(q−1), (−1/a)1/(p−1)), and two saddles, Sb = ((−1/b)1/(q−1), 0), Sa = (0, (−1/a)1/(p−1)). Depending on the
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Fig. 18. Case I: bifurcation diagrams of (8) corresponding to p odd and q even.

sign of h1 − h2 we obtain the phase portraits number 2, 3 and 4 in Fig. 20. The main difference is the organization of
the separatrices: Cα is always embraced by the lowest energy level saddle, and Cβ by the highest energy level saddle. If
h1 < h2 (resp.,>), Sb is the lowest saddle (resp., highest).
When a = 0 or b = 0, then only two singular points exist: one centre and one saddle which embraces the centre.
The arrangement of the finite singular points is on the x-axis with two separatrices going to the origin of the charts
(U2, ψ2), (V2, φ2) if a = 0 (see phase portrait number 1 in Fig. 20), whereas finite singular points are arranged along
the y-axis with two separatrices going to the origin of the charts (U1, ψ1), (V1, φ1) if b = 0 (see phase portrait number
5 in Fig. 20).
In the following cases, we will omit the bifurcations of the graphs of F and G and explain directly the bifurcations of the
vector fields.

(IV) p odd, q odd, p < q.
In this case, there are no symmetries that could simplify the bifurcation diagram. The fact that p and q are both odd,
leads to the following situation:
– in the first ab-quadrant, there is a unique finite singular, which is a centre, see phase portraits number 5, 6 and 7 in

Fig. 21;
– in the second and fourth ab-quadrants, one of the two functions has 3 critical points, so the systemhas 3 finite singular

points (two saddles and one centre), ones arranged along the x-axis and the other along the y-axis. Heteroclinic
connections embrace the centre, and the other separatrices form elliptic sectors at infinity, see phase portraits
number 4 and 8 in Fig. 21;

– the case a < 0, b = 0 is similar to a < 0, b > 0, but the elliptic sectors are follow different directions towards
infinity, as it happens in previous cases, see phase portrait number 3 in Fig. 21;

– in the third ab-quadrant, both F and G have 3 critical points, so we have 9 finite singular points (5 saddles and 4
centres). As in previous cases, the connections will depend on the sign of h1 − h2. See phase portraits number 9, 1
and 2 in Fig. 21;

(V) p = q odd. This case is very similar to Case (IV). In the finite part, everything is the same, but in the infinity, the elliptic
sectors (except the case a = 0 or b = 0 which remain identical) split into two nodes, according to (14). This affects
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Fig. 19. Case II: bifurcation diagrams of (8) corresponding to p even and q odd.

only the phase portraits 4 and 8 in Fig. 21. As an example, in Fig. 22 how phase portrait 8 in Fig. 21 is transformed when
p = q.

(VI) p = q even. This case is identical to Case (III). The only difference could happen at infinity, as for Cases (IV) and (V), but
in this case, due to the parity, the singular points at infinity persist when equating the degrees.

We have only taken one example because it is rich enough, but the algorithms presented in this paper allow to easily
treat parametric families of Hamiltonian systems with separate variables.

5. Technical results

This section is devoted to the proofs of the results used in the previous sections to build up the algorithm. We start with
those concerning singular points in Section 5.1. In Section 5.2, we give technical lemmas to unveil the local phase portrait
in the planar cells whose vertices are the finite singular points. These lemmas are then useful to prove the results about
singular points at infinity in Section 5.3, and also the global organization of separatrices in Section 5.4.

5.1. Finite singular points

We give the proof of Proposition 1 (topological classification of finite singular points).

Proof of Proposition 1. We will give a unified proof that includes both hyperbolic and non-hyperbolic singular points
(linear centres, cusps and double hyperbolic sectors) from the geometry of the level curves of the Hamiltonian function
around them.

Let us suppose, without loss of generality, that F has amaximum at x0 and G has aminimum at y0. According to statement
(a), we must prove that (x0, y0) is a saddle point.
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Fig. 20. Case III: bifurcation diagrams of (8) corresponding to p even and q even, along with the changes in the functions F and G.

Let h0 = H(x0, y0) = F(x0)+G(y0). Since x0 is amaximumof F and y0 is aminimumofG, given a small enough punctured
neighbourhood of x0,Ux0 , for any x ∈ Ux0 , there exist two values y1(x), y2(x) close to y0 such that F(x)+ G(yi(x)) = h0, for
i = 1, 2, satisfying y1(x0) = y2(x0) = y0. Thus, (x0, y0) is topologically equivalent to a saddle point. Observe that each of
the four quadrants centred at (x0, y0) contains one and only one separatrix, thus defining four hyperbolic sectors, see also
Fig. 8.

In the chosen case, the values of the Hamiltonian function on the left and right sectors will be smaller than h0 whereas
on the upper and lower sectors will be higher.

It is straightforward to obtain the topological classification of all the other types of singular points mentioned in the
statement using the same type of reasoning. Let us mention only some specific differences.

In the case of two maxima (resp., two minima), it is clear that no separatrices arrive at (x0, y0) and there exists a
neighbourhood of (x0, y0) filled up by closed orbits whose energy levels decrease (resp., increase) with the distance to
(x0, y0).

In the case of F having an inflection point at x0 and G having a maximum (minimum) at y0, it is easy to see that, if F is
increasing in a neighbourhood of x0, then only the two right (left) separatrices appear. If F is decreasing in a neighbourhood
of x0, the situation is reversed. �

5.2. Dynamics in rectangular cells

As it was already introduced in Section 2.3, finite singular points are the corners of a tiling of the Poincaré disk. According
to the values of the energy function on the corners of a cell, it is possible to know the relative positions of orbits in each
cell. In this section we give two technical lemmas which will be useful to prove the results on singular points at infinity
and organization of separatrices. For the sake of the clearness, we will only consider saddles or centres; cuspidal points and
singular points with two hyperbolic sectors can be ruled out from the discussion following next remark.

Remark 12. Let us suppose that all the zeros of F ′ and G′ have oddmultiplicity; thus, applying Proposition 1, all the singular
points of (2) are either saddles or centres.

Denote by xi, with i = 1, . . . , r , the zeros of F ′ and define now F̃(x) such that: (a) xi, for all i = 1, . . . , r , keep the same
multiplicity; (b) for some k ∈ {1, . . . , r}, there exists x̃ ∈ (xk, xk+1) being a zero of F̃ ′ of even multiplicity. Then,

1. x̃ is an inflection point of F̃ ;
2. the phase portrait of the Hamiltonian vector field given by H(x, y) = F(x) + G(y) is topologically equivalent to that of

H̃(x, y) = F̃(x)+ G(y) except for the presence of cuspidal points at (x̃, yj), for j = 1, . . . , s.
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Fig. 21. Case IV: bifurcation diagrams of (8) corresponding to p odd and q odd.

Fig. 22. Case V: change in the phase portrait 8 in Fig. 21 (left) when p = q (right).

The same argument could be applied to G. Similarly, the study of systems with singular points being the union of two
hyperbolic sectors can be reduced to ‘‘equivalent’’ systems having all the zeros of F ′ and G′ with odd multiplicity.

In other words, the remark states that singular points (x∗, y∗) so that x∗ or y∗ are critical points of F or G with even
multiplicity can be added artificially to the phase portrait after applying the algorithm.

Notice that, in the generic conditions stated in Remark 12, the corners of a rectangular cell are two saddles (situated in
opposite corners) and two centres.

We define αi := F(xi) − F(xi−1), for i = 2, . . . , r , and βj := G(yj) − G(yj−1), for j = 2, . . . , s. Additionally, we define
α1 = (−1)n sgn(an) · ∞, αr+1 = sgn(an)∞, β1 = (−1)m sgn(bm)∞ and βs+1 = sgn(bm)∞, where n andm are the degrees
of F ′ and G′, respectively; in particular, r ≤ n and s ≤ m.

Next result gives the behaviour of the separatrices in each of the rectangular cells Rij, see also Fig. 23.
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Fig. 23. Possible phase portraits (modulo rotations) in a rectangular cell Rij .

Fig. 24. Phase portraits in the semi-rectangular and corner cells. The three possible types of orbits are shown schematically. As in Lemma 14, L is the
generic labelling for half-lines joining finite and infinite singular points.

Lemma 13. Consider a rectangular cell Rij, with 1 ≤ i < r and 2 ≤ j < s. Then,

1. If αi+1 > 0 and βj+1 > 0, then the phase portrait in the rectangular cell Rij is one of the following:
(a) As in panel A of Fig. 23 if αi+1 > βj+1.
(b) As in panel B of Fig. 23 if αi+1 = βj+1.
(c) As in panel C of Fig. 23 if αi+1 < βj+1.

2. If αi+1 > 0 and βj+1 < 0, we have Fig. 23. A rotated 90° clockwise if |αi+1| < |βj+1|, Fig. 23.B rotated 90° clockwise if
|αi+1| = |βj+1| or Fig. 23.C rotated 90° clockwise if |αi+1| > |βj+1|.

3. If αi+1 < 0 and βj+1 < 0, we have Fig. 23. A rotated 180° if |αi+1| > |βj+1|, Fig. 23.B rotated 180° if |αi+1| = |βj+1| or
Fig. 23.C rotated 180° if |αi+1| < |βj+1|.

4. If αi+1 < 0 and βj+1 > 0, we have Fig. 23. A rotated 270° clockwise if |αi+1| < |βj+1|, Fig. 23.B rotated 270° clockwise if
|αi+1| = |βj+1| or Fig. 23.C rotated 270° clockwise if |αi+1| > |βj+1|.

Proof of Lemma 13. We first prove item (1). First of all, observe that the vector field (2) satisfies ẋ < 0 and ẏ > 0 on Rij.
Since αi+1 > 0 and βj+1 > 0, the singular points on the border of the cell Rij are of the following types:

{Ci,j, Si,j+1, Ci+1,j+1, Si+1,j}, where the first entry refers to the down-left corner of Rij, and the others follow a clockwise
order, see figure A. In particular the energy values of the four singular points satisfy H(Si,j+1) = H(Ci,j) + βj+1, H(Si+1,j) =

H(Ci,j)+ αi+1 and H(Ci+1,j+1) = H(Ci,j)+ αi+1 + βj+1.
In the case that αi+1 > βj+1, we have that H(Ci,j) < H(Si,j+1) < H(Si+1,j) < H(Ci+1,j+1). Thus, the upper-left separatrix

of Si+1,j must exit the cell Rij through the edge between Si,j+1 and Ci+1,j+1 since all the other edges of Rij are banned either
because of the direction of the vector field or because the energy level H(Si+1,j) is not contained in the set of energy levels
of that edge. The other three separatrices of Si+1,j belong to a three different neighbouring cells (Ri+1,j, Ri,j−1, Ri+1,j−1).

Analogously, the down-right separatrix of Si,j+1 intersects the border of Rij through the edge between Ci,j and Si+1,j.
Having controlled the behaviour of the two separatrices, the dynamics in Rij is completely determined since, moreover,

any orbit cannot intersect the same edge more than once.
When αi+1 = βj+1, note that the two separatrices coincide and so, the phase portrait in Rij is the one given in Fig. 23.B.
When αi+1 < βj+1, using similar arguments, it is straightforward to see that the separatrix of Si+1,j intersects the edge

between Ci,j and Si,j+1, whereas the separatrix of Si,j+1 intersects the edge between Ci+1,j+1 and Si+1,j, see Fig. 23.C.
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The samemechanisms can be applied to the hypotheses of statements (2, 3, 4). Observe that, for instance, the hypothesis
of statement (2), αi+1 > 0 and βj+1 < 0 is equivalent to consider the case of statement (1) with α̃i+1 > 0, β̃j+1 > 0,
and then apply the change αi+1 = β̃j+1, βj+1 = −α̃i+1. This is equivalent to rotate clockwise 90° the corresponding phase
portrait obtained for α̃i+1 and β̃j+1 from statement (1). For instance, the subcase α̃i+1 > β̃j+1 will become |αi+1| < |βj+1|,
and similarly for the other two subcases |αi+1| = |βj+1| and |αi+1| > |βj+1|.

Statements (3) and (4) follow in a similar way. �

Next lemma describes the dynamics on the unbounded cells. Note that the information we give is purely topological
since we do not pay attention to the direction of the vector field. In any case, it is trivial to establish this direction.

Lemma 14. The following statements hold (see also Fig. 24):
(a) Let Q be a corner cell for system (2) whose border is formed by a finite singular point p and the two half-lines Lx and Ly

intersecting at p.
(a.1) If p is a centre, then all the orbits in Q connect Lx with Ly.
(a.2) If p is a saddle, then the separatrix of p lying on Q escapes to (comes from) infinity, as well as any orbit intersecting Lx

or Ly.
(b) Let Q be a semi-rectangular cell for system (2) whose border is formed by the segment joining two finite singular points p

(centre) and q (saddle) and two half-lines L and L′ satisfying p ∈ L and q ∈ L′. Then, the separatrix of p lying on Q crosses L′.

Proof of Lemma 14. Let us first prove statement (a), devoted to corner cells. Following the notation given in Definition 3,
we consider the upper-right cell Q++. The other corner have symmetric behaviours and so we do not lose generality. The
direction of the vector field on Q++ depends on the signs of the derivatives of F and G on the intervals I∞ := (xr ,+∞) and
J∞ := (ys,+∞), respectively. Observe that:
(a.1) if F ′ > 0 on I∞ andG′ > 0 on J∞, then (xr , ys) is a centre point and the direction of the vector field onQ++ is determined

by ẋ < 0 and ẏ > 0. Let us consider then a point z := (x, ys) ∈ Lx with x > xr . Notice that the orbit ϕ(t; z) such that
ϕ(t; z) = z has negative slope for t > 0 and, for t = 0, we have that ẋ = 0 and ẏ > 0. So, for any t > 0, ϕ(t; z) ∈ Q++.
Since xr and ys are the highest extrema of F and G, the second derivatives of F and G cannot vanish on Q++ and so, the
curvature ( (F ′′(x)G′(y)2 + G′′(y)F ′(x)2)/(F ′(x)2 + G′(y)2)3/2


ϕ(t;z)) of ϕ(t; z) is positive on Q++. Finally, considering

any point z1 = ϕ(t1; z), with t1 > 0, the tangent line to ϕ(t; z) at t = t1 together with Lx and Ly form a positively
invariant region (we call it Ω) for the flow ϕ. Since Int(Ω) cannot contain any singular point inside (recall that p, on
the boundary, is a centre) and ẏ > 0 onΩ , then ϕ(t; z)must reach Ly in finite time, as we wanted to prove. Thus, any
orbit starting on the horizontal half-line Lx will intersect Ly at some t > 0.
If F ′ < 0 and G′ < 0, only the direction changes (ẋ > 0 and ẏ < 0) and so, any orbit starting on the vertical half-line
Ly will intersect Lx at some t > 0.

(a.2) if F ′ < 0 on I∞ andG′ > 0 on J∞, then p := (xr , ys) is a saddle point and the direction vector field onQ++ is determined
by ẋ < 0 and ẏ < 0. Thus, the rr-separatrix of p cannot escape from Q++ and tends for t → −∞ to a singular point
at infinity. If F ′ > 0 and G′ < 0, only the direction changes (ẋ > 0 and ẏ > 0) and so, the rr-separatrix of p tends to a
singular point at infinity for t → +∞.

Statement (b) is devoted to semi-rectangular cells, delimited by two corner points p and q, their common segment pq
and the half-lines called L (from p to infinity) and L′ (from q to infinity). Without loss of generality, we can assume that p is
a centre and q is a saddle point. From the proof statement (a.1) we know that one of the separatrices of q crosses Q until it
reaches the half-line L (at some point that we call p′). On the other hand, from the proof of statement (a.2), all the orbits from
segment pq also intersect L, between p′ and p. Finally, by the same arguments, all the other orbits (that is, those starting on
L′) must intersect L. �

5.3. Singular points at infinity

We give the proofs of Lemma 2 (number of singular points at the infinity of the Poincaré sphere) and Proposition 4
(topological classification).
Proof of Lemma 2. We assume that the vector field (2) has been compactified using the Poincaré compactification, see
Section 2.3 to recall the notation.

As we will appreciate in the following cases, the charts of the Poincaré compactification will contain singular points
depending on the sign and parity of n − m.
Case 1: n > m.

In the (U1, ψ1) chart the vector field takes the form
ż1 = zn2


z1 G′


z1
z2


+ F ′


1
z2


= an + an−1z2 + · · · + a1zn−1

2 + bmzm+1
1 zn−m

2 + · · · + b1z21z
n−1
2 ,

ż2 = zn+1
2 G′


z1
z2


= zn−m+1

2 (bmzm1 + bm−1zm−1
1 z2 + · · · + b1z1zm−1

2 ).

(11)
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Fig. 25. Schematic representation of how a singular point at infinity (q+

inf) having an elliptic sector for n > m splits into two point (q1, q2) with nodal
sectors for n = m.

We note that there are no singular points on {z2 = 0} since an ≠ 0.
In the (U2, ψ2) chart the vector field can be written as

ż1 = −zn2


G′


1
z2


+ z1 F ′


z1
z2


= −bmzn−m

2 − · · · − b1zn−1
2 − anz1n+1

− · · · − a1z12zn−1
2 ,

ż2 = −zn+1
2 F ′


z1
z2


= −anz1nz2 − · · · − a1z1zn2 ,

(12)

which has a unique singular point, z1 = z2 = 0, on {z2 = 0}.
Case 2: n = m

On the (U1, ψ1) chart, the vector field becomes
ż1 = (an + bnz1n+1)+ (an−1 + bn−1z1n)z2 + · · · + (a1 + b1z12)zn−1

2 ,
ż2 = z2(bnz1n + · · · + b1z1).

(13)

We note that singular points at infinity are given by

z1n+1
= −

an
bn
. (14)

On the (U2, ψ2) chart the vector field writes as
ż1 = −bn − bn−1 z2 − · · · − b1 zn−1

2 − an z1n+1
− an−1 z1n z2 − · · · − a1 z12 zn−1

2 ,

ż2 = −z2 (an z1n + · · · + a1 z1 zn−1
2 ),

(15)

and the singular points at infinity are given by z1n+1
= −

bn
an
.

Then, when n is odd and bn
an
< 0, we have 2 singular points on all the charts: (U1, ψ1), (V1, φ1), (U2, ψ2) and (V2, φ2).

However, the 4 singular points on (U1, ψ1) and (V1, φ1) coincide (on the Poincaré sphere) with the 4 singular points on
(U2, ψ2) and (V2, φ2) since zn+1

1 = −an/bn on U1 and zn+1
2 = −bn/an on U2 represent the same directions at infinity on the

Poincaré sphere. When n is even, the situation is repeated but with only 1 singular point per chart; thus, we have 2 singular
points at infinity.

We recall that, after an appropriate change of variables, the case n < m is equivalent to the case n > m. �

Once the number and position of singular points is established, we prove the results that classify them topologically.

Proof of Proposition 4. In fact, from Lemma 14 we know that:

• an orbit can reach (either for t → +∞ or for t → −∞) the point at infinity only through a corner cell; that, is there are
no orbits reaching infinity through a semi-rectangular cell.

• to reach infinity through a corner cell Q σσ ′

, σ , σ ′
∈ {+,−}, the sign of the vector field has to be ±(σ , σ ′).

We assume now that n > m; for n = m, the conclusions are the same, except that the singular points at infinity are not
located at the same places. In the case of two critical points, the compactified phase portraits will not change topologically.
In the case of four critical points, it may happen, as the only topological difference, that the elliptic sectors split into two
mutually connected nodal sectors, see for instance Fig. 25.

In the proof of Lemma 14 we have analysed the direction of the vector field on Q σσ ′

in terms of the derivative of F on
I∞ and the derivative of G on J∞. More precisely, we can repeat the arguments in terms of the degree and the sign of the
leading coefficients of F and G.

Let us suppose, for instance, that n is even and m is odd and let us focus only on those corner cells with a saddle on its
vertex (by Lemma 14(a.1), centres are less related to the stability of singular points at infinity). We have that:
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Table 2
Attracting or repelling sectors of singular points at infinity as a function of degrees and signs of F and G.

n m an bm Q−− Q+− q−

inf Q−+ Q++ q+

inf

even odd + + R ∅ NR A ∅ NA
even odd + − ∅ R NR ∅ A NA
even odd − + A ∅ NA R ∅ NR
even odd − − ∅ A NA ∅ R NR

1. if an > 0, bm > 0, the singular point q−

inf is repelling on Q−− and q+

inf is attracting on Q−+.
2. if an < 0, bm > 0, the singular point q−

inf is attracting on Q+− and q+

inf is repelling on Q++.
3. if an > 0, bm < 0, the singular point q−

inf is repelling on Q+− and q+

inf is attracting on Q++.
4. if an < 0, bm < 0, the singular point q−

inf is attracting on Q−− and q+

inf is repelling on Q−+.

Then, using the notation already introduced in the statement of the proposition and Table 1, it can be summarized in
Table 2.

From Table 2 we obtain the matrices Q in the left-down corner of Table 1 straightforwardly. From Q, we get the
classification of the singular points just observing that a pattern (A/R ∅) in a row of Q implies that the corresponding
point is an attracting/repelling node with the entry direction on the left corner cell; the pattern (A/R R/A) implies that the
corresponding point has an elliptic sector; and, finally, the pattern (∅ ∅) implies that the corresponding point presents a
hyperbolic sector. �

Just as a question of coherence with other possible reasonings that have not been used here, observe that Proposition 6
matches with the results that one would obtain by applying index theory. Indeed, the degrees n,m plus the sign of the
coefficients an and bm give all the information about the index of the vector field at the finite singular points R2; then, using
the Poincaré–Hopf Theoremwe can extract information about the indices of singular points at infinity as next remark shows.

Remark 15. We denote by iXH (R
2) the sum of indices (see [20] for a definition of index) of all the finite singular points and

by iXH ({X3 = 0}) the sum of indices of the singular points lying on the equator of the Poincaré sphere. Since iXH (R
2) is the

sum of indices on the chart (U3, ψ3) and the Euler characteristics of the sphere is two, we have that

2iXH (R
2)+ iXH ({X3 = 0}) = 2. (16)

Then,

1. If n is even, iXH (R
2) = 0 and iXH ({X3 = 0}) = 2 (see Fig. 6(d)).

2. If n is odd andm is even, then iXH (R
2) = 0 and iXH ({X3 = 0}) = 2 (see Fig. 6(a)).

3. If n is odd andm is odd, then either
(a) iXH (R

2) = −2 and iXH ({X3 = 0}) = 4 (see Fig. 6(b)); or,
(b) iXH (R

2) = 2 and iXH ({X3 = 0}) = 0 (see Fig. 6(c)).

5.4. Organization of separatrices

Lemmas 13 and 14 give a first level description of the behaviour of the orbits in the ‘‘tiled’’ plane. The results of Section 2.4
rely on these properties. Thus, from these lemmas, we are able to prove properties of other structures appearing in the phase
portrait like the organization of bounded and unbounded separatrices which were stated in Propositions 6, 8 and 11.

Proof of Proposition 6. It follows from the proof of Proposition 4 after observing the relationship between the properties
of the saddles (see Definition 5) and the direction of the vector field at the corner cells. Indeed, we have (with the notation
used in Table 2):

• Fl (resp., fl) ⇒


ẏ > (<)0 ∗

ẏ > (<)0 ∗


; Fr (resp., fr) ⇒


∗ ẏ < (>)0
∗ ẏ < (>)0


;

• Gl (resp., gl) ⇒


∗ ∗

ẋ < (>)0 ẋ < (>)0


; Gr (resp., gr) ⇒


ẋ > (<)0 ẋ > (<)0

∗ ∗


.

Consequently:

(Fl, gr) (resp., (fl,Gr)) ⇒


A (R) ∗

∗ ∗


; (fr ,Gr) (resp., (Fr , gr)) ⇒


∗ A (R)
∗ ∗


.

(fl,Gl) (resp., (Fl, gl)) ⇒


∗ ∗

A (R) ∗


; (Fr , gl) (resp., (fr ,Gl)) ⇒


∗ ∗

∗ A (R)


;

Consider, for instance, a saddle point S∗
:= (xi∗+1, yj∗+1) of type (fl,Gl) (in Fig. 26, for instance, i∗ = 2 = j∗).
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Fig. 26. Standard configuration with a saddle point of types fl and Gl , to illustrate the proof of Proposition 6. Here, S∗
= (x3, y3).

If j∗ = 0 and i∗ > 0 (similarly if i∗ = 0 and j∗ > 0), then S∗ is a corner of a semi-rectangular cell that can be expressed
as Ri∗,0 := (xi∗ , xi∗+1) × (−∞, y1). Since S∗ is of type Gl, then G′ > 0 on (−∞, y1) and so, ẋ < 0 on the semi-rectangular
cells Ri,0 such that i < i∗. Then, applying Lemma 14(a), the ll-separatrix of S∗ crosses all these semi-rectangular cells until it
reaches R00 (the left-down corner cell called also Q−−). By Lemma 14(b), then, the ll-separatrix of tends to q−

inf.
If i∗ = j∗ = 0, then S∗ is the corner of the corner cell R00 and the last part of the previous argument suffices.
In the case that i∗ ≠ 0 and j∗ ≠ 0, we first observe that all the points H(x, yj∗+1) > H(S∗) for all x < xi∗+1, and

H(xi∗+1, y) < H(S∗) for all y < yj∗+1. This observation implies that the ll-separatrix of S∗ is confined to the region
(−∞, xi∗+1) × (−∞, yj∗+1) (see Fig. 26). Then, applying Lemma 13 successively, one can conclude the ll-separatrix will
end into some of the semi-rectangular cells Rij, with i = 0 and j < j∗ or with j = 0 and i < i∗. In both cases, the arguments
given above apply again and the conclusion follows. The path to reach R00 will depend on the values of H on the saddles
(xi, yj), with i ≤ i∗ and j ≤ j∗ and cannot be determined knowing only that S∗

∈ fl ∩ Gl. �

Proof of Proposition 8. The proofs of statements (a) and (b) are similar.Without loss of generality, then, we assume to have
a singular point C = (xi, yj) of type C+. We also assume to be in the most general case: 1 < i < r and 1 < j < s. The other
cases differ only in the number of possible neighbouring saddles.

In this case, it is straightforward to see that (in the hat in the notation of Lemma 13) αi < 0, αi+1 > 0, βj < 0 and
βj+1 > 0. Let us suppose that the neighbouring saddle point S∗ whose energy level satisfies H(S∗) = minS∈NC {H(S) :

H(S) > H(C)} is S∗
= (xi−1, yj) (a non-restrictive hypothesis). Applying Lemma 13 to the rectangular cells Ri−1,j−1 and

Ri−1,j, we can deduce that the separatrices of S∗ proximal to C intersect the segments (xi, yj)(xi, yj+1) and (xi, yj−1)(xi, yj).
Applying again Lemma 13, now to the rectangular cells Ri,j−1 and Ri,j, we conclude that these two separatricesmust intersect
the segment (xi, yj)(xi+1, yj) and, since H is monotone on this segment, form a loop.

To prove statement (c), we assume again to be in the most general situation: S = (xi, yj) with 1 < i < r and 1 < j < s.
We want to prove that S cannot be the proximal saddle of two different centres of different type (C+ and C−).

We then consider the grid Γ formed by S and the other 8 singular points that surround it (4 neighbouring centres
and 4 saddles, in the corners of this grid). Recall that either xi is a local minimum of F and yj is a local maximum of G
or xi is a local maximum of F and yj is a local minimum of G. Let us assume the latter case, in which the centres satisfy
H(xi−1, yj),H(xi+1, yj) < H(S) and H(xi, yj−1),H(xi, yj+1) > H(S); or, equivalently, αi+1 < 0, βj < 0 and αi > 0, βj+1 > 0.
If we denote by C+

−1 := (xi−1, yj) and C+

1 := (xi+1, yj) the centres of type C+, and by C−

−1 := (xi, yj−1) and C−

1 := (xi, yj+1)

the centres of type C−, then we have that H(C+

i1
) ≤ H(C+

i2
) < H(S) < H(C−

j2
) ≤ H(C−

j1
), considering an adequate reordering

of indices such that {i1, i2} = {j1, j2} = {−1, 1}; this reordering depends on the ordering of the values |αi|, |αi+1|, |βj| and
|βj+1|.

Let us take now the saddle S := (xi+i2 , yj+j2). Observe thatH(S) = H(C+

i2
)+H(C−

j2
)−H(S) and so,H(S) ∈ {H(C+

i2
),H(C−

j2
)}

since H(C−

j2
) − H(S) > 0 and H(C+

i2
) − H(S) < 0. If H(S) = H(S), then there would be a heteroclinic connection between

these two saddles and so, the separatrices of S could not embrace two centres simultaneously. If H(S) ≠ H(S), then S
cannot satisfy simultaneously H(S) = minS′∈N

C+

i2

{H(S ′) : H(S ′) > H(C+

i2
)} and H(S) = maxS′∈N

C−

j2

{H(S ′) : H(S ′) < H(C−

j2
)}.

According to statements (a) and (b), then, S can only embrace one type of centre. �

The arguments used to prove Proposition 8 work for Proposition 11 as well, just considering the extended graphics as
centre points.
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Software tools
All the global phase portraits have been obtained with the free software P4, see [21] or http://mat.uab.cat/%7Eartes/p4/

p4.htm.
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