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Abstract

In this work, we aim at giving a first proof of concept to address the estimation of synaptic
conductances when a neuron is spiking, a complex inverse non-linear problem which is an open
challenge in neuroscience. Our approach is based on a simplified model of neuronal activity, namely
a piecewise linear version of the FitzHugh-Nagumo model. This simplified model allows a precise
knowledge of the non-linear f-I curve by using standard techniques of non-smooth dynamical systems.
In the regular firing regime of the neuron model, we obtain an approximation of the period which,
in addition, improves previous approximations given in the literature up-to-date. By knowing both
this expression of the period and the current applied to the neuron, and then solving an inverse
problem with a unique solution, we are able to estimate the steady synaptic conductance of the cell’s
oscillatory activity. Moreover, the method gives also good estimations when the synaptic conductance
varies slowly in time.

Keywords: synaptic conductance, neuron mode, spiking neuron, piecewise linear system, McKean
model, parameter estimation.
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1 Introduction

Estimating the synaptic conductances impinging on a single neuron directly from its membrane poten-
tial is one of the open problems that needs to be solved in order to understand the flow of information in
the brain. The ultimate goal is providing useful methods to deal with experimental data and give trustable
estimations of excitatory and inhibitory currents arriving to a neuron. These input estimations constitute
an important piece of information to understand the organization of activity in the populations of efferent
neurons. In particular, they can shed light to the excitation versus inhibition balance along time in the
subjacent network (see the Introduction of Berg and Ditlevsen (2013) and Vich and Guillamon (2015)
for specific applications).

Broadly speaking, there are three main obstacles to overcome in order to provide effective solu-
tions to this inverse problem. On one hand, one needs a mathematical model of the target neuron in
which the synaptic conductances are well identified (generally, as parameters of the system). Aiming
at giving methods as general as possible, the variety of neuron types does not advise to use very spe-
cific models, but rather minimal models that capture essential features of neuronal dynamics. This idea
has been extensively used in the existing literature (see Borg-Graham et al (1998), Anderson et al (2000),
Wehr and Zador (2003), Rudolph et al (2004), Pospischil et al (2009), Bédard et al (2011), Berg and Ditlevsen
(2013), among others) assuming that data is following some underlying linear process. Normally, this
assumption involves a complementary treatment of the noise present in the data, which is the second main
obstacle. Some strategies consists of filtering the data before fitting them to the “minimal model” (see
Anderson et al (2000), Borg-Graham et al (1998), among others), some using stochastic linear processes

1 This work is partially supported by the Spanish Ministry of Economy and Competitiveness through projects MTM2014-
54275-P (R. Prohens, A. Teruel, C. Vich) and MTM2015-71509-C2-2-R (A. Guillamon, C. Vich), and by the Government
of Catalonia under grant 2014-SGR–504 (A. Guillamon).
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in order to obtain the estimations (see Rudolph et al (2004), Pospischil et al (2009), Paninski et al (2012),
Berg and Ditlevsen (2013), among others). Other approaches using more sophisticated filtering tech-
niques (see Lankarany et al (2013), Ditlevsen and Samson (2014), Closas (2014), among others). In all
these stochastic approaches, linear regression methods and maximum likelihood estimators are in order at
some point of the procedure. Despite of some excellent estimations obtained in particular circumstances,
special in purely leaky subthreshold regimes, misestimations derived from the use of linear models have
also been reported (see Borg-Graham et al (1998), Guillamon et al (2006), Vich and Guillamon (2015)).
Therefore, a third challenge, this related to the type of minimal models to use, come into play. The
problem is how to deal with the inverse estimation problem when the underlying (deterministic) model
is no longer linear. A partial solution for subthreshold regimes with active (nonlinearly behaving) ionic
currents has been given in Vich and Guillamon (2015), but no solution for spiking neurons have been yet
proposed.

In this work, we provide a first proof of concept to perform estimations of synaptic conductances
during spiking activity. We approach this problem by considering the neuronal firing rate, f , as a
function of the input current, I; i.e. the spike frequency f versus the input strength current I function,
(known as f -I curve). We have chosen the McKean model, a simplified piecewise linear model of neuronal
activity with regular firing, that can be derived from the FitzHugh-Nagumo model (see McKean (1970)
and Coombes (2001)). The piecewise linearity of the vector field allows a very precise knowledge of the
nonlinear f -I curve by means of standard techniques of non-smooth dynamical systems. In the standard
McKean model, we put special emphasis on the synaptic current, Isyn(v). We consider the piecewise
linear differential system {

Cv̇ = f(v)− w − w0 + Itotal,
ẇ = v − γw − v0,

(1)

where Itotal = I − Isyn(v), Isyn(v) = gsyn(v − vsyn) and f(v) is the piecewise linear caricature of the
cubic FitzHugh-Nagumo function given by

f(v) =

⎧⎨
⎩

−v v < a/2,
v − a a/2 ≤ v ≤ (1 + a)/2,
1− v v > (1 + a)/2.

Physiologically, the variables of the model are considered to be v, which stands for the membrane poten-
tial, and w which represents the recovery property of the neuron. The parameters a, w0, v0, and γ > 0
may be considered as conductance properties and combinations of membrane reversal potentials (see
Coombes (2001)). The function f(v) determines the outward membrane current at v. In the total input
current Itotal we distinguish two sources: an eventual injected current I, which will be taken constant
along the paper, and the synaptic input Isyn(v). In the the synaptic input term, vsyn symbolizes the
reversal potential and gsyn > 0 is the synaptic conductance. Finally, C is related to the cell membrane
capacitance, and is assumed to be small and bounded, that is 0 < C � 0.1. In the numerical simulations,
vsyn is considered to be the half point between a/2 and (1 + a)/2 to mimic an excitatory synapse.

At a first instance, the synaptic conductance, gsyn, is considered to be constant, a fact that can
be understood as the synaptic current Isyn(v) being a representation of the mean field of the synaptic
inputs. Moreover, since C is assumed to be small, the variables evolve with very different velocities and
so system (1) can be considered a slow-fast dynamical system, where the variable v is the fast one whereas
the variable w is the slow one.

As it has been reported in some previous studies, see Abbott (1990) and Tonnelier and Gerstner
(2003), system (1) presents different neuronal behaviours depending on the total amount of constant
current that the neuron is receiving. In particular, for gsyn = 0, authors show that there exist two
boundary values I01 and I02 such that, if Itotal ≤ I01 , the system presents low activity and the membrane
potential tends to a silent state, that is, variable v tends to an equilibrium state with low value. Moreover,
when I01 < Itotal < I02 , the system exhibits a unique isolated periodic orbit, i.e. a limit cycle, and so the
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neuron presents an oscillatory behaviour corresponding to a regular firing. Otherwise, if Itotal ≥ I02 , the
neuron tends to a steady high activity, that is, the variable v tends to an equilibrium state with high
value, corresponding to a nerve block.

In the present paper, we show that this scenario also persists for Itotal = I−Isyn(v) = I−gsyn(v−vsyn)
with gsyn ≥ 0. Since we are interested in the estimation of conductance gsyn in spiking regimes, we will
focus in the region of the parameter space where the model presents a limit cycle crossing the two switching
manifolds v = a/2 and v = (1+a)/2. Several approximations of the period T of the limit cycle, exhibited
by the McKean model (1) with gsyn = 0 have been recently studied. In Coombes (2008), the period
T is computed numerically for different constant inputs Itotal. In other works, such as Abbott (1990),
Coombes (2001), and Tonnelier (2003), the approximation of T has been carried out by considering the
singular limit (C = 0) of the limit cycle, which consists of segments of orbits from both subsystems, the
slow and the fast one. The approximation is then obtained from the total amount of flight times on the
slow manifold. We note that this value coincides with the constant term of the power series expansion in
C of the period T . More recently, in Fernández-Garćıa et al (2015), the authors provide an approximate
expression of the period T by taking advantage of the slow invariant manifolds for 0 < C � 1. In this
case, T is approximated by computing the flight time of the limit cycle in each lateral region, i.e. in
v < a/2 and v > (1+ a)/2, by reducing the flow to the slow manifold; and supposing that the flight time
in the central band, i.e. in a/2 < v < (1 + a)/2, is negligible.

In this paper, we compute an approximated expression, T̂ , of the period function, T , which provides
two new contributions to the existing literature. The first one is that, instead of approximating the flight
time in the lateral regions by reducing the flow to the slow manifold, we compute the exact value of this
flight time. The second one is that we consider the flight time in the central region to be non-negligible.
As we will show in Section 3.2, numerical evidences support the goodness of the approximated period
function in the sense that the absolute error, |T − T̂ |, is O(Cα), with α ≈ 0.88 < 1.

This new approximation of the period function denoted by T̂ , depends on the parameters of the
model, and, in particular, on the synaptic conductance gsyn and the applied current I, i.e. T̂ (gsyn, I).

As we prove in this article, the dependence of T̂ on the synaptic conductance, gsyn, is non-linear but

seems to be monotonic for the range of input current values for which T̂ has sense; that is, for the input
currents that drive the neuron to regularly spiking. Hence, as a consequence of the monotonicity, by
knowing T̂ and the applied current I (i.e. knowing the f − I curve), one would be able to compute
gsyn by solving numerically a non-linear equation having a unique solution; and so, estimate the steady
synaptic conductance of the neuron, which is the goal of this paper.

We would like to note that, even though some studies consider the synaptic conductances as a constant
input, in real experiments synaptic conductances change along time thus causing non-regular spiking.
Indeed, we have a non-autonomous system which may have a very complicated dynamics. If the changes
in conductances are relatively slow, then we may assume to be “riding” on a periodic orbit with a constant
conductance during a certain time window. This fact suggests that each inter-spike interval (ISI), which
corresponds to the time between two consecutive spikes, can be a good approximation of T for a specific
constant value g̃syn provided that gsyn(t) has a slow variation. Hence, for each ISI we estimate a different
steady conductance and so, we obtain a time course estimation of g̃syn, say ĝsyn(t) , see Section 4.2.

Furthermore, when the rate of variation of gsyn(t) is close to that of V , the estimation ĝsyn(t) can be

improved by taking advantage of the splitting of T̂ into subperiods accounting for the flight times in the
lateral and the central regions, see Section 4.3.

The above explained procedure and the results obtained in this article are distributed in the following
way. In Section 2, we present the model and revise the main features of its qualitative dynamics, namely
the existence and character of equilibrium points, and the conditions on the parameters that ensure the
existence of a limit cycle. In Section 3, we present the expression T̂ that we obtain as an approximation of
the period T , showing numerical evidences that T̂ is a monotonically decreasing function of the synaptic
conductance gsyn. In Section 4, we deal with the estimation procedure, where we are able to infer, in
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Section 4.2, a steady synaptic conductance from the cell’s oscillatory activity; and, in Section 4.1, we
extend the results to a more realistic case, where we present a proof of concept to estimate the full time
course of the conductance. The conclusions are presented in Section 5.

2 Qualitative analysis of the model

Let us consider the modified McKean model given by system (1). This system is a non-symmetric con-
tinuous piecewise linear system that it is defined in three different regions, being

{
(v, w) ∈ R

2; v < a/2
}

the left region,
{
(v, w) ∈ R

2; v > (1 + a)/2
}
the right region, and

{
(v, w) ∈ R

2; a/2 ≤ v ≤ (1 + a)/2
}
the

central (or middle) one. Along the paper we will use the symbols L, R and M to refer these regions,
respectively.

Observe that system (1) is not globally differentiable but piecewise differentiable. Moreover, since
parameter C is assumed to be small, system (1) is endowed with a slow-fast dynamics, being the membrane
potential, v, the fast variable, meanwhile the auxiliary variable, w, is the slow one. Notice that the
dynamics of system (1) is parameterized by the slow time.

The function f(v) depends piecewise linearly on the parameter v, with different slopes according to
the three different zones defined by the model. Therefore the v-nullcline is a piecewise linear function
whereas the w-nullcline is a straight line, see Figure 1.
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Figure 1: Representation of the v- and w-nullclines. The black dotted trace is the v-nullcline of
system (1) and the black dashed trace is the w-nullcline. Filled circles describe the switching points, from
one region to the other. The expression of the slopes of the nullclines as well as the coordinates of the
switching points are also given on the figure.

On the other hand, the determinant and the trace of the model vary across the different regions.
In the central region, the determinant is given by dM = (γ(gsyn − 1) + 1)/C whereas the trace is tM =
−((gsyn−1)/C+γ). In the lateral regions, the determinants and traces are dL = dR = (γ(1+gsyn)+1)/C
and tL = tR = −((1 + gsyn)/C + γ), respectively, where the subscript L stands for the left region and
R for the right one. As a consequence, different equilibrium points can coexist in the model and they
can also be located in different regions. These facts depend on the value of the external input I and the
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synaptic conductance gsyn, as it is illustrated in Figure 2, where I1 and I2 are defined as

I1 =
(a
2
− vsyn

)
gsyn +

(γ + 1)a− 2v0 + 2γw0

2γ
,

I2 =

(
a+ 1

2
− vsyn

)
gsyn +

(γ + 1)a− 2v0 + 2γw0 − γ + 1

2γ
.

(2)

In fact, Ij ≡ Ij(gsyn; vsyn, γ, a, v0, w0), j = 1, 2, but we will omit these dependencies to simplify the
notation. Note that when gsyn < 1 − 1/γ, lines I = I1 and I = I2 are the subcritical saddle-node-like
bifurcations, where two equilibrium points annihilate one each other after they collide.

I1

I2

gsyn = 1− 1/γ
gsyn(mS/cm2)

I(
m
V
)

Figure 2: Location of the equilibrium points. According to expressions in (2), the solid blue line
represents I = I2 whereas the solid red line represents I = I1. The dotted line is gsyn = 1 − 1/γ.
Each picture on the figure represents the three different regions of system (1) (left, central and right)
separated by vertical segments. The solid piecewise line corresponds to the v-nullcline whereas the dashed
line stands for the w-nullcline. The dots on their intersection are the equilibrium points. The different
locations and configurations of equilibria follow from Proposition 1 and from the arguments used in its
proof.

In the next proposition, we show necessary and sufficient conditions to ensure existence and uniqueness
of an equilibrium point of system (1) located in the central region or on either of the two switching
manifolds. We point out that, from the arguments used in the proof of this proposition, the rest of
possible locations and configurations of equilibrium points given in Figure 2 follows.

Proposition 1. Let us consider system (1) satisfying that gsyn > 1 − 1/γ and I ∈ [I1, I2]. Then, this
system has a unique equilibrium point and it is located

a) in the interior of the central region, if and only if I1 < I < I2;

b) on the switching manifold v = a/2, if and only if I = I1;

c) on the switching manifold v = (1 + a)/2, if and only if I = I2.

Proof. The equilibrium points of system (1) are given by the solutions of

−f(v) + (gsyn +
1

γ
)v =

v0
γ

− w0 + gsynvsyn + I and w =
v − v0

γ
(3)
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where f(v) takes its expression according to the corresponding region. Therefore, we proceed by consid-
ering each of the regions separately.

Let us first consider the left region. Since f(v) = −v, gsyn ≥ 0 and γ > 0, the unique solution of
system (3) is given by the point pL = (vL, wL), where

vL =
γ(I − w0 + gsynvsys) + v0

1 + γ(1 + gsyn)
and wL =

I − w0 + gsyn(vsyn − v0)− v0
1 + γ(1 + gsyn)

.

Therefore, by imposing that vL < a/2, it follows that pL is an equilibrium point in this region if and
only if I < I1

In the central region, where f(v) = v−a, the unique solution of system (3) is the point pM = (vM , wM )
given by

vM =
γ(I − w0 + gsynvsyn − a) + v0

1− γ(1− gsyn)
and wM =

I − w0 + gsyn(vsyn − v0) + v0 − a

1− γ(1− gsyn)
.

Hence, by forcing vM to lie in the interval [a/2, (a+1)/2], pM is an equilibrium point if and only if either
of the pair of inequalities

gsyn > 1− 1

γ
and I1 ≤ I ≤ I2; or gsyn < 1− 1

γ
and I2 ≤ I ≤ I1,

are held. However, notice that the first component of the equilibrium point is exactly v = a/2 when
I = I1, and so the equilibrium point is located in the left switching manifold. Similarly, when I = I2,
the equilibrium point is located in the right switching manifold. Otherwise, i.e. when I1 < I < I2, the
equilibrium point stays inside the central region.

We remark that in the case where gsyn = 1 − 1/γ, if I = I1 = I2 all points along the central part of
the v-nullcline are equilibrium points. This fact is caused by the slopes of v and w nullclines being the
same.

Finally, in the right region, i.e. when f(v) = 1 − v; the unique solution of system (3) is the point
pR = (vR, wR) given by

vR =
γ(I − w0 + gsynvsyn + 1) + v0

1 + γ(1 + gsyn)
and wR =

I − w0 + gsyn(vsyn − v0)− v0 + 1

1 + γ(1 + gsyn)
.

Since gsyn ≥ 0 and γ > 0, by imposing that vR > (1 + a)/2, an equilibrium point in this region exists if
and only if I > I2.

Hence, we only have an equilibrium point located in the central region when both conditions gsyn >
1− 1/γ and I1 ≤ I ≤ I2 hold, proving the proposition.

Remark 1. By Proposition 1, when gsyn > 1− 1/γ and I1 < I < I2 system (1) has only one equilibrium
point which lies in the interior of the central region. Let us call such point as pM = (pv,M , pw,M ). When
each linear system which is part of the vector field is considered to be defined on the full plane, then two
more zeros appear: one from the system described in the left zone, pL = (pv,L, pw,L), and another from
the system in the right zone, pR = (pv,R, pw,R). Under these assumptions, these two points are located
in the central region and, even thinking that they have influence on the global dynamics, they are not
equilibrium points of system (1). These points are called virtual equilibrium points. Finally, note that
when I = I1 or I = I2, pM coincides with pL or pR, respectively.

Even though the full model is not linear, its behaviour is locally governed by the eigenvalues associated
with each one of the linear subsystems. Note that these eigenvalues vary across the three different zones
(left, central and right). In each region, there exist two different eigenvalues: one of O(C0), which is
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responsible for the slow dynamics, and denoted by the subscript s; and another one of O(C−1), which is
responsible for the fast dynamics, and denoted by the subscript q. These eigenvalues are given by

λs,L = λs,R = − 1

2C

(
1 + gsyn + Cγ −√

(1 + gsyn − Cγ)2 − 4C
)
,

λq,L = λq,R = − 1

2C

(
1 + gsyn + Cγ +

√
(1 + gsyn − Cγ)2 − 4C

)
,

λs,M =
1

2C

(
1− gsyn − Cγ −√

(gsyn − 1− Cγ)2 − 4C
)
,

λq,M =
1

2C

(
1− gsyn − Cγ +

√
(gsyn − 1− Cγ)2 − 4C

)
.

They may correspond to either focus or node equilibrium points, depending on the values of the param-
eters gsyn, γ and C. However, for sufficiently small values of C, one can guarantee that all equilibrium
points are nodes since all the discriminants are positive when C = 0. In fact, all the equilibrium points
are nodes if and only if C ≤ C∗ where

C∗ = min

{
2 + γ(gsyn + 1)− 2

√
1 + γ(gsyn + 1)

γ2
,
2 + γ(gsyn − 1)− 2

√
1 + γ(gsyn − 1)

γ2

}
.

In this case, we call vi,j = (λi,j + γ, 1) to the eigenvector associated with the eigenvalue λi,j , where
i ∈ {s, q} and j ∈ {L,R,M}. Notice that the slow motion takes place along manifolds that are defined
by the eigenvector associated with the slow eigenvalue. Since the eigenvector depends on the region, we
obtain three different slow manifolds. We refer each slow manifold as Sj where j ∈ {L,R,M}, which are
given by

SL =

{
(v, w); v <

a

2
and w = pw,L +

v − pv,L
λs,L + γ

}
,

SR =

{
(v, w); v >

1 + a

2
and w = pw,R +

v − pv,R
λs,R + γ

}
,

SM =

{
(v, w);

a

2
≤ v ≤ 1 + a

2
and w = pw,M +

v − pv,M
λs,M + γ

}
,

(4)

where pv,j and pw,j are the first and second components, respectively, of pj (see Remark 1).
Since the piecewise differential system (1) is locally linear, it can be analytically solved at each region

separately, being the local solutions(
v(t)
w(t)

)
= c1,ie

λs,itvs,i + c2,ie
λq,itvq,i + pi, (5)

where i represents either L, M or R depending on the region being left, central or right, respectively; and

c1,i =
v(0)− pv,i − (λq,i + γ)(w(0) − pw,i)

λs,i − λq,i
, c2,i = w(0)− c1,i − pw,i. (6)

Notice that equation (5) only represents a local expression of the solution of system (1). As long as the
orbit, given by a fixed initial condition, remains in one region, this orbit is given by the expression of
the solution of the system obtained in this particular region; however, if the orbit crosses to another
region, the orbit is given by the corresponding expression obtained in this new region, which depends on
the different eigenvalues and initial conditions. Since the vector field defined by system (1) is globally
non-linear, system (1) may exhibit limit cycles (see Llibre et al (2013)). In next proposition we give a
sufficient condition so that system (1) can have a limit cycle.
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Proposition 2. Consider the following assumptions

gsyn > 1− 1/γ, |gsyn + Cγ| < 1 and 0 < C ≤ C∗.

Then,

a) if I1 < I < I2, system (1) exhibits a unique limit cycle, this orbit crosses the two switching manifolds
v = a/2 and v = (a+ 1)/2, and it is stable.

b) if I = I1 or I = I2, system (1) exhibits a homoclinic orbit to the equilibrium point pM , this orbit is
stable from the exterior and delimits an open region which is foliated by homoclinic orbits to pM .

Proof. Let us consider system (1) written in its Liénard form. To do that, we make the two different
changes of variables. First, we switch to (v, u) through w = C(u + γv) and, second, we introduce (x, y)
where x = 4v − 2a− 1 and Cy = 4Cu+ Cγ(2a+ 1)− 4I + 2a− 1 (see Section 2 in Llibre et al (2013)).
Then, moving the origin to the point (0, ((2a+1− yvsyn)gsyn +4w0)/C), the Liénard form of system (1)
is given by {

ẋ = F (x)− y
ẏ = G(x) − δ

where δ = − 1
C (2a (γ + γgsyn + 1)− γ + γgsyn + 1− 4v0 + 4γ (w0 − I − gsynvsyn)),

F (x) =

⎧⎨
⎩

tL(x+ 1)− tM x < −1,
tMx −1 ≤ x ≤ 1, and
tR(x− 1) + tM x > 1,

G(x) =

⎧⎨
⎩

dL(x+ 1)− dM x < −1,
dMx −1 ≤ x ≤ 1,
dR(x− 1) + dM x > 1.

By Proposition 1, since gsyn > 1−1/γ and I1 < I < I2, only one equilibrium point exists and it is located
in the interior of the central region. Moreover, since gsyn > 1− 1/γ and |gsyn +Cγ| < 1, the parameters
of the functions F (x) and G(x) satisfy that dM > 0, −dM < δ < dM , dL, dR ≥ 0, tL, tR < 0, and tM > 0.
Hence, the existence and uniqueness of a limit cycle (isolated periodic orbit) surrounding the equilibrium
point is guaranteed by Theorem 1 in Llibre et al (2013).

Finally, since 0 < C ≤ C∗ and tM > 0, the equilibrium point is a repelling node. Consequently, the
invariant lines defined by the eigenvectors force the limit cycle to cross the three regions, which ends the
proof of the statement (a).

In order to prove the statement (b), let us consider the case where I = I1. Then, let qL = (vL, wL)
and qR = (vR, wR) be the intersection points of the left and right slow manifolds (see equation (4)) with
the vertical lines v = a/2 and v = (1 + a)/2, respectively; and let q∗∗

R = (v∗∗R , w∗∗
R ) be the intersection

point of the w-nullcline with the vertical line v = (1 + a)/2, see Figure 3.
In this case, the equilibrium point, pM (that exists and it is unique from Proposition 1), coincides

with the virtual equilibrium point of the left region, pL. Since it is contained in the intersection of SL

and SM , which are respectively stable and unstable manifolds, the equilibrium point is a saddle node and
qL = pL. Moreover, taking into account that I = I1,

qL =

(
a

2
,
a− 2v0

2γ

)
, qR =

(
1 + a

2
, pw,R +

1

λs,R + γ

(
1 + a

2
− pv,R

))
, and

q∗∗
R =

(
1 + a

2
,
1 + a− 2v0

2γ

)
.

Consider now the closed region delimited by the union of the line segments Li, i = 1 . . . 5, defined as
follows:

i) L1 denotes the line segment bounded by qL and the intersection point of SR with the line w = wL,
which we denote by q∗

1,R;
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ii) L2 denotes the segment of SR that is bounded by q∗
1,R and qR;

iii) L3 denotes the vertical line segment bounded by qR and q∗∗
R ;

iv) L4 denotes the line segment bounded by q∗∗
R and the intersection point of SL with the line w = w∗∗

R ,
which we denote by q∗

1,L; and, finally,

v) L5 denotes the segment of SL that is bounded by q∗
1,L and qL.

Looking at the direction of the flow, one can see that the w-component of the flow in L1 is given by
ẇ = v− a/2, which is positive in the line segment under consideration, and so the flow positively crosses
L1. Similarly, the w-component of the flow on L4 is given by ẇ = v − (1 + a)/2, which is negative in
the line segment under consideration, and so the flow positively crosses L4. On another hand, segments
L2 and L5 are contained in the slow manifolds SR and SL, respectively; this fact implies that both line
segments are invariant under the flow. Finally, notice that the flow positively crosses the line v = (1+a)/2
if and only if v̇ > 0, and so

w|v=(1+a)/2 > 1− 1 + a

2
− w0 + I − gsyn

(
1 + a

2
− vsyn

)
.

Straightforward calculations show that, for a sufficiently small C, both wR and w∗∗
R are greater that

w|v=(1+a)/2, and so the flow crosses the line segment L3 positively, showing that the closed region obtained
by these five segments is a compact set invariant under the flow of system (1); see Figure 3 (left) for a
representation of both the invariant region and the direction of the flow. By Poincaré-Bendixson theorem
(see for instance Hartman (1982, Th. 4.1)), if there exists a limit cycle in the entering compact set, then
there must exist an equilibrium point in its interior. However, the unique equilibrium point lies on the
boundary of the closed region. Therefore, there cannot be limit cycles in the interior of the compact set.
Consequently, again by Poincaré-Bendixson theorem, the unique α- and ω-limit sets are on the boundary
of the closed region. Hence, there exists a continuum of homoclinic orbits from the equilibrium point to
itself, with the biggest homoclinic orbit stable.

I = I1 I = I2

qL q∗
1,R

qR

q∗∗
Rq∗

1,L

L1

L2

L3

L4

L5

qL
q∗∗
L q∗

2,R

qRq∗
2,L

Figure 3: Invariant region and direction of the flow. Representation of the invariant regions and
the direction of the flow when I = I1 (left) and I = I2 (right). The dashed black lines represent the three
slow manifolds, whereas the dotted black line is the w-nullcline. Vertical dotted grey lines represent the
two switching manifolds, v = a/2 (left line in each subplot) and v = (1+a)/2 (right line in each subplot).
The solid red line represents the boundary of each invariant region and the arrows give us information
about the direction of the flow. See Proposition 2(b) for more details.
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Similar arguments can be applied to prove the result when I = I2, where in this case qR = pR. In
Figure 3 (right), we depict a representation of the invariant region and the directions of the flow in this
case.

Remark 2. Note that, under the suitable conditions

gsyn > 1− 1/γ, |gsyn + Cγ| < 1, I1 < I < I2, and 0 < C ≤ C∗, (H)

the regular firing behaviour persist for gsyn ≥ 0.

Figure 4 represents the different phase portraits obtained when we change the value of the capacitance
(when C = 0 and 0 < C ≤ C∗) and also the value of the applied current (when I = I1, I1 < I < I2, and
I = I2). Notice that these configurations are obtained from Proposition 2.

I

C

I1 I2

0

C∗

Figure 4: Bifurcation diagram. Representation of the bifurcation diagram with the phase portraits of
the limit cycles for different values of C and I under conditions gsyn > 1− 1/γ and |gsyn +Cγ| < 1. The
phase portraits are obtained with the following parameter values: a = 0.25, v0 = 0, γ = 0.5, gsyn =
0.2, w0 = 0, and vsyn = 1/4+a/2. The red dotted lines stand for the slow manifolds, whereas the dashed
black lines stand for the v-nullcline.

3 Quantitative analysis of the limit cycle period

As we have mentioned in the Introduction, related works such as Tonnelier (2003) and Fernández-Garćıa et al
(2015), among others, make approximations of the period T of the limit cycle in system (1), where gsyn
is considered to be identically zero. In this section we present a more accurate approximation of T , which
also takes into account the case when gsyn is not identically zero. This improvement is, basically, obtained
by considering the flight time in the central region and using a better approximation of the flight time in
the lateral regions.

From now on, let us assume that the hypothesis (H) is satisfied. Hence, by Proposition 2(a), the
considered model given by system (1) has a unique limit cycle that intercepts the three different regions;
and so, the period of the limit cycle can be split into four parts: the first one corresponds to the time
that the orbit is contained in the left region; the second part is the time taken by the orbit to cross the
central zone from left to right following a counterclockwise movement; the third is the sub-period that
the orbit lies in the right region; and, finally, the last part corresponds to the time taken by the orbit to
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cross the central part from right to left (see Figure 5). The total period, T , is then the sum of these four
sub-periods.

In the singular limit, that is when C = 0, the limit cycle does not longer exist. In fact, when C tends
to zero, the limit cycle orbit tends to a limit set composed by two line segments on the critical manifold
(slow subsystem) plus two more line segments on the stratified flow (fast subsystem), see Figure 4. We
refer the reader to Prohens et al (2016) for an overview on piecewise slow-fast dynamics terminology.

Comparing the flight time on the different segments, the one corresponding to the two line segments
of the stratified flow can be considered zero with respect to the flight time on the two line segments of
the critical manifold. Hence, we consider the flight time on the two line segments of the critical manifold,
T0, as the limit of T when C tends to zero.

In the following subsections, we first provide an analytical expression approximating the period and
then we computationally check the goodness of such approximation.

3.1 An approximation of the period of the limit cycle

In the following proposition we give an approximation, T̂ , of the total period. We also show that the
singular limit of this expression results to be T0.

Proposition 3. Given system (1) under hypothesis (H),

a) If C = 0, the flight time on the two line segments of the critical manifold is T0 = T0,L + T0,R such
that

T0,L = B0 ln

(
γ(I − I1)

γ(I − I1) +K0

)
, and T0,R = B0 ln

(
γ(I − I2)

γ(I − I2)−K0

)
(7)

B0 = − 1 + gsyn
(1 + γ + γgsyn)

; K0 =
(1− gsyn)(1 + γ + γgsyn)

2(1 + gsyn)

b) For a sufficiently small C > 0, the period of the unique limit cycle orbit of the system can be
analytically approximated by T̂ = TL + TMu + TMd + TR, where

TL =
1

λs,L
ln

(∣∣∣∣ γ(I − I1)

γ(I − I1)−Kl

∣∣∣∣
)
, TMd =

1

λq,M
ln

(∣∣∣∣ γ(I − I2) +Km

γ(I − I2) +Km,d

∣∣∣∣
)
,

TR =
1

λs,L
ln

(∣∣∣∣ γ(I − I2)

γ(I − I2) +Kl

∣∣∣∣
)
, TMu =

1

λq,M
ln

(∣∣∣∣ γ(I − I1) +Km

γ(I − I1) +Km,u

∣∣∣∣
)
,

(8)

where

Kl =
γ + λq,L

2(λq,L − λs,L)
(gsynγ + γ + 2λs,L + 1),

Km =
(γ + λs,M )(gsynγ − γ + 1) ((gsynγ + 1)(λs,L − λq,M )− γ(λs,L + λq,M )− 2λs,Lλq,M )

2(γ + λq,M ) ((gsynγ + 1)(λs,L − λs,M )− γ(λs,L + λs,M )− 2λs,Lλs,M )
,

Km,d =
(λq,M − λs,M )(γ + λq,M )(gsynγ − γ + 1)(gsynγ + γ + 2λs,L + 1)

2(γ + λq,M ) ((gsynγ + 1)(λs,L − λs,M )− γ(λs,L + λs,M )− 2λs,Lλs,M )
,

Km,u =
(γ + λq,M )(gsynγ − γ + 1) ((gsynγ + 1)(λs,L − λs,M )− γ(λs,L + λs,M )− 2λs,Lλs,M )

2(γ + λq,M ) ((gsynγ + 1)(λs,L − λs,M )− γ(λs,L + λs,M )− 2λs,Lλs,M )
.

Proof. Let us consider first the singular case when C = 0. In this case, since the left term of the first
equation of system (1) vanishes, v can be isolated and replaced in the second equation of system (1)
obtaining the following non-autonomous linear ordinary differential equations

ẇ = −(1 + γ)w − w0 − v0 + I − Isyn if v < a/2;
ẇ = −(1 + γ)w − w0 − v0 + I − Isyn + 1 if v > (1 + a)/2.

(9)
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From this system, the flight time on the two line segments of the critical manifold can be analytically
obtained by integrating the ẇ equation at each lateral region separately. From the first differential
equation in (9), which corresponds to the left region, integrating from t = 0 to t = T0,L we calculate the
left flight time T0,L; and, from the second differential equation, which corresponds to the right region,
integrating from t = 0 to t = T0,R, we calculate the right flight time T0,R. Then, we obtain the expressions
(7), which proves statement (a).

Consider now the perturbed case, that is when C > 0 and small enough. In this situation, it is well-
known that the limit cycle evolves exponentially close to the lateral slow manifolds when they intersect
the switching manifolds, see Fernández-Garćıa et al (2016). The intersection point with the left (resp.
right) switching manifold is called qL (resp. qR), see Figure 5. Therefore, different techniques from the
ones used when C = 0 are required to find an approximated period.

Since the period can be split into four parts, we can approximate them separately. Let us first approx-
imate the central sub-periods, TMd and TMu, defined as the bottom and upper sub-periods, respectively.
Let qM,L and qM,R be the intersection points of the central slow manifold with v = a/2 and v = (1+a)/2,
respectively (see Figure 5 for a representation of these points).

v = a/2 v = (1 + a)/2

TMd

TMu

TL TR

q̃L

qL

pL

q̄L

q̃R

qR

pR

q̄R

pM

qM,L

qM,R

v

w

Figure 5: Key points when C > 0. Representation of all the elements needed to find the expression of
the period. The vertical dashed black lines represent the boundaries of the different regions and the rest
of dashed black lines illustrate TL, TMd, TR and TMu. The dotted lines represent the critical manifold,
whereas the red lines represent the three slow manifolds. These manifolds have been artificially prolonged
in grey dotted lines and grey solid lines, respectively, for a better visualization of the virtual singular
points. Green line stands for the w-nullcline. See the proof of Proposition 3 for more details.

Since the distance between the slow and critical manifolds of system (1) is of O(C), see Prohens et al
(2016), the distance between qL and qM,L is also of O(C). Moreover, the distance between qR and qM,R

is also of O(C). In fact, notice that qL (resp. qR) tends to qM,L (resp. qM,R) when C tends to zero. The
limit cycle follows the left slow manifold very close to it and crosses from the left region to the central
one at some point between qL and qM,L, exponentially close to qL. Similarly, the orbit moves very close
to the right slow manifold and crosses from the right region to the central one at some point between qR

and qM,R, also exponentially close to qL (see Figure 4). Hence, since C is close to 0, one can assume that
the integral curve through qL, which is contained in the central region, will remain in a neighbourhood
of the limit cycle, and similarly for the integral curve through qR. Therefore, we consider qL and qR as
an approximation of two points where the limit cycle passes through.
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Then, consider the central solution of the system, which is given in equation (5) when i = M , with qL

and qR as initial conditions. Since the fast eigenvalue λq,M is O(C−1) whereas the slow eigenvalue λs,M is
O(C0) and C is sufficiently small, one can suppose that λs,M = 0 and, consequently, find an expression of
the sub-periods TMd and TMu. Indeed, under the previous assumptions on the initial conditions, the sub-
period TMd corresponds to the piece of orbit that begins at qL and ends on the boundary v = (1 + a)/2
at a point that we call q̃R. By imposing that v(t) = (1 + a)/2 and λs,i = 0 in the first component of
equation (5) when i = M , the sub-period TMd is the result of isolating the time t. That is,

TMd =
1

λq,M
ln

(∣∣∣∣ γ(I − I2) +Km

γ(I − I2) +Km,d

∣∣∣∣
)
,

where Km and Km,d are given in the statement of this proposition.
Similarly, the sub-period TMu corresponds to the piece of orbit that begins at qR and ends on the

boundary v = a/2 at a point that we call q̃L. Therefore, following the same procedure as for TMd, we
obtain that

TMu =
1

λq,M
ln

(∣∣∣∣ γ(I − I1) +Km

γ(I − I1) +Km,u

∣∣∣∣
)
,

where Km,u is described in the statement of this proposition.
Notice that both points q̃R and q̃L can be analytically computed by using the second coordinate of

equation (5), since TMd and TMu are known, and the component v of q̃R and q̃L is v = (1 + a)/2 and
v = a/2, respectively. Then, the approximated period on the lateral regions will be the necessary time
to travel from q̃L to qL for the left sub-period, TL, and the necessary time to travel from q̃R to qR for
the right sub-period, TR.

Let us consider the coordinate system centered at the virtual equilibrium point pL and generated
by the left eigenvectors vs,L and vq,L. In this coordinate system q̃L = pL + c̄1vs,L + c̄2vq,L and qL =
pL+ c1vs,L. Let q̄L = pL+ c̄1vs,L be the projection of q̃L on the slow manifold along the direction given
by the fast eigenvector vq,L.

The time TL is computed as the time spent by the limit cycle to go from q̄L to qL. See Figure 5 for
a representation. Then, by isolating t in expression

etλs,L c̄1‖vs,L‖ = c1‖vs,L‖,
we obtain

TL =
1

λs,L
ln

c1
c̄1
.

The expressions of c1 and c̄1 can be easily obtained from expression (6).
The expression of TR can be, similarly computed, by considering the expression of the points qR and

q̄R in the coordinate system centered at the virtual equilibrium point pR, and generated by the right
eigenvectors vs,R and vq,R.

Therefore, an expression approximating the period of the limit cycle in system (1) is T̂ = TL+TMd+
TR + TMu, thus proving statement (b).

Remark 3. Note that, since q̄L is the projection of q̃L on the slow manifold along the direction given by
the fast eigenvector vq,L and system (1) is linear in the left region, the sub-period TL is the flight time
between q̃L and qL. Similarly, the sub-period TR is the flight time between q̃R and qR.

Remark 4. When C tends to 0, TL −→ T0,L, TMd −→ 0, TR −→ T0,R, and TMu −→ 0. Therefore,

T̂ −→ T0. Moreover, both for C = 0 and C > 0, the left sub-period tends to infinity when I tends to
I1. This limit agrees with the fact that, when I = I1, the equilibrium point lies on the intersection of the
central slow manifold with the vertical line v = a/2; therefore, the orbit reaches the equilibrium point and
spends infinite time to escape. Similar arguments explain why the right sub-period tends to infinity when
I tends to I2.
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Remark 5. Notice that, Kl, Km, Km,d, and Km,u in the expression T̂ of Proposition 3, have a non-linear
dependence on gsyn. Moreover, fixing all parameters in the model but keeping the synaptic conductance,
gsyn, the applied current, I, and the parameter related to the capacitance of the neuron, C, as variable,
then the approximated period can be written as the function

T̂ (C, I, gsyn) = TL(C, I, gsyn) + TMd(C, I, gsyn) + TR(C, I, gsyn) + TMu(C, I, gsyn).

3.2 Goodness of the approximated period function

As we have mentioned in the proof of Proposition 3, in order to approximate the period, we have
assumed that the points qL and qR belong to the limit cycle, because they are exponentially close to
the orbit. To see the global effect that this assumption causes, and so the goodness of fit, in Figure 6,
we show the relative error of the approximated period function T̂ (C, I, gsyn), first, keeping constant de
parameter gsyn (panel A); second, keeping constant de capacitance C (panel B); and, finally, keeping
constant de applied current I (panel C). The relative errors have been plotted, in all panels, considering
the numerical solution of the period, which has been computed using the Newton-Raphson method in
each region separately, as well as the actual one (see Appendix B.1 for details on the routine). In panel
A we can see how the relative error in the proposed approximation function depends more significantly
on the capacitance C than on the applied current I. On the other hand, in panel B, one can see that,
when parameter I varies, for a fixed value of gsyn, the error is not qualitatively altered, but for larger
values of gsyn, the relative error significantly increases; see also panel C, where we can better appreciate
the errors in gsyn as C changes.

Observe that even though T̂ (C, I, gsyn) is defined for all values of C, gsyn and I, computing T̂ makes
sense only under the hypothesis (H), that is, when I lies in (I1, I2) and gsyn ∈ (1−1/γ, 1−Cγ). Figure 8

shows the shape of the approximated period function T̂ (C, I, gsyn) in the corresponding domain. As we
have mentioned in Remark 4, the period substantially increases when I is close to I2 and I1, tending to
infinity. Moreover, the V -shaped domain of the function T̂ (C, I, gsyn) is given by the linear dependence
that I1 and I2 have on gsyn. That is, as we decrease the value of gsyn, the value of I1 is greater whereas
the value of I2 is smaller; consequently, the window where I can move decreases and causes the V -shaped
profile.

In Figure 7 we illustrate the asymptotic dependence of the absolute error with respect to C, showing
a good linear fit of log(|T − T̂ |) versus log(C). The slope of this linear fitting provides the order of the
absolute error in terms of C. In Panel A we can observe, for different values of gsyn, that all traces have
an initial slope smaller than one (comparing coloured lines versus the black thick dashed line) and similar
to 0.88 (comparing coloured lines versus the black thin dashed line). Hence, our estimation procedure
gives an absolute error of O(Cα) with α ≈ 0.88. In Panel B, we compare the error |T − T̂ | with that
obtained after avoiding the fast motion and reducing the flow to the slow manifold. We can see that our
method reduces the absolute error for any value of gsyn.

Remark 6. In Figure 8 we can also see that T̂ (C, I, gsyn) seems to be monotonically decreasing with
respect to gsyn. Because of the multitude of parameters in the model, we have not been able to give an

analytical proof of the monotonicity of T̂ . However, computational evidences are given, see Figures 8 and
A. Note that, by assuming monotonicity, for a given value T ∗ of the period, there exists a unique value
g∗syn such that T̂ (C, I, g∗syn) = T ∗. In order to avoid possible situations of lost of monotonicity, in the
estimation procedure of gsyn we have implemented a control to ensure, under some tolerance value, that

the derivative of T̂ never vanishes.
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Figure 6: Goodness of fit of the periodic function T̂ (C, I, gsyn). Panel A shows the relative error
of the period for a fixed synaptic conductance gsyn = 0.2, panel B shows the relative error of the period
when the capacitance is fixed as C = 1e− 4, and panel C shows the relative error of the period when the
applied current is fixed as I = (I01 + I02 )/2 such that I01 and I02 are, respectively, the value of I1 and I2
corresponding to gsyn = 0. The relative error of the numerical value obtained using the Newton-Raphson
method to the Poincaré map associated with respect to the approximated one using the expression in
Proposition 3. The rest of parameters of the model are fixed as a = 0.25, v0 = 0, w0 = 0, γ = 0.5, and
vsyn = 0.25 + a/2.

4 Estimation of the synaptic conductance

In this section we present a method to estimate the steady synaptic conductance from the cell’s
oscillatory activity. That is, assuming that gsyn is constant and knowing the frequency of the spikes
for a fixed and constant injected current I, we want to estimate the synaptic current that the neuron is
receiving. The procedure will be then extended to estimate the time course of the non-steady synaptic
conductance.
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Figure 7: Asymptotic dependence of the absolute error with respect to C. Panel A shows the
log(C) versus de log(|T − T̂ |) for ten equally spaced values of gsyn, moving from 0.1 (bottom coloured
trace) to 0.7 (upper coloured trace). Black thick dashed trace stands for a line of slope 1 whereas the
thin one stands for a line of slope 0.88. Panel B represents the error |T − T̂ | (red traces) and the error
obtained after avoiding the fast motion and reducing the flow to the slow manifold (blue traces), for the
same different values of gsyn. In both panels, the applied current is fixed as I = (I01 + I02 )/2 such that I01
and I02 are, respectively, the value of I1 and I2 corresponding to gsyn = 0. The rest of parameters of the
model are fixed as a = 0.25, v0 = 0, w0 = 0, γ = 0.5, and vsyn = 0.25+ a/2. The numerical period T has
been obtained applying the Newton-Raphson method to the Poincaré map associated with the periodic
orbit.

ˆ

Figure 8: Shape of the T̂ (C, I, gsyn) function. This figure shows the shape of the approximated period

T̂ versus the applied current I and the synaptic conductance gsyn. The capacitance has been fixed as
C = 1e − 4. The rest of parameters of the model are fixed as a = 0.25, v0 = 0, w0 = 0, γ = 0.5, and
vsyn = 0.25 + a/2.

4.1 Estimation of a steady synaptic conductance

Based on the evidences of the monotonicity of T̂ (C, I, gsyn) with respect to gsyn (see Figures 8 and

A), we assume that there exists a one-to-one correspondence between T̂ and gsyn. Therefore, applying
a specific current, I∗, one can experimentally approximate the corresponding actual period T ∗ of the
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membrane potential v, and so gsyn numerically. In other words, knowing the rest of the parameters of
the model, a unique possible synaptic conductance gsyn can be estimated by solving the implicit equation

T̂ (C∗, I∗, gsyn) = T ∗. (10)

To solve equation (10), one has to take into account that the logarithmic part of the analytical
expression T̂ contains an absolute function and, since I1 and I2 depend on gsyn, we could get up to three
possible gsyn solutions for a fixed I. However, only one of the three possible solutions for gsyn satisfies
that I1 < I < I2. Then, this indetermination can be removed by imposing the additional condition

gsyn > max
(
0, Ī1, Ī2

)
, (11)

where

Ī1 =
2γI − (γ + 1)a+ 2v0 − 2γw0

2γ(a2 − vsyn)
and Ī2 =

2γI − (γ + 1)a+ 2v0 − 2γw0 − γ + 1

2γ(a+1
2 − vsyn)

.

When we apply the estimation procedure (10)-(11) to obtain the estimated synaptic conductance,
ĝsyn, we identify two main sources of error: an error coming from the numerical method used to solve
the implicit equation and another error coming from the approximation of the period function, which
is at most O(Cα) with α ≈ 0.88 (see Section 6). To visualize the impact of both error sources and so
to test the goodness of the estimation procedure, we show the relative error of the estimated synaptic
conductance ĝsyn with respect to the actual value of gsyn, both using different values of applied currents
(see Figure 9(A)), and using different values of the membrane capacitance (see Figure 9(B)). In these
plots we estimate different values of the synaptic conductance (from 0.1 to 0.3, equally spaced), each one
represented by a different colour trace.

In Figure 9(A) we can see how the estimation of the conductance improves when the applied current
is close to I1 and I2. The error of ĝsyn takes its maximum at I = (I1 + I2)/2, where the slope of T̂ (I) is
minimal (in absolute value). On the other hand, in Figure 9(B) we also observe that the relative error
is smaller when the membrane capacitance, C, is smaller; moreover, for small C one can appreciate that
this error is notably less than O(Cα) with α ≈ 0.88. Therefore, we can conclude that the best estimation
is done for small values of C and also for values of I close to I1 or I2. In Figure 9(C) we can better
appreciate how the error increases for large values of C and for values of I far from I1 and I2. This panel
presents the goodness of fit of the synaptic conductance when both parameters C and I change (in this
plot, the relative error is represented in absolute value).

4.2 Generalization for non-constant conductance’s traces: inter-spike esti-
mation.

In this section, we modify the previous methodology in order to estimate conductance’s traces that
slowly vary along time, that is, when gsyn = gsyn(t). Strictly speaking, this leads to a non-autonomous
differential system, and the system may not have a limit cycle as for constant gsyn. However, for slow
changes in the synaptic conductance, even if the limit cycle does not persist, we may assume that the
orbits of the system are close to an oscillatory behaviour. Given an inter-spike interval [t∗, t∗ + τ ], we
propose to apply the associated procedure (10)-(11), that is, solving T̂ (gsyn) = τ to obtain an estimated
ĝsyn on [t∗, t∗ + τ ]. We summarize this idea in the following procedure:

Procedure 1. Consider a voltage trace {v(t), t ∈ [0, Tmax]} obtained from the neuron model (1) under an
(unknown) synaptic input {gsyn(t), t ∈ [0, Tmax]} and a specific applied current I∗ such that they induce
spiking activity. We assume that v(t) reaches N + 1 peaks (maxima of the trace) and call {T (k)}Nk=1 the
corresponding N inter-spike intervals. Then, the time course of the synaptic conductance gsyn(t) can be
estimated from next steps:
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Figure 9: Goodness of fit of the steady synaptic conductance parameter. Panels A and B show
the relative error caused when we estimate the synaptic conductance. The different traces correspond to
different values of gsyn equally spaced from 0.1 to 0.3. Panel A represents the relative error versus the
applied current for a fixed value of C = 10−4, whereas panel B represents the relative error versus the
membrane capacitance for a fixed value of I = I1 + 10−3. Red points in panel A represent the values
of I1 (left points) and I2 (right points) for each gsyn. Panel C shows the relative error in absolute value
for varying values of the membrane capacitance, C, and the applied current, I, being the actual synaptic
conductance gsyn = 0.2. The rest of parameters are fixed as a = 0.25, v0 = 0, w0 = 0, γ = 0.5, and
vsyn = 0.25 + a/2.

1. For each T (k), k = 1, . . . , N , solve (10)-(11) to estimate the corresponding synaptic conductance

value, ĝ
(k)
syn.

2. Assign at ĝ
(k)
syn the time t(k) corresponding to the (k + 1)-th peak to obtain a set of points P :=

{(t(k), ĝ(k)syn)}Nk=1.

As a result of this procedure, we obtain a discrete series of ĝsyn values, which are finally interpolated
to obtain an approximation of the full time course of ĝsyn(t). In the forthcoming examples, we have used
cubic spline interpolation. Notice also that we arbitrarily set t(k) as the last time in the corresponding
interval; we have tested other choices (e.g., the middle point) and no substantial changes have been
observed.

Figure 10 shows some test conductance’s traces which have been created in order to obtain sce-
narios with different spiking intensities. The first two rows present conductance’s traces with low fre-
quency oscillations at different phases: the first one presents high amplitude oscillations, gsyn(t) = 0.2 +
0.2 sin(2πt/10), and the second one combines small with big oscillations, gsyn(t) = 0.2+0.2 sin(2πt/10)+
0.04 sin(2πt/5). In both cases we obtain a good estimation of the conductance, according to the high
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concentration of points on the vicinity of the identity line in the scatter plots, see panels in the second
column of Figure 10. The reconstruction of membrane potential (vrec(t)) obtained using the estimated
conductance’s trace ĝsyn(t) as synaptic input show an excellent agreement with the original membrane
potential trace, see panels in the last column.
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Figure 10: Goodness of fit of the synaptic conductance time course for different functions
of gsyn. The first column shows the estimated values of the discretization of gsyn (black dots) and the
cubic spline interpolation of them (red solid line). The black line corresponds to the actual value of
the synaptic conductance at each time. The second column represents the scatter plot of the actual
versus the estimated synaptic conductance after the interpolation. The red line is the identity line as a
reference to observe the goodness of the estimation. The third column shows a comparison of the voltages
computed using the actual conductance (solid black trace) and the estimated conductance (dotted red
trace). Parameters are a = 0.25, v0 = 0, γ = 0.5, w0 = 0, vsyn = 0.25 + a/2, C = 0.001 μF/cm2, and
I = 0.625 μA/cm2.

In the last row of Figure 10, we consider a new conductance’s trace where both frequency and am-
plitude of the small oscillations have been changed respect to the results in the second row, gsyn(t) =
0.4 + 0.2 sin(2πt/2) + 0.1 sin(2πt/20). In the left panel we can observe that the estimated conductance
does not match with the actual ones, where the fast oscillations have not been captured. However, on
the reconstruction of the membrane potential (see vrec(t) in right panel on the last row), the frequency
is captured, the amplitude of the spikes is not, and a small delay is presented.

From Figure 10, we conclude that for a slowly varying synaptic conductance, the method proposed in
Procedure 1 gives estimates the time course of the synaptic conductance with small errors and reproducing
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the membrane potential with high accuracy. However, confronted to abrupt changes, the performance
of the method weakens and can only track the mean time course of synaptic conductance, whereas the
membrane potential is still well reconstructed.
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Figure 11: Goodness of fit of the time course of synaptic conductance based on inter-spike
intervals. Panel A shows the estimated values of the discretization of gsyn (black dots) and the cubic
spline interpolation of them (red solid line). The black line corresponds to the actual trace of synaptic
conductance. Panel B represents the scatter plot of the actual versus the estimated synaptic conductance
after the interpolation. The red line in Panel B is the identity line, left as a reference to observe the
goodness of the estimation. Panel C shows a comparison of the voltages computed using the actual
conductance (solid black trace) and the estimated conductance (dotted red trace). Parameters are a =
0.25, v0 = 0, γ = 0.5, w0 = 0, vsyn = 0.25 + a/2, C = 0.001 μF/cm2, and I = 0.625 μA/cm2.

To test the estimation of the conductance’s course in a more realistic case, in Figure 11, we use a
1 ms conductance’s traces obtained from a computational network that models layer 4Cα of primary
visual cortex (see McLaughlin et al (2000) and Tao et al (2004)). Panel A shows how the estimated
conductance follows the trace of the actual ones but, as we can also see in Figure 10, higher oscillations
are not well captured. We can corroborate this fact in panel B, where we show that the actual and the
estimated conductance is poorly correlated (the coefficient of correlation is approximately 0.12). In panel
C we compare the voltage computed using the actual conductance’s traces and the estimated ones (after
interpolation). One can appreciate a small time shift of order 0.1 ms that remains almost constant along
the time sequence.

4.3 Generalization for non-constant conductance’s traces: estimation based
on the sub-periods

In the previous section we have seen that for quickly varying conductance, we cannot obtain good
estimations. These misestimations are partly due to the fact that we are assuming the conductance to
be stationary in a quite long time window. To reduce the errors and to better capture the oscillations
of the synaptic conductance, in this section we present a more accurate way to estimate gsyn(t) by
taking advantage of the approximated expression of each sub-period (the time spent in each region)
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separately in terms of gsyn, obtained in the proof of Proposition 3(b). We denoted these sub-periods as
TL, TMu, TMd, TR. Similarly, for any monodromic trajectory of system (1), not necessarily periodic, we
can split the trajectories into pieces lying only on one of the three regions. We denote by τξ the time
spent in region ξ to go from vξ,1 to vξ,2, where ξ stands for L, Md, Mu or R, and the crossing points
vL,1 = vL,2 = vMd,1 = vMu,2 = a/2, vR,1 = vR,2 = vMd,2 = vMu,1 = (1 + a)/2. We understand that
regions Mu and Md are both the central region. With this notation, we present a refined version of the
estimation procedure given in Procedure 1.

Procedure 2. Consider a voltage trace {v(t), t ∈ [0, Tmax]} obtained from the neuron model (1) under an
(unknown) synaptic input {gsyn(t), t ∈ [0, Tmax]} and a specific applied current I∗ such that they induce
spiking activity. We assume that the voltage trace describes N oscillations in the time interval [0, Tmax]

and we define {τ (k)ξ }Nk=1 as the time spent to go from v = vξ,1 to v = vξ,2 in the k-th oscillation, where ξ
stands for L, Md, Mu or R. Then, the time course of the synaptic conductance gsyn(t) can be estimated
by following the next steps:

1. For each k = 1, . . . , N and ξ ∈ {L, Md, Mu, R}, solve

Tξ(C
∗, I∗, gsyn) = τ

(k)
ξ ,

in terms of gsyn, under the constraint (11), and call the solution ĝξ,ksyn.

2. Define the set P = {(tξ,k, ĝξ,ksyn

)
; ξ = L, Md, Mu, R, k = 1, . . . , N}, where tξ,k is the time when

the k-th oscillation crosses v = vξ,2.

As for Procedure 1, we finally interpolate the points of P to obtain an approximation of the full
time course of ĝsyn(t). Note that using Procedure 2 we can extract a more accurate discretization of the
conductance’s trace, as we can see in Figures 12 and 13. If we compare the results from those obtained by
using Procedure 1, for instance comparing the last row of Figure 10 to Figure 12, we observe how all the
oscillations of gsyn(t) are captured both in frequency and amplitude; concerning the reconstructed voltage
in panel C, note that the delay detected when using Procedure 1 has been washed out with Procedure
2. For in silico data, see Figure 11(A) and Figure 13(A), we can also appreciate an improvement of
the estimation when using Procedure 2 even though the improvement is more evident when conductance
changes abruptly. Hence, using Procedure 2 we can capture more oscillations.

When we apply Procedure 2 to the data obtained from the more realistic input to a single cell in
visual cortex, see Figure 13, the agreement between gsyn(t) and ĝsyn(t) improves notably. This fact is
reflected more clearly in panel A (compared to the same panel in Figure 11) rather than in the scatter
plot of panel B, where it is difficult to tell a higher concentration of points around the identity line. Even
though in this case the synaptic conductance is not perfectly estimated along time, we do capture the
accurate mean conductance (mean(gsyn) = 0.6350 and mean(ĝsyn) = 0.6381).

5 Discussion

Difficulties to estimate synaptic conductance when the ionic channels of the postsynaptic cell are
activated have been extensively reported in the literature (see for instance Borg-Graham et al (1998),
Guillamon et al (2006), Vich and Guillamon (2015), and the references therein). The standard approach
of filtering the membrane potential and then fitting the filtered data to a linear model seems to work
only in subthreshold regimes with no active ionic currents. In these low-activity regimes it has also been
shown that quadratic models improve the estimations in a significant way. In spiking regimes, however,
one has to face a greater challenge since the magnitude of ionic currents is far bigger than the magnitude
of the synaptic currents. We need, then, a method that is able to disentangle the ionic activity from
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Figure 12: Goodness of fit of the synaptic conductance time course for the combination of
low and high frequency conductance. Panel A shows the estimated values of the discretization of
gsyn (black dots) and the cubic spline interpolation of them (red solid line). The black line corresponds
to the actual value of the synaptic conductance at each time. Panel B represents the scatter plot of the
actual versus the estimated synaptic conductance after the interpolation. The red line is the identity line
as a reference to observe the goodness of the estimation. Panel C shows a comparison of the voltages
computed using the actual conductance (solid black trace) and the estimated ones (dotted red trace).
The other parameter values are a = 0.25, v0 = 0, γ = 0.5, w0 = 0, vsyn = 0.25+a/2, C = 0.001 μF/cm2,
and I = 0.625 μA/cm2.

the synaptic one and, at the same time, to extract, from the original recordings, a data set that can be
useful to estimate the synaptic input that the cell is receiving. In this manuscript, we have presented a
proof of concept of how such methods can be constructed; that is, how non-linear estimation methods
can be implemented in order to estimate synaptic conductance in spiking regimes. Our method relies
on the knowledge of the f − I curve of the cell, a nonlinear trait that accounts for the activity of ionic
channels involved in the spike generation. The proposed methodology does not take into account other
features that could make the estimation more complex, like noise in the system or having other type of
nonlinearities.

We have exemplified the general idea with a simple model, the McKean model (1), a piecewise linear
version of the FitzHugh-Nagumo system, that allows us to perform analytical computations and give
a very accurate approximation of the f − I curve. The strategy proposed is easily extendable to other
models or cell types, where the goodness of the estimations will mainly depend on the accuracy achieved in
computing the f − I curve. More precisely, for the McKean model (1), we have restricted to the situation
where it exhibits an oscillatory behaviour; given a constant value of gsyn, we provide an approximation

T̂ = T̂ (C, I, gsyn) of the period T such that |T − T̂ | = O(C0.88), which includes the dependence on gsyn.
This approximation has been obtained by taking into account the flight time of the fast and the slow
sub-periods. Assuming the parameter gsyn to be constant in time, our results show excellent estimations
for small values of C (the parameter related to the capacitance) and also for those values of I that are
close to the boundaries of the oscillatory regime (see Figure 9). We think that the method could be tested
in dynamic-clamp experiments in which the neuron can be first driven to a spiking regime that can be
further modulated by a current injection of type gsyn(v − vsyn), with gsyn constant.

The estimation procedure has been also extended to a more general and realistic context, where we
estimate the time course of variable synaptic conductance. In Figure 10 we show estimations obtained
from three different prescribed inputs: a sinusoidal drive, an oscillatory drive with two low frequencies
and a combination of both low and high frequencies. We observe fairly good estimations of synaptic
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y sg
n

Sm
pl

(m
. /

ysgn Smpl( m. /

. /
Sm

pl
(m

sg
n

ŷ
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Figure 13: Goodness of fit of the synaptic conductance time course when we consider the
sub-periods separately. Panel A shows the cubic spline interpolation of the estimated values of the
discretization of gsyn(t) (red solid line) and the actual value of the synaptic conductance (black solid line)
given as in Figure 11. Panel B represents the scatter plot of the actual versus the estimated synaptic
conductance after the interpolation. The red line in Panel B is the identity line as a reference to observe
the goodness of the estimation. Panel C shows a comparison of the voltages computed using the actual
conductance (solid black trace) and the estimated ones (dotted red trace). The other parameter values
are a = 0.25, v0 = 0, γ = 0.5, w0 = 0, vsyn = 0.25 + a/2, C = 0.001 μF/cm2, and I = 0.625 μA/cm2.

conductance in the first two cases, but the addition of a high frequency makes the estimations impoverish.
In general, frequencies of the conductance’s changes higher than the spike frequency are difficult to
estimate. The reconstructed voltage using the estimated conductance (see vrec(t) in the last column
in Figure 10) always exhibits a good agreement, meaning that it is not a suitable detector for good
estimations. When we inject a stereotypical synaptic input to a single cell in visual cortex taken from a
realistic model of V1 (see Figure 11), the estimation captures the overall conductance profile but does not
match at a smaller scale. In realistic inputs, the conductance’s time-scale is variable, being very short in
some moments. Thus, we can only get a good estimation on average.

In order to check the influence of high frequency synaptic inputs, we have improved our method by
refining the sampling, taking advantage of the knowledge of the sub-periods TL, TMd, TMu and TR, thus
enlarging the sampling set by a factor of 4. Figure 12 compared to the last row of Figure 10 confirms the
predicted improvement. For the realistic input, however, we appreciate only a slight improvement (see
Figure 13 compared to Figure 11).

Summing up, we have shown the viability of the approach based on the use of the f − I curve in order
to estimate synaptic conductance in spiking regimes. We have also examined the drawbacks of this proof
of concept, but nevertheless we think that our proposal brings up positive results that open new research
lines which we aim to address:

• The gain obtained when increasing the sampling indicates that introducing more Poincaré sections
to estimate flight times in shorter intervals would be a good strategy to cope with high frequency
synaptic inputs. Extending this reasoning to the limit, we plan to add to the model a third differ-
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ential equation modelling the dynamics of the synaptic conductance. This would allow to obtain
good estimations in a more general context and provide a scheme to be applied to experimental
data.

• The scheme need to include both excitatory and inhibitory terms. We have only considered one type
of synaptic input. In the examples, we have chosen vsyn = 1/4+a/2, a value that could be attributed
to excitatory synapses. However, a key aspect in estimating conductance is to differentiate between
excitation and inhibition. We think that this step is feasible within the frame of the McKean model.

• The methodology needs to be tested in other conductance-based models with more realistic ionic
channels. This extension will require to get approximate expressions of the period in terms of gsyn,
a challenging problem that can be successfully treated by adapting existing formulas for the period
of limit cycles close to bifurcation points, see for instance Gasull et al (2005).

• Combine the new methodology for spiking regimes with existing estimations for subthreshold os-
cillations. This issue connects again with bifurcation diagrams since an ideal method should apply
to a variable synaptic input that sweeps the I parameter range from excitable to spiking regimes
and vice versa. It also opens an interesting question about the influence of the type of bifurcation
(Hopf, saddle-node on invariant curve,. . . ) on the goodness of the estimations.

A Evidences of the monotonicity of T̂ .

In Figure 14 we represent the function T̂ (gsyn) (panel A) and the derivative ∂T̂/∂gsyn (panel B) for
the set of parameter values used in all the numerical computations, except for the applied current which
varies (different colours) in the range of existence of limit cycles. It is worth to note, see for instance
panel B, that for all the applied currents considered we have that ∂T̂ /∂gsyn < 0. In all the results given
above, we use this numerical evidence together with an on-line check that the derivative does not vanish
to ensure that the solution we get from equation (10) is unique.

B Numerical methods

In the numerical computations, to solve (10) we need the time spent on some trajectory, T ∗, that has
to be computed numerically. We have computed these values by integrating the orbits and determining
the intersection points with the corresponding Poincaré section using both the Newton-Raphson method
and the bisection method with a tolerance TOL = 1e − 11 (see Appendix B.1 for more details of the
routine). The same methods have been used to estimate the synaptic conductance gsyn with tolerance
TOL = C2.

In order to integrate the differential piecewise linear system we have used the Runge-Kutta 7-8 method
with tolerance TOL = 1e− 8 and a maximal step size hmax = 1e− 1. We have used the edo78 function
of Matlab�.

Finally, we have used the spline function of Matlab� to compute the cubic spline interpolation
used to construct the continuous time course of the estimated synaptic conductance in Procedure 1 and
Procedure 2.

B.1 Routine to compute the numerical period

Consider the solution (5) of the model given by the piecewise differential system (1).

a) Let x0 = (a2 , w0) = qL, T̄0 = 0 be the initial condition.
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Figure 14: Monotonicity of T̂ (C, I, gsyn) with respect to gsyn. This figure shows different plots

representing the approximated period T̂ and its derivatives versus the synaptic conductance gsyn for

different values of the applied current. We depict T̂ (gsyn) in panel A and the first derivative ∂T̂ /∂gsyn
(coloured lines) in panel B, together with the line dT̂ /dgsyn = 0 (gray line). The different coloured lines,
in all panels, stand for different applied currents, namely Iapp ∈ [0.4, 0.5, 0.6, 0.7, 0.8]. The rest of
parameters of the model are fixed as C = 1e−4, a = 0.25, v0 = 0, w0 = 0, γ = 0.5, and vsyn = 0.25+a/2.

1. Let x0 be the initial condition and compute TMd as a zero of the equation v(t)− 1+a
2 . Then,

knowing t = TMd, we can compute w1 = w(TMd), and so we obtain a new point x1 = (1+a
2 , w1).

2. Let x1 be the initial condition and compute TR as a zero of the equation v(t) − 1+a
2 . Then,

knowing t = TR, we can compute w2 = w(TR), and so we obtain a new point x2 = (1+a
2 , w2).

3. Let x2 be the initial condition and compute TMu as a zero of the equation v(t) − a
2 . Then,

knowing t = TMu, we can compute w3 = w(TMu), and so we obtain a new point x3 = (1+a
2 , w3).

4. Let x3 be the initial condition and compute TL as a zero of the equation v(t) − a
2 . Then,

knowing t = TL, we can compute w4 = w(TL), and so we obtain a new point x4 = (a2 , w4).

5. Compute T̄ = TL + TMd + TR + TMu

b) If |w0 −w4| < TOL or |T̄0 − T̄ | < TOL, DONE: the numerical period is T̄ . Otherwise, let x0 = x4,
T̄0 = T̄ , and repeat steps 1-5. we have considered tol = 1e− 10 for this step.
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