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a b s t r a c t

We extend some previous results on the maximum number of isolated periodic solutions
of generalized Abel equation and rigid systems. The key hypothesis is a monotonicity
assumption on any stability operator (for instance, the divergence) along the solutions of
a suitable transversal system. In such a case, at most two isolated periodic solutions exist.
Under a simple additional assumption, we also prove a uniqueness result for limit cycles
of rigid systems. Our results are easily applicable to special classes of equations, since the
hypotheses hold when a suitable convexity property is satisfied.
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1. Introduction

This paper is concerned with estimating the number of limit cycles (i.e. isolated cycles) of planar differential systems
ẋ = P(x, y), ẏ = Q (x, y),

with P , Q of class C2 in a some planar region Ω . In the case of polynomial systems such a question is the object of the
celebrated XVI Hilbert’s problem (see for instance [1]). Hilbert’s problem is still unanswered, even for quadratic systems.
Recently, some progress has been done for special classes of systems, in particular for the so-called rigid systems

ẋ = −y+ x F(x, y), ẏ = x+ y F(x, y).
In this paper we look at rigid systems as embedded in the more general class of systems that can be ‘‘rigidized’’ through

a Lie symmetry. That is, starting from a Lie symmetry among two transversal vector fields V andW , [W , V ] = µW , we can
transform any vector field X transversal toW to an equivalent one (in terms of stability) X̃ = V + F W , for a scalar function
F . Generalizing the idea of polar coordinates (r̃ = V ∧W , and θ̃ the phase defined by theW -orbits), X̃ can be seen as a rigid
system. This approach will be revisited both in the results and some examples. For the motivation purposes, we come back
to the classical rigid systems, where V = (−y, x),W = (x, y) and µ ≡ 0.
Rigid systems have a very simple form in polar coordinates,

ṙ =
n∑
j=1

aj(θ)r j, θ̇ = 1, (1)
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where aj(θ) is a 2π-periodic function, for j = 1, . . . , n. If the rigid system is polynomial, then every aj(θ) is a trigonometric
polynomial of degree j − 1. In a natural way, this leads to consider them as special cases of those considered in a problem
posed by Pugh [2], who asked for upper bounds to the number of isolated periodic solutions of the equation

ṙ =
n∑
j=0

aj(t)r j, (2)

where aj(t) is a T -periodic continuous function, for j = 0, . . . , n. Particular cases are Riccati’s equation, for n = 2, and Abel
equation, for n = 3. Both have been extensively studied. For what is concerned to periodic solutions, Neto ([2]) proved that
Riccati’s periodic equation has at most two isolated periodic solutions. In the same paper, it was proved that Abel’s equation
has at most three isolated periodic solutions, if the leading coefficient a3(t) does not change sign (see also [3,4]). Moreover,
Neto proved that for every n there exists an equation of the type

ṙ = a3(θ)r3 + a2(θ)r2,
having more than n isolated periodic solutions.
The interest in Abel’s equation is also motivated by quadratic systems in the plane, whose study can be reduced (in

different regions) to that of equations of the form

ṙ = a3(θ)r3 + a2(θ)r2 + λr, r > 0, θ ∈ [0, 2π) (3)
where a3(θ) and a2(θ) are trigonometric polynomials of degrees six and three, respectively, and λ is a fixed real number.
Limit cycles of the quadratic system correspond to periodic solutions of (3). Gasull and Llibre (see [3]) showed that such
equations have at most three isolated periodic solutions, provided either a3(θ) or a2(θ) do not change sign [3].
Recently, in [5], Gasull and Guillamon proved that every polynomial rigid system, with polar form

ṙ = am(θ)rm + ak(θ)rk + λr, (4)
has at most two positive limit cycles. In such a case the functions am, ak are trigonometric polynomials of degrees m − 1,
k− 1, respectively, and one of them does not change sign.
We extend some of the above results by comparing the hyperbolicity properties of concentric limit cycles. Since we

consider such systems as the polar forms of planar systems, in principlewe should only be concernedwith positive solutions
of equations in the form (1). On the other hand, reducing to a suitable annulus in the plane, we may state some results even
about equations in the form (2). The main idea consists in assuming that some ‘‘stability operator’’ increases (decreases)
along the rays of a suitable system of polar-like coordinates. This implies the stability of external cycles to be different from
the stability of internal cycles, giving a bound of two concentric limit cycles. Under some additional hypotheses, we also
prove a limit cycles’ uniqueness result.
There exist several operators that control the stability of limit cycles of a vector field X on the plane. The best known

one is the divergence. More precisely, given a limit cycle Γ = {γ (t), t ∈ [0, T )} of X , Γ is called hyperbolic if πΓ :=∫ T
0 div(X(γ (t)))dt 6= 0. If πΓ < 0 (resp.,>0), then limit cycle is stable (resp., unstable). In general it is not easy to estimate
the sign of the above integral, so that one usually tries to find a Dulac function, that is a function B(x, y) > 0 such that
div(B X) has constant sign on the given region. The new vector field and the old one have the same orbits, so the orbital
stability properties of B X are the same than those of X . A second stability operator can be obtained by means of the Lie
brackets. In fact, for every vector field W transversal to X in a neighbourhood of Γ , it is always possible to write the Lie
bracket of X andW as a linear combination, [W , X] = νW + β X . Then πΓ =

∫ T
0 ν(γ (t))dt (see for instance [6,7]). Here,

again, there is a degree of freedom in the choice of a suitable ν, since the choice ofW is arbitrary. There exist other operators
that can be found in the literature (like orthogonal curvature or inverse of integrating factors); since they do not appear in
the rest of this paper, we do not include them here for the sake of conciseness.
All of this paper is based on the existence of a suitable Lie symmetry that allows the comparisonbetween concentric cycles

even when we use the divergence as a stability operator. Although the method presented here seems to have potentially a
wide range of applicability, our main applications will be restricted to rigid systems and to periodic scalar equations, not
necessarily polynomial or with trigonometric coefficients. As an example of the type of results contained in this paper, we
prove that if f (r, θ) is r-positively convex, then the equation

ṙ = f (r, θ)
has at most two isolated positive periodic solutions. For what is concerned with generalized Abel equations, we prove that

ṙ =
m−1∑
j=1

aj(t)r j + am(t)rm −
n∑

j=m+1

aj(t)r j, 1 < m < n, (5)

with aj(t) ≥ 0 for j 6= m, has at most two positive isolated periodic solutions.
The main results are developed in Section 2. We want to emphasize that, from a geometric point of view, the results that

we obtain can be often interpreted as conditions of convexity (in a general metrics) that provide bounds for the number of
limit cycles. In Section 3 we derive some corollaries of the main theorem which are very useful to visualize the convexity
properties.
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2. Radial-like derivatives of stability operators (main results)

LetΩ ⊂ R2 be an annular planar region. For the sake of simplicity, from now on, all the functions and vector fields we
consider are assumed to be of class C2, even if in several cases such assumption could be weakened. Let X be a vector field
onΩ . In the following, we denote by γ any orbit of the differential system

z ′ = X(z), z = (x, y) ∈ Ω,

and by γ+ = {γ (t) : t ≥ 0} its positive semi-orbit. For any α defined onΩ , we denote by ∂Xα the derivative of α along the
solutions of z ′ = X(z). Similarly for the derivative ∂XY of a vector field Y . We say that a function α is an S-operator if, for
every cycle γ ∈ Ω , γ (T ) = γ (0), the condition

Iα(γ ) :=
∫ T

0
α(γ (t))dt < 0, (6)

implies the orbital asymptotic stability of γ . There exist at least three distinct S-operators. The best known one is the
divergence divX , whose integral (6) gives the limit cycle’s hyperbolicity. Recently, two additional S-operators have been
found, considering the curvature of a suitable vector field, [8], or a suitable Lie symmetry, [6] or [7].
We will focus on the Lie symmetry approach, but the technique can be applied for any other S-operator as well. Let us

suppose that V is the infinitesimal generator of a Lie symmetry of an auxiliary vector fieldW onΩ . In other words,

[W (z), V (z)] = µ(z)W (z),

where [, ] represents the Lie bracket, defined as [W , V ] = ∂W V − ∂V W . Throughout all of this paper we assume V andW
to be transversal onΩ . Let us set V ∧W = det(V ,W ) = v1w2 − v2w1, where V = (v1, v2) andW = (w1, w2). Under the
previous assumptions, every vector field X transversal toW can be written as follows

X = AV + BW ,

where

A =
X ∧W
V ∧W

, B =
X ∧ V
W ∧ V

,

are scalar functions. Assuming A 6= 0 onΩ , one can divide X by A and consider the new vector field

X̃ = V + FW , F :=
X ∧ V
X ∧W

,

and its differential system

z ′ = X̃(z), (7)

which has the same orbits as the previous one. The stability analysis may be carried over such a vector field, obtaining
equivalent results.
Observe that the vector field X presents a kind of ‘‘angular+radial’’ structure since, typically, we will choose V to have a

well defined returnmap in some regionwhereasW (transversal to V ) will behave as a radial vector field. Thus, the directions
defined by the orbits ofW will play an important role in the radial-like strategy to study the stability and number of limit
cycles, as next definitions and results show. For this purpose, and for the sake of simplicity of notation, we say that the
function α is a W -function if both the following conditions hold:

(i) ∂Wα ≥ 0 (≤ 0) onΩ;
(ii) every couple of cycles can be connected by an arc δ of a W -orbit such that ∂Wα > 0 (< 0) at least at a point x of δ.

The W -function condition for an S-operator provides simple conditions to bound the number of limit cycles of planar
systems. The following result is a generalization to non-rigid systems and to any S-operator of Theorem 3 in [5]. In the
following we assume theW -orbits to meet the V -cycles crossing them from the interior towards the exterior.

Theorem 1. Let α be an S-operator on an annular planar regionΩ , and let V , W satisfy [W (z), V (z)] = µ(z)W (z), for z ∈ Ω .
Assume α to be a W-function onΩ and W to have no cycles. Then, if V and W are transversal onΩ , the differential system (7)
has at most two limit cycles inΩ . More precisely:

(i) if it has two cycles, then they have opposite stability character;
(ii) if it has a semistable cycle, then it has no other cycles.

The stability character of the above cycles is determined by the sign of ∂Wα.

Proof. We first show that (7) has at most three limit cycles, then we refine our statement proving that there exist at most
two limit cycles.
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Without loss of generality, we may assume that ∂Wα ≥ 0. Let us consider a couple of X̃-cycles. By the absence of critical
points, every couple of X̃-cycles γ1, γ2 have to be concentric. We claim that aW -orbit δ either meets both γ1 and γ2, or it
meets none of them. In fact, assume γ1 to be contained in the bounded region defined by γ2. Let δ be aW -orbit crossing γ1
at z1. Assume δ+ to enter at z1 the annular region A12 bounded by γ1 and γ2. If, by absurd, δ+ were entirely contained in
A12, then it would be positively compact, with a non-empty positive limit set, aW -cycle, sinceW has no critical points. This
contradicts the hypothesis thatW has no cycles.
Hence everyW -orbit δ entering A12 at a point of z1 ∈ γ1 meets γ2. By the transversality, δ+ has to leave A12 at a point of

z2 ∈ γ2. Let us denote byΦ : γ1 → γ2 the map that sends such a z1 to such a z2:Φ(z1) = z2.
Then, observe that

[W , X̃] = [W , V + FW ] = (µ+ ∂W F)W ,

hence X̃ is a normalizer of W . By Theorem 4 in [9], the orbits of W are the isochrons of any cycle of X . In particular,
any neighbourhood of a cycle of X is foliated by orbits of W . Since A12 is contained in the intersection of the foliated
neighbourhoods of γ1 and γ2, both cycles have the same period, say T .
From the fact that α is aW -function onΩ , for every t ∈ [0, T ] one has α(γ1(t)) ≤ α(Φ(γ1(t))) = α(γ2(t)), and there

exists at least a t ∈ [0, T ] such that α(γ1(t)) < α(Φ(γ1(t))) = α(γ2(t)). Hence,

Iα(γ1) =
∫ T

0
α(γ1(t))dt <

∫ T

0
Φ(α(γ1(t)))dt =

∫ T

0
α(γ2(t))dt = Iα(γ2).

Hence, if Iα(γ1) > 0, then no other cycles can enclose it, since all of them should be repelling (recall that α is an
S-operator).
If Iα(γ1) = 0 and γ2 encloses γ1, then Iα(γ2) > 0. This both shows that γ1 is not contained in a period annulus, and that

at most one cycle can enclose γ1.
Nowwe claim that if Iα(γ1) < 0, and γ2 encloses γ1, then Iα(γ2) ≥ 0. In fact, if Iα(γ2) < 0, every cycle γ contained in the

annular region A12 would satisfy Iα(γ ) < 0, so that γ1’s region of attraction would have a repelling external boundary, that
is not compatible with its repulsiveness.
Concluding, (7) has at most three limit cycles: an attracting one, a semistable one and a repelling one.
We prove now that, if (7) has two hyperbolic cycles, then it has no semistable cycles. Assume by absurd that a semistable

cycle γ exists, together with an attracting γ1 and a repelling γ2, with γ1 enclosed in γ , and γ enclosed in γ2. Consider the
rotated family of vector fields X̃θ := cos(θ)X̃+ sin(θ)W , θ ∈ [0, 2π). By the semi-stability of γ , the theory of rotated vector
fields (see [10]) shows that for small positive (negative) values of θ the vector field X̃θ has two limit cycles bifurcating from
γ . Hence, for such values of θ , X̃θ has at least four limit cycles. On the other hand, for small values of θ the vector field X̃θ
satisfies the theorem’s hypotheses, since

[W , X̃θ ] = [W , cos(θ)X̃ + sin(θ)W ] = cos(θ)[W , X̃] = cos(θ) (µ+ ∂W F)W ,

and on a compact set the condition ∂Wα > 0 is preserved, hence X̃θ has no more than 3 limit cycles, contradiction.
Now let us assume that two limit cycles exist, a semistable one and a hyperbolic one (two semistable ones is not

compatible with ∂Wα > 0). Without loss of generality, we may consider only the case of an inner semistable cycle γ and an
outer repelling cycle γ2. In this case γ is externally attracting. Let us apply again the bifurcation argument, getting two limit
cycles γi and γe bifurcating from γ . The internal bifurcating cycle, γi, is repelling, while the external bifurcating cycle, γe, is
attracting. Hence X̃θ should have 3 limit cycles, repelling/attracting/repelling, which contradicts the condition ∂Wα > 0. �

Remark 1. If ∂Wα ≥ 0 and on every W -orbit there exists a point where ∂Wα > 0 then the absence of W -cycles can be
proved by observing that α is a single-valued function.

Corollary 1. Under the hypotheses of Theorem 1, assume Ω to be (negatively) asymptotically stable. Then Ω contains at most
one limit cycle.
Proof. Without loss of generality, we may assume that ∂Wα ≥ 0. By absurd, assumeΩ to contain two limit cycles, γ1 and
γ2, γ1 surrounded by γ2. As observed at the end of the proof of Theorem 1, γ1 has to be an attractor and γ2 a repellor. Hence,
by the attractivity ofΩ , a third limit cycle should exist, surrounding γ2, and thus contradicting the bound on the number of
limit cycles. �

3. Applications of the main result: The role of convexity

Theorem1 is a general result that can be applied to any kind of systems and S-operators. In order to grasp the applicability
of the result, we will now restrict ourselves to special classes of systems and operators.
It is known from [6,7] that ν is an S-operator whenW and X are transversal and [W , X] = νW +β X . Using the notation

of (7), ν = µ+ ∂W F and we have:

Corollary 2. Let V ,W be transversal (except possibly at a unique singular point) vector fields with [W (z), V (z)] = µ(z)W (z).
If ∂W (µ+ ∂W F) ≥ 0 on an annular regionΩ , then the thesis of Theorem 1 holds for the system (7).
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Most of the examples throughout the paper will be based on this operator though we will compare it to the divergence
in some examples.
In the next corollary, we obtain a sufficient condition for the upper bound to the number of limit cycles in triangular

systems in polar coordinates (r, θ), which reduces to a suitable convexity property.
We denote by Lθ a ray; that is, the half-line {(r, θ) : r > 0, θ = θ}. We say that the annular regionΩ

∗ is a star-shaped
annular region if the intersection ofΩ∗ with every ray is a line segment (possibly different for each ray). Let V ∗, defined on
a star-shaped annular regionΩ∗, be the vector field associated to the system

r ′ = f (r, θ), θ ′ = g(θ). (8)

Corollary 3. Suppose that V ∗ has the form (8), with g(θ) > 0 for all θ ∈ [0, 2π). Consider a function h(r) > 0 for all r > 0. If
there exists r0 ≥ 0 such that

h2frr − hh′′f − hh′fr + h′
2f ≥ 0 (≤ 0) ∀r > r0, ∀θ ∈ [0, 2π),

and there exists a ray Lθ where the above inequality holds strictly, then the thesis of Theorem 1 holds for the system (8).

Proof. Observe that V ∗ normalizes the systemW ∗h defined as

r ′ = h(r), θ ′ = 0. (9)

More precisely, [W ∗h , V
∗
] = µ∗W ∗h , with

µ∗ =
hfr − h′f
h

.

In addition,W ∗h -orbits are rays and every ray meets every V
∗-cycle. By the main result in [6], µ∗ is an S-operator, hence we

just have to compute ∂W∗hµ
∗, whose numerator gives the function in the statement. Finally, one can apply the Theorem 1 to

get the desired result. �

It is to be noticed the absence of g from the formula in the above corollary, due to the independence of θ ′ from r . We
consider now some special cases.

Corollary 4. Let V ∗ have the form (8) in polar coordinates, with g(θ) > 0 for all θ ∈ [0, 2π). If one of the following holds:
(1) there exist r0 ≥ 0 and ξ ∈ R, such that r2frr − ξ 2rfr + ξ f ≥ 0 (≤ 0) for all θ ∈ [0, 2π) and for all r > r0,
(2) there exist r0 ≥ 0 such that frr ≥ fr (≤ fr ) for all θ ∈ [0, 2π) and for all r > r0,
and there exists a ray Lθ where such an inequality holds strictly, then the thesis of Theorem 1 holds for the system (8).

Proof. (1) Choosing h(r) = rξ , leads to the inequality in the statement.
(2) Let us choose h(r) = er . Then the formula in Corollary 3 becomes frr ≥ fr for θ ∈ [0, 2π) and for all r > 0. �

Remark 2. In the above corollary, if one takes ξ = 0, that is h(r) ≡ 1, one gets the condition frr ≥ 0 (≤ 0) for r > 0. In the
following, functions satisfying frr ≥ 0 will be called radially convex functions. For instance, the equation ṙ = r2 − 3r + 2,
which has two isolated periodic solutions at r = 1 and r = 2, satisfies the condition frr > 0.
A two-variable convex function is radially convex, but the vice versa is not true, as the function K(r cos θ, r sin θ) =

(r − 1)2 + cos θ shows. Such a function is radially convex, but it has a saddle point at (r, θ) = (1, 0).

Moving back to Corollary 2, we recall that, essentially, the existence of a Lie symmetry [W (z), V (z)]=µ(z)W (z) plus the
condition ∂W (µ+ ∂W F) ≥ 0 imply the bound of two limit cycles for system (7). In particular, when V andW commute, that
is when [V (z),W (z)] ≡ 0, this upper bound is controlled by the ‘‘second derivative’’ ∂W (∂W F). This amounts to impose the
convexity of F on theW -orbits. Such a property is strongly dependent on the parameterization of such orbits, but since ifW
is a commutator of V , then every IW , where I is a first integral of V , is itself a commutator, one can choose among infinitely
many distinct commutators. More generally, ifW is normalized by V , then, for every function ψ , ψW is normalized by V ,
so that one has an infinite family of normalized vector fields to choose among.
A simple way to get a class of such systems consists in choosing the couple of commuting vector fields V (x, y) = (−y, x)

andW (x, y) = η(x2 + y2) (x, y), where η(x2 + y2) is any scalar function. In such a case, the derivative of a function α in the
direction ofW is simply related to its radial derivative.

∂Wα = η(x2 + y2)(xαx + yαy) = η(r2)rαr .

The simplest case occurs when one chooses η(x2 + y2) ≡ 1. As observed previously, every vector field can be written as{
x′ = −y A(x, y)+ x B(x, y),

y′ = x A(x, y)+ y B(x, y),
(10)

critical points being characterized by the simultaneous vanishing of A and B. The functions A and B are simply related to the
angular velocity θ̇ and ṙ ,

θ̇ = A, ṙ = rB.
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Such a system is more general than the one considered in (8), since here we do not assume θ̇ to depend only on θ . On the
other hand, if the condition θ̇ = A 6= 0 is satisfied in some region, then we may divide the vector field by A getting an
equivalent vector field with θ̇ ≡ 1,

θ̇ = 1, ṙ =
r B(r, θ)
A(r, θ)

, (11)

which is the polar form of{
x′ = −y+ x F(x, y),

y′ = x+ y F(x, y),
(12)

where F = B
A . The system (11) can be obtained from system (8) setting f (r, θ) = rF =

rB
A . Actually, system (11) is only

apparently a special case of system (8). In fact, since g(θ) > 0, one can always divide the vector field equivalent to the
system (8) by g(θ), getting a new system with the same orbits for which θ̇ ≡ 1. Vice versa, one can obtain system (8) from
(11) multiplying by g(θ). Summing up, whenever the angular speed is positive, one can reduce to systems with constant
angular speed. For such systems, geometrically characterized by the orbits’ star-shapedness, the condition of Corollary 2
assumes the following simple form,

∂W (∂W F(x, y)) = ∂W

(
∂W
B(x, y)
A(x, y)

)
6= 0. (13)

Such a condition is evidently related to a convexity property of F along theW -orbits. In rectangular coordinates it appears
as follows,

∂W (∂W F) = x Fx + y Fy + x2Fxx + 2xyFxy + y2Fyy = rFr + r2Frr ≥ 0, (14)

which is equivalent to

Fr + rFrr = (rFr)r ≥ 0, (15)

since r > 0.
Observe that another simple condition could be obtained using the condition frr ≥ 0 with f := rF , which would give:

frr = (rF)rr = 2Fr + rFrr ≥ 0. (16)

On the other hand, since the divergence for a rigid system is

divX = 2F + xFx + yFy = 2F + ∂W F = 2F + rFr ,

we have that

∂Wdiv = 3(x Fx + y Fy)+ x2Fxx + 2xyFxy + y2Fyy = 3rFr + r2Frr ≥ 0,

equivalent to

3Fr + rFrr ≥ 0. (17)

Thus, any of the conditions (15)–(17) implies an upper bound of two limit cycles to the system. The similarity of such
conditions is not a coincidence. In fact we have the following statement.

Lemma 1. If α is an S-operator for (12) and κ ∈ R, then κF + α is an S-operator for (12), too.

Proof. For every periodic solution γ (t), one has∫ 2π

0
F(γ (t))dt =

∫ 2π

0

ṙ(γ (t))
r(γ (t))

dt =
∫ 2π

0
(ln r(γ (t))) ḋt

= ln r(γ (2π))− ln r(γ (0)) = 0.

Hence one has∫ 2π

0
κF(γ (t))+ α(γ (t))dt =

∫ 2π

0
α(γ (t))dt. �

The above proposition shows that one can add any multiple of F to, say, the divergence 2F + rFr and use its radial derivative
in place of the conditions (15)–(17) in order to get the upper bound of two limit cycles. As a consequence we have the
following corollary, that we state without proof.

Corollary 5. If there exists κ∗ ∈ R such that

κ∗Fr + rFrr ≥ 0,

in a star-shaped annular regionΩ∗, then the thesis of Theorem 1 holds onΩ∗.
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This freedom (expressed by means of κ∗) to choose an operator has to be managed adequately in each case. Next we
present a ‘‘canonical’’ example to illustrate how to choose a suitable κ∗.

Example 1. Consider the system given in polar coordinates by{
r ′ = r G(r2),

θ ′ = 1,
(18)

with G(z) = (z − b1) (z − b2) and b2 > b1 > 0. Clearly, system (18) has two limit cycles, located at {r = bj}, for
j = 1, 2. Such cycles are hyperbolic, hence they resist to small perturbation. In general, one does not know how much
the system can be perturbed, without destroying the limit cycles. We apply Theorem 1 to give an estimate of howmuch the
above system can be perturbed, preserving the limit cycles. Let us replace the constants b1 and b2 with periodic functions:
G(z, θ) = (z− b1(θ)) (z− b2(θ)), b2(θ) > b1(θ) > 0. Computing the divergence, one has div = 2G(r2, θ)+ 2 r2 Gr(r2, θ),
and we consider the class of operators

ακ = (κ + 2)G(r2, θ)+ 2 r2 Gr(r2, θ).

Direct computations give

∂rακ = 2 r
(
(κ + 4)Gr(r2, θ)+ 2 r2 Grr(r2, θ)

)
,

which, in the case G(z, θ) = (z − b1(θ)) (z − b2(θ)) leads to

∂rακ = −2 r
(
−12 r2 − 2 κ r2 + 4 b2(θ)2 + κ b2(θ)2 + κ b1(θ)2 + 4 b1(θ)2

)
.

This expression vanishes for r2(θ) = (κ+4)(b1(θ)2+b2(θ)2)
2(κ+6) , giving rise to different ways to apply our results:

• Choosing κ∗ < min
{
8b1(θ)2−4b2(θ)2

b2(θ)2−b1(θ)2
: θ ∈ [0, 2π ]

}
, we have that ∂rακ∗ > 0 in an annular region containing the annulus

defined bymax{ b1(θ) : θ ∈ [0, 2π ]} ≤ r ≤ min{ b2(θ) : θ ∈ [0, 2π ]}. Applying Corollary 5, then, we would predict the
maximum number of limit cycles in such a region.
• Choosing κ∗ > max

{
8b1(θ)2−4b2(θ)2

b2(θ)2−b1(θ)2
: θ ∈ [0, 2π ]

}
, we have that ∂rακ∗ < 0 in an annular region containing the curve

{r = b1(θ)} and ∂rακ∗ > 0 in an annular region containing the curve {r = b2(θ)}. Thus, the maximum bounds given by
Corollary 5 would be too loose in this case, indicating that this is not a good choice for κ∗.

For systems in rectangular coordinates expressed as in (12), Corollary 5 assumes the following form:

Corollary 6. If there exists κ∗ ∈ R such that

∆F ,κ∗ := r (κ∗ Fr + r Frr) = κ∗(x Fx + y Fy)+ x2Fxx + 2xyFxy + y2Fyy ≥ 0,

in a star-shaped annular regionΩ∗, then the thesis of Theorem 1 holds for system (12) onΩ∗.

If we write F(x, y) =
∑n
j=0 Pj(x, y), where the functions Pj(x, y) are homogeneous polynomials of degree j, that is,

x′ = −y+ x

(
n∑
j=0

Pj(x, y)

)
,

y′ = x+ y

(
n∑
j=0

Pj(x, y)

)
,

(19)

we have:
∆F ,κ∗ = κ

∗(x Fx + y Fy)+ x2Fxx + 2xyFxy + y2Fyy

=

n∑
j=0

(
κ∗jPj(x, y)+ j(j− 1)Pj(x, y)

)
=

n∑
j=0

(
κ∗ + j− 1

)
j Pj(x, y).

The coefficient κ∗ can be used to get rid of a single Pj∗ when the remainder∆F ,κ∗ − (κ∗+ j∗− 1)j∗ Pj∗ does not change sign.
In such a case one chooses κ∗ = 1− j∗.

Corollary 7. If there exists m, 1 < m < n, such that Pj(x, y) ≥ 0 for 1 < j < m, Pj(x, y) ≤ 0 for j > m then system (19) has at
most two limit cycles. If, additionally, there exists 1 ≤ j < m, such that Pj > 0, and m < j ≤ n, such that Pj > 0, then the system
has a unique limit cycle.
Proof. Applying Corollary 6, choosing κ∗ = 1−m proves that there exist at most two limit cycles. If there exist j and j as in
the hypotheses, then using H(x, y) = x2 + y2 as a Lyapunov function, one can prove that the origin and the point at infinity
are both repellors for system (19). Let Ω∗ be the global attractor of R2 \ {O}. Since θ̇ ≡ 1, Ω∗ is an asymptotically stable
annulus. Then we apply Corollary 1 to get the thesis. �



Author's personal copy

1948 A. Guillamon, M. Sabatini / Nonlinear Analysis 71 (2009) 1941–1949

Fig. 1. The curve∆F ,−2 = 0 of Example 2. The region beyond∆F ,−2 = 0 cannot contain more than two limit cycles.

We consider now some specific examples.

Example 2. Let us consider the system{
x′ = −y+ x

(
x4 − 5x3 − 2x2 + y6 − 2y4 + 3y3

)
,

y′ = x+ y
(
x4 − 5x3 − 2x2 + y6 − 2y4 + 3y3

)
,

(20)

obtained choosing F(x, y) = x4 − 5x3 − 2x2 + y6 − 2y4 + 3y3. Choosing κ∗ = −2 in order to eliminate the cubic terms
from ∆F ,κ∗ , one has ∆F ,−2 = 4 x4 + 4 x2 + 18 y6 − 8 y4. Solving the bi-quadratic equation in x, it turns out that the curve
∆F ,−2 = 0 is given implicitly by

x2 =
−1+

√
1− 18 y6 + 8 y4

2
,

defined only for |y| < 2
3 , see Fig. 1.

Example 3. Consider, for instance, the system{
x′ = −y+ x

(
x4 − x3 − x2 + y6 + y4 + 3y3 − 1

)
,

y′ = x+ y
(
x4 − x3 − x2 + y6 + y4 + 3y3 − 1

)
,

obtained from choosing F(x, y) = x4 − x3 − x2 + y6 + y4 + 3y3 − 1. Choosing again κ∗ = −2, in order to eliminate the
cubic terms from∆F ,κ∗ , one has∆F ,−2 = 4 x4+ 2 x2+ 18 y6+ 4 y4 ≥ 0 for all x and y and vanishes only at the origin. Hence
Corollary 7 applies and the system has exactly one limit cycle.

3.1. Generalized Abel equations

Here we extend Corollary 7 to non-polynomial systems. Next corollary is a refinement of a result published in [2] and
originally attributed to S. Smale. The thesis comes from a convexity property of a system obtained by means of a singular
transformation.

Corollary 8. If there exists m, 1 < m < n, such that aj(θ) ≥ 0 for j < m, aj(θ) ≤ 0 for m < j, then Eq. (1) has at most two
positive periodic solutions.

Proof. Let us recall first that (1) is given by ṙ =
∑n
j=1 aj(θ)r

j, θ̇ = 1. We apply the transformation

u = r1−m, r = u
1
1−m , r > 0, u > 0,

and denote the transformed equation by

u̇ = φ(u, θ), u > 0. (21)

Positive periodic solutions of (1) are taken into positive periodic solutions of (21). Assume by absurd the existence of three
distinct periodic solutions 0 < u1(θ) < u2(θ) < u3(θ). Consider Eq. (21) only on the region {(u, θ) : u1(θ) ≤ u ≤ u3(θ)},
corresponding to an annular regionΩ in the rectangular coordinates obtained from the polar coordinates (u, θ). Eq. (21) is
the polar form of a planar system defined onΩ , hence we may apply Theorem 1. The term aj(θ)r j of Eq. (1) is transformed

into the term (1 − m)aj(θ)u
j−m
1−m . In order to apply point (1) of Corollary 4, we derive such a term twice with respect to u,

getting

aj(θ)
(j−m)(j− 1)
1−m

u
j+m−2
1−m .
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Such a second derivative vanishes identically for j = 1 and for j = m, hence the linear and the m-degree terms have no
effect on its sign. Under the chosen hypotheses, every term in the transformed equation has positive sign, hence we have

φuu ≥ 0,

which contradicts the existence of three distinct positive periodic solutions. �

In the above corollary the transformation takes the linear term into a linear term, while taking themth degree term into
a constant one (constant w. r. t. r). This allows to eliminate two terms by differentiating twice w. r. t. r , but no more than
two. In the next corollary we consider two special cases.

Corollary 9. The following equations with continuous coefficients have at most two positive periodic solutions.

(1) ṙ = an(θ)rn + ak(θ)rk + a1(θ)r, n > k > 1, an(θ) ≥ 0 (an(θ) ≤ 0);
(2) ṙ = an(θ)rn + ak(θ)rk + a1(θ)r, n > k > 1, ak(θ) ≥ 0 (ak(θ) ≤ 0).

Proof. In both cases two terms can have arbitrary sign, while all the other ones – just one – have constant sign. Hence we
may apply the previous corollary. �

Observe that the sign of
∫ 2π
0 a1(θ)dθ determines the stability of the solution r = 0 and, hence, it is a key point for the

stability alternation between periodic orbits. For instance, in the case an (or am) positive,
∫ 2π
0 a1(θ)dθ < 0 would guarantee

the coexistence of r = 0 together with the two positive periodic orbits (see also Lemma 8 in [5]).
The above corollary (see also Theorem 3 in [5]) extends Theorem C (a) in [3]. We emphasize that the systems considered

in the above corollaries are not necessarily the polar form of polynomial systems, since the functions aj(θ) are not supposed
to be trigonometric polynomials of degree j− 1.
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