Bifurcation gaps in asymmetric and high dimensional hypercycles

Júlia Puig, 1 Gerard Farré, 2 Ernest Fontich, 3,4 Antoni Guillamon, 1,4 and Josep Sardanyés 5,4

¹Departament de Matemàtiques (Universitat Politècnica de Catalunya), Av. Gregorio Marañón 44-50, 08028 Barcelona

²Department of Mathematics (KTH, Royal Institute of Technology), SE-100 44 Stockholm

³Departament de Matemàtiques i Informàtica (Universitat de Barcelona),

Gran Via de les Corts Catalanes 585, 08007 Barcelona

⁴Barcelona Graduate School of Mathematics BGSMath

⁵Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona

(Dated: March 2, 2017)

Hypercycles are catalytic systems with cyclic architecture. These systems have been suggested to play a key role in the maintenance and increase of information in prebiotic replicators. It is known that for a large enough number of hypercycle species (n>4) the coexistence of all hypercycle members is governed by a stable periodic orbit. Previous research has characterized saddle-node (s-n) bifurcations involving abrupt transitions from stable hypercycles to extinction of all hypercycle members, or, alternatively, the outcompetition of the hypercycle by so-called mutant sequences or parasites. Recently, the presence of a bifurcation gap between a s-n bifurcation of periodic orbits and a s-n of fixed points has been described for symmetric five-member hypercycles. This gap was found between the value of the replication quality factor Q from which the periodic orbit vanishes (Q_{PO}) and the value where two unstable (non-zero) equilibrium points collided (Q_{SS}) . Here, we explore the persistence of this gap considering asymmetries in replication rates in five-member hypercycles as well as considering symmetric, larger hypercycles. Our results indicate that both the asymmetry in Malthusian replication constants and the increase in hypercycle members enlarge the size of this gap. The implications of this phenomenon are discussed in the context of delayed transitions associated to the so-called saddle remnants.

Keywords: Bifurcations; Complex Systems; Cooperation; Hypercycles; Periodic Orbits; Origins of Life.

I. Introduction

3

10

11

12

13

14

15 16

17 18

19

20

21

23

24

25

26

27

30

31

32

33

35

36

38

39

41

42

45

47

48

49

50

51

52

53

54

The detailed characterization of bifurcations in nonlinear 59 systems becomes a very important issue to understand qualita-60 tive changes in dynamics. Mathematical investigations of co-61 operative systems have been carried out using different mod-62 eling approaches, the hypercycle system being one of the 63 most important ones. Hypercycles are catalytic sets of macro-64 molecules that can catalyze their own replication or the repli- 65 cation of other species of the network, which has a cyclic ar- 66 chitecture [1]. Catalytic sets have been a subject of study in 67 different fields. For instance, these sets have been largely in-68 vestigated in the framework of prebiotic evolution [1, 5, 6, 20], 69 suggested of being responsible for one of the major transi-70 tions in evolution: the transition from quasispecies to hyper-71 cycles as a possible way to surpass the information crisis at 72 early stages of biological evolution [1, 3, 6]. However, similar 73 mathematical models have been used to investigate virus dy-74 namics [1, 7–9], the immune system [10], ecological systems 75 [6, 11, 17, 18], and neural networks [12, 13].

The analysis of bifurcations in hypercycles has been classi- 77 cally restricted to low dimensional time-continuous systems, 78 specially for so-called symmetric hypercycles [15, 16, 26], 79 for which all of the species have the same kinetic properties 80 (i.e., they are considered neutral mutants [16]). Few works 81 have explored asymmetries in hypercycles, for instance in 82 two-member cycles [24] or in larger hypercycles by means 83 of numerical results [5]. Moreover, few studies have focused 84 on the dynamics of large hypercycles [16], and especially, in 85 the bifurcations found in hypercycles with $n \geq 5$ species. It 86 is known that, under appropriate parameter values, hypercy-87 cles are bistable systems. Under bistability, the asymptotic 88 coexistence or extinction of hypercycles depends on the ini-89

tial conditions. It is also known that the nature of the coexistence attractor largely depends on the dimension of the hypercycle. By dimension we mean the number of species forming the hypercycle, which determines the phase space dimension. The bifurcations for this type of systems are mainly given by saddle-node (hereafter s-n) bifurcations, which involve a catastrophic (i.e., sharp) extinction as the bifurcation parameters crosses its bifurcation value [16, 24, 26].

The detailed mechanisms responsible for bifurcations in hypercycles have been provided by several authors [15, 24, 26]. For instance, Silvestre and Fontanari [16] showed that the conditions of viability for symmetric hypercycles competing with an error-tail hold for all n, not only when fixed points were stable. That is because they found numerically that the viability condition of hypercycle was the same as the one that guarantees the existence of real fixed points. In particular, considering a symmetric hypercycle with n = 12 members, and catalytic constants $k_i = 1$, for all i, and $A = 10^{-3}$ (Malthusian replication constant), there is a nonzero equilibrium point if and only if $Q \gtrsim 0.19639$, Q being the copying fidelity during replication. They found numerically that only when $Q \gtrsim 0.19639$ there exists a stable periodic solution and so the hypercycle is viable. Therefore, the existence of an unstable fixed point seemed to be a necessary condition for the presence of stable periodic orbits in a hypercycle.

More recently, Guillamon et al. investigated the periodic orbits in symmetric hypercycles with n=5 [19]. In particular, they studied how these orbits behave in terms of Q using both numerical and analytical methods. The results they obtained using A=0.5 were the value $Q_{SS}=0.91607$, computed analytically, at which two unstable fixed points undergo a s-n bifurcation and the value of $Q_{PO}=0.91614$, computed numerically, at which a s-nbifurcation of periodic orbits took place,

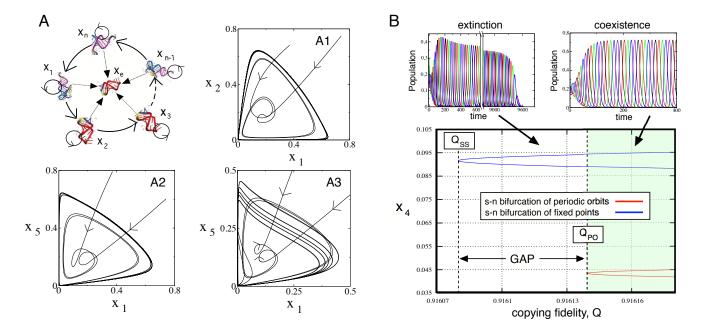


FIG. 1. (A) Hypercycle formed by n species. The phase portraits display several projections of the periodic orbits allowing coexistence of species (A1 and A2). Panel A3 displays the same projection than in panel A2 but with parameters after the saddle-node (s-n) bifurcation of periodic orbits. Under this scenario, the flows display transient periodic behavior since the trivial attractor is asymptotically globally stable. (B) Bifurcation curves of periodic orbits (red) and of fixed points (blue) with respect to parameter Q for the symmetric hypercycle, i.e., $\delta = 0$, for A = 0.5. The parametric region in green allows for the coexistence of the hypercycle members. The bifurcation value of periodic orbits, Q_{PO} , and of the fixed points, Q_{SS} , are indicated with dashed vertical lines. Notice that both bifurcation values do not coincide, fact which has been denoted as a bifurcation gap. The coordinate x_4 has been chosen following [19]. The smaller panels display time series for all hypercycle members in the extinction and coexistence scenarios.

thus causing the asymptotic extinction of the system. Interest-117 ingly, and conversely to what Silvestre and Fontanari observed₁₁₈ [16], the two values were not exactly the same. Therefore, a₁₁₉ slight gap between the two s-n bifurcations was found (see₁₂₀ Figure 1).

In this manuscript we first analyse the impact of asymme-¹²² tries in Malthusian replication constants in the bifurcation gap. Asymmetric hypercycles are more biologically-realistic systems since symmetric ones consider that the templates form-¹²³ ing the hypercycle are neutral mutants [16]. However, it is known that mutations have differential fitness effects [22, 29].¹²⁴ That is, mutants can carry deleterious, neutral, lethal, or ben-¹²⁵ eficial mutations. Moreover, the analyses of bifurcations in¹²⁶ larger hypercycles becomes relevant since, albeit being more¹²⁷ susceptible to stochastic extinctions [23], larger hypercycles¹²⁸ could store further information. Finally, we also explore the impact of the size of the hypercycle in the bifurcation gap, focusing on symmetric hypercycles.

The paper is organized as follows. In Section II we intro-129 duce the mathematical model analysed, summarizing its dy-130 namics. Then, in Section III A, we explore asymmetric hyper-131 cycles for n=5, the lowest dimension with the presence of 132 periodic orbits. Within this section we first conduct an analyt-133 ical study of an n-component asymmetric hypercycle, follow-134 ing the work conducted on [19] for symmetric hypercycles.135 We later concentrate on the 5-component asymmetric hyper-136 cycles. This study allows to know precisely the locus of the 137

s-n bifurcations of equilibria, namely $Q=Q_{SS}$. Then, a numerical study of the 5-component asymmetric hypercycle is made to carry out the bifurcation analysis. Finally, in Section III.B. we explore the behavior of the the bifurcation gap for larger hypercycles, focusing on the cases with n=6 and n=8 catalytic species.

II. Mathematical model

We analyze the hypercycle model introduced by Campos *et al.* [5], which describes the dynamics of an *n*-member hypercycle competing with an error tail (see Fig. 1A for a schematic diagram). The model is given by the next set of ordinary differential equations:

$$\begin{cases} \dot{x}_i = x_i (A_i Q + k_i x_{i-1} Q - \phi), \\ \dot{x}_e = x_e (A_e - \phi) + (1 - Q) \sum_{i=1}^n x_i (A_i + k_i x_{i-1}), \end{cases}$$
(1)

with $i=1,\ldots,n$ and $\phi=\sum_{i=1}^n x_i(A_i+k_ix_{i-1})+A_ex_e$. State variables x_i are the concentration of the templates I_i , x_e being the concentration of the mutant replicators. To introduce the cyclic architecture of catalysts we set $x_0=x_n$. Parameter $A_i\in(0,1]$ is the replication rate of species i,k_i is the strength of the catalysis that x_{i-1} has on x_i replication, and $Q\in(0,1]$ is the copying fidelity of the templates during replication. Concerning the mutant species, $A_e\in(0,1]$ is their replication rate. Finally, ϕ is a dilution flow that keeps

the total population constant also introducing competition be-188 tween all of the replicators. Since the structure of the equa-189 tions determine that $\sum_{i=1}^n x_i + x_e = 1$ is invariant, we consider the system in this domain and hence we can forget about the population of mutants, x_e .

A hypercycle is called *symmetric* if $A_i = A_e = A$ and $k_i = ^{190}$ k for all i, and asymmetric otherwise. Looking at Eq. (1), it is 191 clear that a symmetric structure eases the computations. Let 192 us summarize some important properties of system (1), see also [5, 16, 19]:

- 1. It is a bistable system for some set of parameters. The 194 origins is always as attractor. When $n \leq 4$, there is 195 bistability when $Q > Q_{SS}$ and the coexistence attrac- 196 tor which allows the persistence of all the hypercy- 197 cle members is a non trivial equilibrium point. When 198 $n \geq 5$, there is bistability as well for $Q > Q_{PO}$, and 199 the coexistence attractor is a periodic orbit.
- 2. In the symmetric case and $n \geq 5$, Q_{PO} and Q_{SS} do not coincide. Then, there is a *bifurcation gap* in the parameter space where two non-trivial equilibria exist but periodic orbits do not [19].

In this paper we break the symmetry by making parameters A_i to be heterogeneous up to some extent, while keeping $k_i=1$ for all $i=1,\ldots,n$. In other words, here we focus on asymmetries in the so-called Malthusian replication rates, given by the exponential replication (at low population numbers) of the hypercycle species, keeping symmetries in the non-linear replication terms given by heterocatalysis. More precisely, we will consider cases in which $A_i=A$ for all $i=1,\ldots,n$ except for one or two i values for which $A_i=a=A-\delta$, where δ (with $\delta<A$) will be considered as the asymmetry parameter in Malthusian replication and $a,A\in(0,1]$. In particular, we will mainly deal with three cases:

- Case $aA \dots A$: $A_1 = a$, $A_e = A$ and $A_i = A$ for all $i = 2, \dots, n$.
- Case $aaA \dots A$: $A_1 = A_2 = a$, $A_e = A$ and $A_i = A$ for all $i = 3, \dots, n$.
- Case $aAa \dots A$: $A_1 = A_3 = a$, $A_e = A$ and $A_i = A$ for all $i = 2, 4, \dots, n$.

Given the cyclic structure of (1), these cases represent many other cases with one or two different values.

Finally, we consider the effect of increasing the dimension (size) of the hypercycle, focusing on the symmetric case. Concretely we deal with n=5,6,8.

III. Results and discussion

A. Asymmetric hypercycles

1. n-member hypercycle

We start studying analytically a general asymmetric case with n templates, looking for general properties of asymmet-

ric hypercycles. In the following we are going to consider the system

$$\dot{x}_i = x_i(A_iQ + x_{i-1}Q - \phi), \qquad i = 1, \dots, n,$$
 (2)

for the different cases above mentioned, with $\phi = \sum_{i=1}^n x_i(A_i + x_{i-1}) + A_e(1 - \sum_{i=1}^n x_i)$ and $x_0 = x_n$. We recall that we do not take into account the equation for x_e since $\sum_{i=1}^n x_i + x_e = 1$.

We are interested in studying the fixed points of system (2), its saddle-node (s-n) bifurcation and the regions where periodic orbits can be found, in a way analogous to the one conducted in [19]. To simplify notation we will also refer to the right-hand side of (2) as the vector field F(x). Our analysis will consist of two steps. In the first one, we find fixed points and the s-n bifurcation of fixed points. In the second step, we determine a region in which we can find periodic orbits, i.e., where they govern coexistence dynamics. For that we analytically compute regions where it is impossible for periodic orbits to exist.

Fixed points. We first deal with the case $aA \dots A$, which is the simplest asymmetric structure one can consider. It is clear that $(0,\dots,0)$ is always an equilibrium point. There are also fixed points for which some of their coordinates are 0, but we do not compute them here since there is a huge number of possible combinations and knowing them is not necessary for the study we want to conduct. Imposing $x_i \neq 0$ for all i in Eq. (2) we get

$$\begin{cases} (A - \delta)Q + x_n Q - \phi = 0, \\ AQ + x_1 Q - \phi = 0, \\ \vdots \\ AQ + x_{n-1} Q - \phi = 0, \end{cases}$$

which results in

$$\begin{cases} x_n = \frac{\phi - (A - \delta)Q}{Q}, \\ x_1 = \dots = x_{n-1} = \frac{\phi - AQ}{Q}. \end{cases}$$

Subtracting x_1 to x_n , we get $x_n - x_1 = \delta$.

Thus, we only need to find the expression of one of the x_i . Let us find x_1 . We first express ϕ in terms of x_1 :

$$\phi = \sum_{i=1}^{n} x_i (A_i + x_{i-1}) + x_e A = -\delta x_1 + A + \sum_{i=1}^{n} x_i x_{i-1}$$
$$= -\delta x_1 + A + n x_1^2 + 2x_1 \delta,$$

and substituting it into the x_1 expression above we get

$$nx_1^2 - (Q - \delta)x_1 + A(1 - Q) = 0.$$

Therefore, there are two equilibrium points of the form

$$(x_+,\ldots,x_+,x_++\delta),$$

with
$$x_{\pm}=\frac{(Q-\delta)\pm\sqrt{(Q-\delta)^2-4nA(1-Q)}}{2n}.$$
 From this last expression we know that there is a s-n bifur-

cation occurring for a value of Q for which

$$(Q - \delta)^2 - 4nA(1 - Q) = 0,$$

that is

$$Q = Q_{SS} = 2(\sqrt{nA(1 + nA - \delta)} - nA) + \delta > \delta.$$

The two equilibrium points borning at the bifurcation exist for $Q>Q_{SS}$ for which we have a s-n bifurcation. The bifurcation point is therefore:

$$\left(\frac{Q-\delta}{2n},\ldots,\frac{Q-\delta}{2n},\frac{Q-\delta}{2n}+\delta\right),$$

with $Q = Q_{SS}$.

207

208

209

210

212

213

215

216

218

219

220

221

223

224

225

227

228

In the symmetric case this point was $\left(\frac{Q}{2n}, \dots, \frac{Q}{2n}, \frac{Q}{2n}\right)$, so²³⁵ that the bifurcation point for the asymmetric case tends to the 236 one for the symmetric case when δ tends to zero.

Now that we have conducted a brief study of the simplest²³⁸ *n*-dimensional asymmetric hypercycle, we study hypercycles²³⁹ where two of the templates have a replication rate $a=A-\delta$. ²⁴⁰ In particular we are going to consider cases $aaA\dots A$ and 241 $aAaA\dots A$, since these are the two cases we will focus on $^{^{242}}$ lately when dealing with 5-member asymmetric hypercycles.²⁴³ In the case of 5 members, these two cases cover all possi-244 bilities when two different values of A_i are considered (rela-245 belling the templates, if necessary).

The procedure to obtain the equilibrium points is similar to 247 the above case $aA \dots A$. We obtain

$$(x_{\pm} + \delta, x_{\pm}, \dots, x_{\pm}, x_{\pm} + \delta)$$
, for case $aaA \dots A$; $(x_{\pm}, x_{\pm} + \delta, \dots, x_{\pm}, x_{\pm} + \delta)$, for case $aAaA \dots A$, (3)

where $x_{\pm} = \frac{Q - 2\delta \pm \sqrt{(Q - 2\delta)^2 - 4nA(1 - Q)}}{2n}$. Now₂₄₉

$$Q = Q'_{SS} = 2(\sqrt{nA(a + nA - 2\delta)} - nA) + 2\delta > 2\delta,$$

in both cases and the bifurcation points are

$$\left(\frac{Q-2\delta}{2n} + \delta, \frac{Q}{2n}, \dots, \frac{Q}{2n}, \frac{Q-2\delta}{2n} + \delta\right), \quad \text{for case } aaA \dots A; \quad {}_{254}$$

$$\left(\frac{Q-2\delta}{2n}, \frac{Q-2\delta}{2n} + \delta, \dots, \frac{Q-2\delta}{2n}, \frac{Q-2\delta}{2n} + \delta\right), \quad \text{for case } aAaA \dots A. \, {}_{255}$$
(4)

Periodic orbits. Since our main goal here is to study the behaviour of periodic orbits with respect to the parameter Q, we first care about the conditions for their existence. In particular we are going to locate a subset of the basin of attraction₂₅₆ of the origin, and consider the complementary of this region₂₅₇ as the domain where the existence of periodic orbits is possi-258 ble depending on Q. For this purpose, we define the domains₂₅₉ Ω_{α} and the hyperplanes Σ_{α} as:

$$\Omega_{\alpha}:=\Big\{x\in\mathbb{R}^n\mid x_i\geq 0, \sum_{i=1}^n x_i\leq \alpha\Big\}, \tag{5} \text{263}$$

$$\Sigma_{\alpha} := \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^n x_i = \alpha \right\},\tag{6}$$

for $\alpha \in (0,1]$. Observe that the dynamics of system (2) is restricted to Ω_{1-x_e} which is a subset on the *n*-simplex $\Omega := \Omega_1$. Besides, each subspace generated by vectors of the canonical basis is invariant; in particular, the hyperplanes $x_i = 0$ are invariant. Thus, except for Σ_{α} , all other n faces of Ω_{α} , for $\alpha \in (0,1]$, are invariant for the vector field F. We study the flow generated by F on Σ_{α} by taking the vector v = (1, ..., 1), which is normal to the hyperplane, and computing $v \cdot F(x)$ for $x \in \Sigma_{\alpha}$. We have that

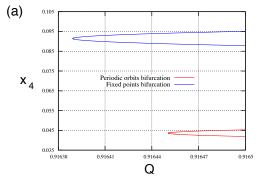
$$\cos(v, F(x)) = \frac{v \cdot F(x)}{||v|| ||F(x)||}.$$

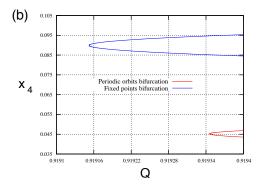
Then, when this scalar product is zero, F is tangent to the hyperplane. When it is positive, F points outside of Ω_{α} , and when it is negative F points inside Ω_{α} . If F points inside Ω_{α} , for all points in Σ_{α} , we have that Ω_{α} is positively invariant, which means that no orbits escape from Ω_{α} in forward time. We also know that if the vector field F crosses transversally Σ_{α} for all $\alpha < \alpha_0$ for some α_0 , then Ω_{α_0} is contained in the basin of attraction of the origin. Thus, periodic orbits can only exist in the complementary of the region where this occurs.

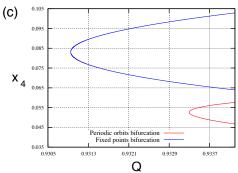
This setting is general for any case of asymmetry, but the determination of the suitable α values that give information about the location of periodic orbits must be performed case by case. As a general example, in this section we study the case $aA \dots A$. Next, in Section III A 2, we will apply the same procedure to 5-member hypercycles with two asymmetric members. For the case $aA \dots A$, the numerator of $\cos(v, F(x))$ becomes

$$v \cdot F(x_1, \dots, x_n) = (Q - \alpha) \left(\sum_{i=1}^n x_{i-1} x_i - \delta x_1 \right) + A\alpha(Q - 1).$$
(7)

To study the behavior of expression (7) for a given $\alpha < 1$, we distinguish two cases. If $Q \leq \alpha$, the product (7) is negative (we use that $\delta < A$) so F points inside Ω_{α} and thus Ω_{α} is positively invariant. If $Q > \alpha$, we need to deepen the study of expression (7). We want to know when this expression is negative. We can first find the maximum of it. For that we will


maximize $f(x) = \sum_{i=1}^{n} x_{i-1}x_i$, using the method of Lagrange multipliers. We want:


$$\max_{x} \sum_{i=1}^{n} x_{i-1} x_{i}, \quad \text{subject to} \quad \sum_{i=1}^{n} x_{i} = \alpha, \quad (8)$$


together with $x_i \geq 0$. We obtain a unique critical point: $x^* = (\frac{\alpha}{n}, ..., \frac{\alpha}{n}) \in \Sigma_{\alpha}$ and $f(x^*) = \frac{\alpha^2}{n}$. We need to check whether the maximum reached on the boundary of Σ_{α} is greater than the value we have found.

When n = 2, the function $f(x) = x_1x_2$ is always 0 on the boundary of Σ_{α} . Hence, the maximum is reached in the interior and turns out to be $\alpha^2/2$.

When n=3, the function $\sum_{i=1}^{3} x_{i-1}x_{i}$ is nonzero on the boundary when only one x_i is 0. Due to the cyclic structure

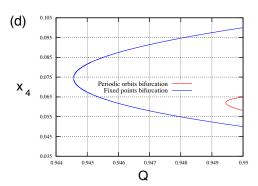


FIG. 2. Bifurcation diagrams for 5-member asymmetric hypercycles with structure aaAAA setting A=0.5 and: $\delta=0.001$ (a), 0.01 (b), 0.05 (c) and 0.1 (d). The s-n bifurcation of periodic orbits is indicated with red curves, while the s-n bifurcation of fixed points is indicated in blue.

of the previous function, it is indistinct which coordinate we choose to be 0. Assuming $x_3 = 0$, we want:

267

269

270

273

275

276

277

278

279

$$\max_{x} x_1 x_2, \quad \text{subject to} \quad x_1 + x_2 = \alpha, \ x_i \ge 0. \quad (9)$$

Using the method of Lagrange multipliers we get that the maximum is $\alpha^2/4$. Thus, the maximum on the boundary is less than the maximum that is achieved in the interior of Ω_{α} , which is $\alpha^2/3$.

When n=4, in the boundary of Σ_{α} either one, two, or three of the x_i may vanish. If three of them vanish, f is zero. If two of them vanish, they can be consecutive and then we get a problem equivalent to (9) for which the maximum is $\alpha^2/4$, or non-consecutive and then the function is 0. If only one of the terms vanishes, for instance x_4 , we have to consider

$$\max_x(x_1x_2+x_2x_3), \ \ \text{subject to} \ \ x_1+x_2+x_3=\alpha, \ \ x_i\geq 0_{\mathrm{283}}$$

Using again the method of Lagrange multipliers we get that $\alpha^2/4$ is the maximum, which coincides with the maximum²⁸⁴ reached in the interior of Ω_α . Therefore, the maximum is attained both on the boundary and in its interior.

When n>4, we can proceed similarly. When two or more x_i vanish, we obtain a problem equivalent to the one solved for a lower n. We only need to solve a "new" optimization problem when only one of the x_i is 0. We are going to solve it by induction.

Let us see now that $\forall n>4$ the maximum of (8) is $\alpha^2/4$,287 attained on the boundary when one and just one of the x_i is288

0. As the objective function has a cyclic structure, it does not matter which of the x_i is picked up to be 0. Let us suppose, by induction, that the maximum $\alpha^2/4$ holds for n-1 replicators. Then we take n replicators. The image of the critical point is $\frac{\alpha^2}{n}$. We want to solve (8) on the boundary. Taking $x_n=0$, we have:

$$f(x) = x_1 x_2 + \dots + x_{n-2} x_{n-1}.$$

Now, as $x_i > 0$, i = 1, ..., n - 1,

$$f(x) \le x_1 x_2 + \dots + x_{n-2} x_{n-1} + x_{n-1} x_1,$$

the RHS being the function we have for n-1 replicators. Hence, from the induction hypothesis, the maximum of this

function is
$$\alpha^2/4$$
. Therefore, $\forall n \geq 4$, $\sum_{i=1}^n x_{i-1}x_i \leq \frac{\alpha^2}{4}$, for

$$\sum_{i=1}^n x_i=\alpha,\, x_i\geq 0.$$
 Hence, using that $\sum_{i=1}^n x_i=\alpha$ and so $x_i\leq \alpha,\, \forall i,$ we get

$$v \cdot F(x_1, \dots, x_n) \le (Q - \alpha) \left(\frac{\alpha^2}{4} - \alpha \delta\right) + A\alpha(Q - 1).$$
 (10)

We are going to find a threshold for Q, denoted by Q_* , such that $\forall Q \geq Q_*$, the region Ω_α is positively invariant.

We can find the zeros of the RHS of (10), which are $\alpha_0 = 0$

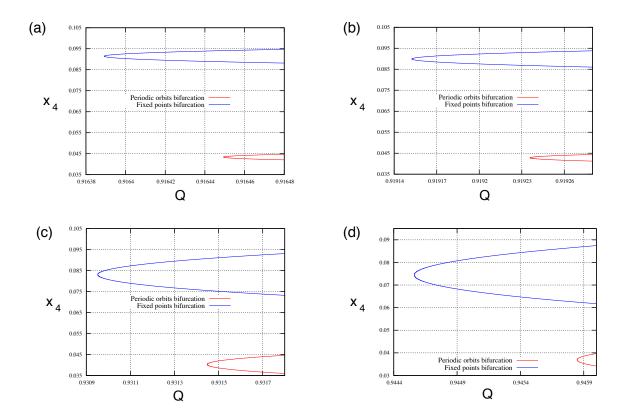


FIG. 3. Same as Fig. 2 for 5-member asymmetric hypercycles with structure aAaAA setting A=0.5 and: $\delta=0.001$ (a), 0.01 (b), 0.05 (c) and 0.1 (d).

and

289

290

291

292

293

295

297

298

299

300

301

302

304

305

306

307

308

310

$$\alpha_{\pm} = \frac{4\delta + Q \pm \sqrt{(4\delta + Q)^2 - 16(A(1 - Q) + Q\delta)}}{2}.$$

Looking for which Q expression (11) is real we get the threshold:

$$Q_* = 4\delta - 8A + 4\sqrt{A(4A - 4\delta + 1)}. (12)$$

Therefore, if $Q \geq Q_*$, then $v \cdot F(x_1,\ldots,x_n) < 0$ for $\alpha \in (0,\alpha_-) \cup (\alpha_+,Q)$. This means that when $\alpha < \alpha_-$ or³¹⁹ $\alpha > \alpha_+$, Ω_α is positively invariant. Since for all $\alpha < \alpha_-$, v -³²⁰ $F(x_1,\ldots,x_n) < 0$, for initial conditions in Ω_α with $\alpha < \alpha_-$,³²¹ the total population of the hypercycle tends to 0. Moreover, in order to look for periodic orbits or other recurrent phenomena we have to concentrate on values of $\alpha \in (\alpha_-,\alpha_+)$ and $Q \geq_{324} Q_*$.

We need to note that this interval is not sharp because the $_{326}$ inequality (10) is not sharp. Hence, for values of α in the $_{327}$ interval and close to the interval limits, Ω_{α} is possibly still $_{328}$ positively invariant so, to be sure to truly find interesting behaviour, we should choose values of α close to the midpoint $_{329}$ of the interval.

Now, if the discriminant of (11) was to be negative, that is, if $Q < Q_*$, then α_- and α_+ are complex and the only real zero is $\alpha_0 = 0$. Therefore, as the RHS of (10) tends to $-\infty$ when α grows, it is always less or equal than zero. Then, 34 Ω_α is positively invariant $\forall \alpha$, which means that the origin is globally asymptotically stable.

Summarizing, consider the hypercycle formed by n replicators with replication rates $aA \dots A$, and let Ω_{α} be given by (5) and Q_* be given by (12). Then,

- when $\alpha \geq Q$, Ω_{α} is positively invariant. Moreover, since $v \cdot F < 0$ in $\{x \in \Omega \mid x_1 + \dots + x_n > Q\}$, there can not be periodic orbits in that domain;
- when $\alpha < Q$,
 - if $Q < Q_*$, Ω_α is positively invariant, and $v \cdot F < 0$ in Ω . Then, there can not be periodic orbits in Ω ;
 - if $Q \geq Q_*$, Ω_{α} is positively invariant for $\alpha \in (0,\alpha_-) \cup (\alpha_+,Q)$, where α_+ and α_- are given by (11). Moreover, $v \cdot F < 0$ in $\{x \in \Omega \mid x_1 + \cdots + x_n < \alpha_-\} \cup \{x \in \Omega \mid x_1 + \cdots + x_n > \alpha_+\}$. Then, if periodic orbits exist, for each point of the periodic orbit the sum of its coordinates must be between α_- and α_+ .

Hence, we have located, depending on the parameter Q, the regions where periodic orbits can appear. In order to find them explicitly, we need to resort to numerical methods, see Appendix V.A.

Next, we apply the same procedure to complete all possible asymmetric cases with two different replication rates for dimension n=5, which is a trade-off between analytical tractability of equations and existence of periodic orbits [16].

In particular, as commented before, all of the remaining cases are aaAAA and aAaAA.

2. Five-member hypercycle

From (3), we know that the equilibrium points are $(x_{\pm}+\delta,x_{\pm},x_{\pm},x_{\pm},x_{\pm}+\delta)$ for the case aaAAA, and $(x_{\pm},x_{\pm}+\delta,x_{\pm},x_{\pm},x_{\pm}+\delta)$ for the case aAaAA, where $x_{\pm}=((Q-2\delta)\pm\sqrt{(Q-2\delta)^2-20A(1-Q)})/10$. As x_{\pm} is the same in both cases, the critical value of Q for which there is a s-n bifurcation of fixed points, Q_{SS} , is the same:

$$Q_{SS} = 2\left(\sqrt{5A(1+5A-2\delta)} - 5A + \delta\right).$$

Therefore, the respective bifurcation points can also be obtained from (4), with $Q = Q_{SS}$ and n = 5.

As our goal is to study both the bifurcations of fixed points and of periodic orbits in these two cases, let us find the regions of Ω where periodic orbits can be found. We perform the analogous procedure explained in Section III.A.1. for the case $aA\ldots A$ to obtain the corresponding regions in the present cases. We provide the results next.

We need to study the sign of $v \cdot F(x)$ which becomes

$$(Q - \alpha) \left(\sum_{i=1}^{5} x_i x_{i-1} - \delta(x_1 + x_2) \right) + A\alpha(Q - 1),$$

for the aaAAA case, and

339

341

343

344

345

349

350

$$(Q - \alpha) \left(\sum_{i=1}^{5} x_i x_{i-1} - \delta(x_1 + x_3) \right) + A\alpha(Q - 1)$$

for the aAaAA case. In both cases, given

$$\alpha_{\pm} = \frac{Q + 8\delta \pm \sqrt{(8\delta + Q)^2 - 4(8Q\delta - 4A(Q - 1))}}{2},$$

$$Q_* = 8(\delta - A) + \sqrt{4A^2 - 8A\delta + A},$$

and adapting the calculations done in Section III.A.1, if peri- 357 odic orbits exist, they must lie in the region of the parameter space where $Q \geq Q_*$ and, moreover, the sum of the coordi- 359 nates of its points, α , fulfill $\alpha > Q$ and $\alpha \in [\alpha_-, \alpha_+]$.

From this point on, we need to implement numerical rou- 361 tines, see Appendix V.A., in order to find periodic orbits of 362 system (2) for the cases aaAAA and aAaAA and, in particu- 363 lar, the parameter values of the corresponding s-n bifurcations 364 of periodic orbits, Q_{PO} . An important issue is the choice of 365 a Poincaré section. Adapting (3) to the case n=5, we know 366 that the equilibrium points are $(x+\delta,x,x,x,x+\delta)$ for the case 367 aaAAA, and $(x,x+\delta,x,x,x+\delta)$ for the case aAaAA, with 368 $x=((Q-2\delta)\pm\sqrt{(Q-2\delta)^2-20A(1-Q)})/10$. Clearly, 369 the average copying fidelity rate at which the s-n bifurcation 370 of fixed points occurs is:

$$Q_{SS} = 2\left(\sqrt{5A(1+5A-2\delta)} - 5A + \delta\right).$$

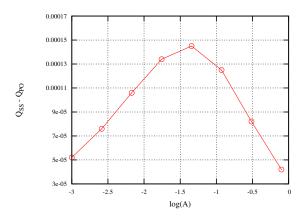


FIG. 4. Quantification of the gap size between the two bifurcations for different values of A, in the symmetric case (see [19] for further details).

Keeping in mind that our goal is to find periodic orbits, it is clear that the Poincaré section should not be close to equilibrium points. A natural choice is to fix one of the coordinates, for instance x_1 , at the value corresponding to the first coordinate of the equilibrium point at the bifurcation $Q=Q_{SS}$. Then, if $Q-Q_{SS}$ is not too small, the Poincaré section (Σ_P) will be far enough from both of them. Accordingly, we consider

$$\Sigma_P = \left\{ x_1 = \frac{Q - 2\delta}{10} + \delta \right\}$$

for the aaAAA case, and

$$\Sigma_P = \left\{ x_1 = \frac{Q - 2\delta}{10} \right\}$$

for the aAaAA case. This choice is crucial for the success of the numerical continuation with respect to parameters. Taking, for instance, the section given in [19] for the symmetric case, would not allow to continue the curve of periodic orbits.

To pick an initial condition for Q and x we use the condition for the existence of periodic orbits derived in (11) and (12), and then we integrate several orbits with random initial conditions until we detect the convergence to a periodic orbit.

Once we have obtained a periodic orbit, for an initial value of Q, see Appendix V.C., we proceed by continuation with respect of the parameter Q, see Appendix V.D. In this computational part, we need to take care of the step size and of the number of continuation steps. It turns out that, after passing by the bifurcation point Q_{PO} , the continuation method follows the unstable periodic orbit. For every A, there exists a value of Q for which this unstable periodic orbit passes so close to the hyperplanes $x_i = 0$ that the Newton method we use does not converge. Thus, as Q_{PO} depends on A and δ , the number of continuation steps needs to be adapted for every (A, δ) pair.

The curve of equilibrium points has been computed isolating Q in the expression for x, that is, from $x_{\pm}=((Q-2\delta)\pm\sqrt{(Q-2\delta)^2-20A(1-Q)})/10$.

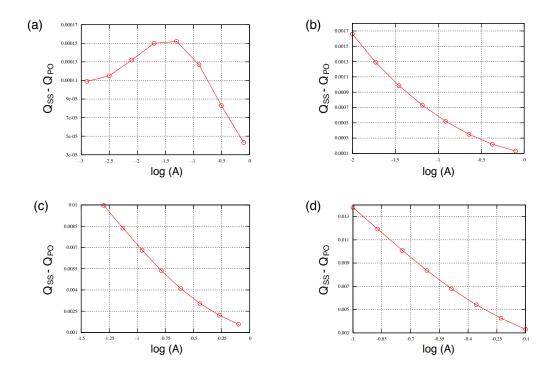


FIG. 5. Bifurcation gap for the asymmetric case aaAAA with: $\delta = 0.001$ (A), 0.01 (B), 0.05 (C) and 0.1 (D).

In the next section, we exploit the numerical implementation explained above to plot and compare the bifurcation curves.

B. Impact of asymmetry on bifurcation gaps

Here we extend the numerical study conducted in [19] for symmetric hypercycles to asymmetric ones. We know explicitly Q_{SS} , the value of Q for which the saddle-node (s-n) bifurcation of fixed points occurs, and we want to compute the value of Q for which the s-n bifurcation of periodic orbits takes place, Q_{PO} . In [19] the authors observed that there is a slight difference between these two values, which they called gap. Here, we explore whether such a gap exists in the 5-member asymmetric case and, if so, how it behaves as a and a differ from each other, i.e., as a changes.

Figure 3 shows the two bifurcation curves (equilibria and periodic orbits) in terms of Q, taking A=0.5, as in [19], and increasing δ from 0.001 to 0.1 in the four panels. We observe in all cases a clear difference in the position of the turning points, with $Q_{PO}>Q_{SS}$.

By definition of δ , the larger it is, the more the hypercycle⁴¹³ differs from the symmetric one. We are interested in quan-⁴¹⁴ tifying how does the gap between the two bifurcation points⁴¹⁵ behave when the system gets more asymmetric. For the sym-⁴¹⁶ metric case it was shown in [19] that the gap reached a value of approximately 1.5×10^{-4} for a certain value of parameter A (see Figure 4, included here for the sake of comparison). In⁴¹⁷ Figures 5 and 6 we can appreciate that the magnitude of the gap for the asymmetric cases increases with δ for both con-⁴¹⁸ figurations, aaAAA and aAaAA. Hence, as the hypercycle⁴¹⁹

$Q_{PO} - Q_{SS}$ (Gaps)		
	aaAAA	aAaAA
	5.98054×10^{-5}	
I		6.01082×10^{-5}
$\delta = 0.01$	1.93241×10^{-4}	8.33985×10^{-5}
$\delta = 0.05$	2.34217×10^{-3}	4.96334×10^{-4}
$\delta = 0.1$	4.88186×10^{-3}	1.28505×10^{-3}

TABLE I. Bifurcation gaps for cases aaAAA and aAaAA for different degrees of asymmetries in the hypercycle.

gets "more asymmetric", the difference between the values where the bifurcations of periodic orbits and fixed points occur is larger (see Table I below where the value $Q_{PO}-Q_{SS}$ is displayed for each continuation curve).

Here, we make a necessary observation about errors, since we produce numbers that have been obtained numerically. In the computer codes we have written the main sources of error are the numerical integrator and the Newton iterations. As integrator we have used a Runge-Kutta-Fehlberg method of orders 7-8 with local relative tolerance of 10^{-14} . For the Newton method we have iterated until a tolerance of 0.5×10^{-14} has been reached.

C. Impact of higher dimensions on bifurcation gaps

In this section we further analyse the bifurcation gap in terms of Q for symmetric hypercycles with n=6 and n=8

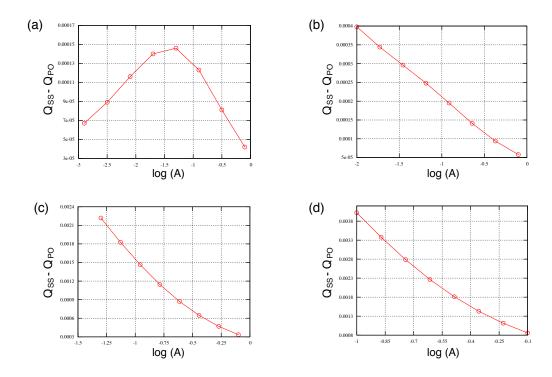


FIG. 6. Same as Fig. 5 for case aAaAA with: $\delta=0.001$ (a), 0.01 (b), 0.05 (c) and 0.1 (d).

members. We have found that the results are not only analogous to the case n=5 (see Fig. 4) but also that the distance increases with the dimension of the hypercycle (see Fig. 7). More specifically, this distance increases more than one order of magnitude from n=5 to n=8.

420

421

422

423

424

426

427

428

430

431

432

433

434

436

437

438

439

440

441

442

There is one difficulty that one must overcome somehow when we increase the dimension. That is, as numerical computations indicate, the coordinates of the periodic orbit pass extremely close to the origin. Then, computing the derivatives of the Poincaré map using:

$$\frac{\partial P_i(x)}{\partial x_i} \approx \frac{P_i(x + he_j) - P_i(x - he_j)}{2h},$$

it might happen that $x-he_j$, has some negative component, in which case we are not anymore in the simplex Ω_1 and the flow will probably never come back to it (even if it did and crossed the Poincaré section again the solution would have nothing to do with the expected one). One could think that decreasing h would solve the problem, but doing so will lead to a huge numerical error in the derivative (as it happens when we have 444 a small value in the denominator).

This is why we have been forced to use more accurate algo-446 rithms to obtain the derivative of the Poincaré map in order to apply successfully the Euler-Newton method. This alternative way is explained in Section V.B. in the Appendix .

The actual computations look for the value of Q along the continuation process at which the sign of the derivative of Q with respect to the arc length of the curve which gives the periodic orbit with respect to the parameter Q changes and then compare it with the Q of the saddle-node (s-n) bifurcation for the fixed points which is $Q=2\left(\sqrt{nA(1+nA)}-nA\right)^{451}_{452}$

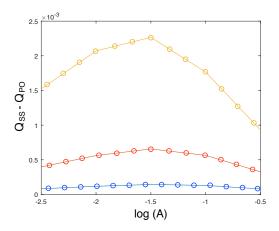


FIG. 7. Distance between the s-n bifurcation of periodic orbits and of fixed points $(Q_{SS} - Q_{PO})$ for symmetric hypercycles with n=5 (blue), n=6 (red), and n=8 (orange).

As long as we use a small step size when applying the Euler-Newton method, the continuation goes on (for example using as step size 10^{-6} , which is what we have done).

IV. Conclusions

In this manuscript we have conducted an analytical study of a general n-member, asymmetric hypercycle with the Malthusian replication constants: $aA \dots A$. We have found the coexistence fixed points, their bifurcation values and the region in which the vector field can present periodic orbits. We have

then focused on cases aaAAA and aAaAA for five-member₄₈₃ hypercycles. In this way we have exhausted all of the possible₄₈₄ asymmetries, relabelling constants and/or variables if neces-₄₈₅ sary.

453

455

456

457

458

460

463

464

465

466

467

469

470

471

472

473

475

476

478

479

481

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525 526

527

528

530

531

533

534

535

Following previous results on oscillating 5-member hyper-487 cycles [19], we have checked that the gap found between the488 saddle-node (s-n) bifurcation value of fixed points and the s-n_{seq} bifurcation value of periodic orbits in symmetric hypercycles₄₉₀ also holds in asymmetric ones. Actually, the gap grows as the asymmetry of the system gets larger. These results strengthen₄₉₂ the "gap problem" introduced in [19], as it was identified in $_{_{493}}$ the symmetric case, which is a less realistic case from a bi-494 ological point of view. Moreover, in the symmetric case, the 495 gap is shown to increase for larger hypercycles. Symmetric₄₉₆ hypercycles assume that all of the members of the hypercy-497 cle are neutral mutants, since they might be synthesized from, previously existing templates by replication and mutation pro-499 cesses. In this sense, recent experimental results on mutational fitness effects for RNA viruses quantified neutral spontaneous mutations happening with about 25% of probability₅₀₀ [30, 31]. Hence, even for small hypercycles, asymmetries might be expected.

The biological implications of these gaps could be relevant501 within the framework of so-called delayed transitions [14, 24].502 It is known that after a s-n bifurcation a saddle remnant (also503 named ghost) appears in the phase space [32–36]. In this504 phenomenon, the flow takes a long-lastly excursion just af-505 ter the s-n bifurcation before going to the only asymptotically506 globally stable attractor, which involves extinction. This phe-507 nomenon was interpreted as a kind of memory for hypercy-508

cles occurring after the bifurcation [14], possibly becoming a selective advantage in fluctuating environments [36]. Interestingly, this delaying phenomenon has been described in models for delayed switching of charge-density waves as [35], well as in an experiment with an electronic circuit behaving as a Duffing oscillator [37].

Since the gap described in this article is found in between two different s-n bifurcations, two delayed transitions may be found, one when $Q \lesssim Q_{PO}$ and another when $Q \lesssim Q_{SS}$. This could involve an enhancement of the delaying effects and thus a higher memory capacity of the system, therefore further slowing down hypercycles' extinction. However, we must notice that delayed transition phenomena are local. This means that the delaying effect of the saddle remnant occurs with parameter values extremely close to the bifurcation value. Despite this fact, future research could be devoted to quantify the delaying times within the region $[Q_{SS}, Q_{PO}]$.

Acknowledgements

This work has been partially funded by the Spanish grants MINECO MTM2013-41168-P, MTM2016-80117-P (MINECO/FEDER, UE) (EF) and MTM2015-71509-C2-2-R (AG), and the Catalan grants AGAUR 2014SGR-1145 (EF) and 2014SGR-504 (AG). JS has been partially funded by the CERCA Programme of the Generalitat de Catalunya. The research leading to these results has received funding from "la Caixa" Foundation.

- [1] Eigen, M., Schuster, P., [1979] *The Hypercycle. A Principle of* 536 *Self-organization.* Springer–Verlag, Germany.
- [2] E.L. Allgower, Kurt Georg. [1987] Introduction to Numeri-538 cal Continuation Methods, Society for Industrial and Applieds39 Mathematics.
- [3] Eigen, M., [1971] "Selforganization of Matter and the Evolu-541 tion of Biological Macromolecules," *Die Naturwissenschaften* 58 465–523
- [4] Chaves, M. et al., [2007] "Bistable biological systems: a char-544 acterization through local compact input-to-state stability." 545 IEEE Transactions on Automatic Control 53: 87–100.
- [5] Campos, P.R.A., Fontanari, J.F., Stadler, P.F., [2000] "Error547 propagation in the hypercycle". *Physical Review E* 61: 2996–548 3002.
- [6] Smith, J.M., Szathmáry, E., [1995] The major transitions inssont evolution. Oxford University press, Great Britain.
- [7] Szathmáry, E. [1992] "Natural selection and dynamical coexis-552 tence of defective and complementing virus segments". *J. theor*, 553
 Biol. 157, 383-406.
- [8] Szathmáry, E. [1993] "Co-operation and defection: playing theses field in virus dynamics". *J. theor. Biol.* **165**, 341-56.
- [9] Sardanyés, J. & Elena, S. F. [2010] "Error threshold in RNA557 quasispecies models with complementation," *J. theor. Biol.* 265,558 278-286.
- [10] Farmer, J. D., Kauffman, S. A., Packard, N. H., & Perelson, A.560 S. [1987] "Perspectives in biological dynamics and theoretical561 medicine," [Chapter. Adaptive dynamic networks as models for

- the immune system and autocatalytic sets].
- [11] Sardanyés, J. [2009] "Landscape ecology research trends," Nova Publishers [Chapter 6. The Hypercycle: from molecular to ecosystems dynamics].
- [12] Cohen, M. A., & Grossberg, S. [1983] "Absolute stability and global pattern formation and parallel memory storage by competitive neural networks," *IEEE Trans. Syst. Man Cybernet.* 13, 815-26.
- [13] Cohen, M. A., & Grossberg, S. [1991] "Pattern recognition by self-organizing neural networks" MIT Press, Cambridge, MA.
- [14] Sardanyés, J., Solé, R.V., [2005] "Ghosts in the origins of life?," Int. J. of Bifurc. and Chaos 16(9), 2761-2765.
- [15] Nuno, J.C., Montero, F., & de la Rubias, F. J. [1993] "Influence of external fluctuations on a hypercycle formed by two kinetically indistinguishable species," *J. theor. Biol.* **165**, 553-75.
- [16] Silvestre, D.A.M.M. & Fontanari, J. F. [2008] "The information capacity of hypercycles," *J. Theor. Biol.* 254, 804-806.
- [17] Solé, R. V., Saldanya, J., Montoya, J. M. & Erwin, D. H. [2010] "Simple model of recovery dynamics after mass extinction," *J. Theor. Biol.* 267(2), 193-200.
- [18] Groenenboom, M. A. C., & Hogeweg, P. [2002] "Space and the persistence of male-killing endosymbiontsin insect populations," *Proc. R. Soc. Lond. B* 269, 2509-2518.
- [19] Guillamon, A., Fontich, E., Sardanyés, J., [2015] "Bifurcations analysis of oscillating hypercycles". Journal of Theoretical Biology 387: 23–30.

[20] Hofbauer, J. et al, [1990] "Stable Periodic Solutions for the Hy-620 percycle System." *Journal of Dynamics and Differential Equa*tions 3(3): 423–436.

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

612

613

614

615

616

618

- [21] Farkas, M., [2001] Dynamical Models in Biology. Academic Press, San Diego.
- [22] Sanjuán, R., Moya, A., Elena, S.F., [2004] "The distribution of fitness effects caused by single–nucleotide substitutions in an RNA virus." *Proc. Natl. Acad. Sci. U.S.A.* **101**: 8396—-8401.
- [23] Kauffman, S. A. [1993] "The origins of order," [Chapter 9. Hy-624 percycles and coding].
- [24] Sardanyés, J., Solé, R.V., [2006] "Bifurcations and phase transi-626 tions in spatially-extended two-member hypercycles." *Journal* 627 of Theoretical Biology 234(4): 468–482.
- [25] Sardanyés, J., Solé, R.V., [2007] "Spatio–temporal dynamics in₆₂₉ simple asymmetric hypercycles under weak parasitic coupling." *Physica D* 231(2): 116–129.
- [26] Sardanyés, J., Solé, R.V., [2007] "Delayed transitions in nonlinear replicator networks: About ghosts and hypercycles." *Chaos, Solitons and Fractals* 31(2): 313–319.
- [27] Simó, C., [1990] On the analytical and numerical approximation of invariant manifolds, in Les méthodes modernes de la mécanique. 285–329, Editions Frontieres, Paris.
- [28] Sardanyés, J., [2009] Dynamics, Evolution and Information in Nonlinear Dynamical Systems of Replicators. Doctoral Thesis. Universitat Pompeu Fabra, Spain.
- [29] Sardanyés, J. et al., [2014] "Variability in mutational fitness effects prevents full lethal transitions in large quasispecies populations." Scientific Reports 4:4625.
- [30] Sanjuán, R., Moya, A. & Elena, S. F. [2004] The distribution of fitness effects caused by single-nucleotide substitutions in an₆₃₂ RNA virus. *Proc. Natl. Acad. Sci. U.S.A.* 101: 8396-8401.
- [31] Carrasco, P., de la Iglesia, F. & Elena, S. F. [2007] Distribution of fitness and virulence effects caused by single-nucleotide substitutions in Tobacco etch virus. J. Virol. 81: 12979-12984.
- [32] Strogatz, S.H. [2000] Nonlinear dynamics and chaos (Westview Press).
- [33] Fontich & Sardanyés [2008] General scaling law in the saddlenode bifurcation: a complex phase space study. *J. Phys. A: Math. Theor.*, **41**: 015102.
- [34] Duarte, J. Januário, Martins, N., & Sardanyés, J. [2006] Scaling law in saddle-node bifurcations for one-dimensional maps: a complex variable approach. *Nonlinear Dyn.*, 67: 541-547.
- [35] Strogatz, S.H., & Westervelt, R.M. [1989] Predicted power laws for delayed switching of charge-density waves *Phys. Rev. B* 40: 10501-10508.
- [36] Sardanyés, J., & Solé, R. [2006] Ghosts in the origins of life? Int. J. Bifurc & Chaos 16: 2761-2765.
- [37] Trickey, S.T., & Virgin, L. N. [1998] Bottlenecking phenomenon near a saddle-node remnant in a Duffing oscillator. Phys. Lett. A 248: 1851-90.

V. Appendices

A. Construction of a Poincaré map

Poincaré maps are a powerful device to study both theoreti-636 cal and computational aspects of vector fields. In this work we637 use them to compute periodic orbits because periodic orbits of638 a vector field F correspond to fixed points on periodic points639 of P, the Poincaré map associated to F and a some section.640 In its turn fixed points of P correspond to zeros of the map H,641

defined as

$$H(x) := P(x) - x. \tag{13}$$

Thus in this way we reduce the problem of obtaining periodic orbits of vector fields to the problem of finding zeros of functions. To define a Poincaré map first we have to choose a Poincaréection, Σ_P . Motivated by the fact that, after the bifurcation, our systems have two interior equilibrium points we just choose a section defined by the first coordinate fixed constant at a value which is the mid point between the two first coordinates of these equilibrium points (whenever they exist). Hence we take

$$\Sigma_P := \left\{ x_1 = \frac{Q}{2n} \right\}.$$

in the symmetric case and

$$\Sigma_P := \left\{ x_1 = \frac{Q - 2\delta}{10} + \delta \right\},\,$$

in the aaAAA case and n = 5, and

$$\Sigma_P := \left\{ x_1 = \frac{Q - 2\delta}{10} \right\}.$$

in the aAaAA case and n = 5.

We note that we could have chosen any other x_i coordinate and proceed analogously. Then taking an initial condition in Σ_P we integrate our vector field F until we reach again Σ_P crossing it in the same sense as the vector field crosses Σ_P at the initial point x, To detect the case for which the orbit of $x \in \Sigma_P$ does not belong to Σ_P we prescribe a time limit of integration. For the numerical integration we use a method based on two Runge-Kutta-Fehlberg algorithms of orders 7 and 8 (RKF78) with automatic step size control, using a step size $10^{-4} \le \Delta t \le 10^{-1}$ and local relative tolerance 10^{-14} . When we detect that the orbit has crossed Σ_P in the desired sense, we proceed to obtain the point of the trajectory that is on Σ_P . For that we use the Newton method to find a zero of the function

$$\Phi(t) = y_1(t) - \frac{Q}{2n},$$

where y_1 denotes the first coordinate of the orbit (which we compute using the RKF78 method). The Newton scheme gives the sequence of time iterates

$$t_{k+1} = t_k - \frac{\frac{Q}{2n} - y_1(t_k)}{\dot{y}_1(t_k)}. (14)$$

From this, we get the next step size $h_{k+1} = t_{k+1} - t_k$ to perform one more step of the RKF78 integration and arrive closer to Σ_P . We repeat this iteration until a prefixed tolerance (set as $\varepsilon = 0.5 \times 10^{-14}$) is reached. As a result of this process, we get a point that is on the orbit and on Σ_P as well, and it is taken as P(x), the image of x by the Poincaré map.

B. Derivative of the Poincaré map

In this section we provide a formula for the differential of the Poincaré maps we use in this work, which is based upon the solution of the variational equation associated to the vector field. It provides a much more accurate way to effectively compute the differential than to approximately compute the partial derivatives through quotiens of differences. Let $F:\Omega\subset\mathbb{R}^n\longrightarrow\mathbb{R}^n$ be a vector field and $\varphi(t,x)$ its flow. The variational equation is

$$\frac{d}{dt}M(t,x) = DF(\varphi(t,x))M(t,x). \tag{15}$$

Let M(t,x) be the solution of (15) with initial condition $M(0,x)=\mathrm{Id}$. It is well known that $M(t,x)=D_x\varphi(t,x)$. Given a section $\Sigma_P=\{x_1=c\}$, the associated Poincaré map P is

$$P(y) = \hat{\varphi}(\tau(\hat{x}), \hat{x}), \qquad \hat{x} = (c, y_2, ..., y_n) \in \Sigma_P,$$

with $y=(y_2,...,y_n), \hat{\varphi}=(\varphi_2,...,\varphi_n)$, and $\tau(\hat{x})$ being the time needed for the solution to arrive to Σ_P as described in Section V.A. Now we can compute the differential of P by₆₅₂

using the chain rule

$$DP(y) = \frac{\partial \hat{\varphi}}{\partial t}(\tau(\hat{x}), \hat{x}) D_y \tau(\hat{x}) + D_x \hat{\varphi}(\tau(\hat{x}), \hat{x}) D_y \hat{x}.$$

Let $f_j = F_j(\varphi(\tau(\hat{x}), \hat{x}))$ and $m_{i,j} = M_{i,j}(\tau(\hat{x}), \hat{x})$. Using this notation we have

$$\frac{\partial \hat{\varphi}}{\partial t}(\tau(\hat{x}), \hat{x}) = (f_2, ..., f_n)^{\top},$$

$$D_x \hat{\varphi}(\tau(\hat{x}), \hat{x}) = \begin{pmatrix} m_{2,1} & \dots & m_{2,n} \\ \vdots & & \vdots \\ m_{n,1} & \dots & m_{n,n} \end{pmatrix},$$

and

$$D_y \hat{x} = \begin{pmatrix} 0 \\ \mathrm{Id}_{n-1, n-1} \end{pmatrix}.$$

Since τ is characterized by the implicit condition

$$\varphi_1(\tau(\hat{x}), \hat{x}) = c, \tag{16}$$

we can obtain its derivative by differentiating both sides of Eq. (16). We have

$$\frac{\partial \varphi_1}{\partial t}(\tau(\hat{x}), \hat{x}) D_y \tau(\hat{x}) + D_x \varphi_1(\tau(\hat{x}), \hat{x}) D_y \hat{x} = 0,$$

so that

$$D_y \tau(\hat{x}) = -\frac{1}{f_1}(m_{1,1}, ..., m_{1,n}) \begin{pmatrix} 0 \\ \mathrm{Id}_{n-1, n-1} \end{pmatrix} = -\frac{1}{f_1}(m_{1,2}, ..., m_{1,n}),$$

665

and finally

654

655

657

658

660

642

643

645

646

648

649

$$DP(y) = \begin{pmatrix} m_{2,2} - \frac{f_2}{f_1} m_{1,2} & \dots & m_{2,n} - \frac{f_2}{f_1} m_{1,n} \\ \vdots & & \vdots \\ m_{n,2} - \frac{f_n}{f_1} m_{1,2} & \dots & m_{n,1} - \frac{f_n}{f_1} m_{1,n} \end{pmatrix}.$$

Therefore to apply this formula we have to integrate both the equation and the variational equation from the initial condition $\hat{x}=(c,x_2,...,x_n)\in\Sigma_P$ until we arrive again at Σ_P crossing it in the same sense to obtain $\varphi(\tau(\hat{x}),\hat{x})$, f_j , and $m_{i,j}$.

C. Search of a periodic orbit

As explained in Section V.A. we have to find the zeros of H(x) = P(x) - x. For that we use the Newton algorithm, which, given an initial guess x^0 , is defined by the following

iteration:

$$x^{k+1} = x^k - DH(x^k)^{-1}H(x^k). (17)$$

We have $DH(x) = DP(x) - \mathrm{Id}$. We can compute DP(x) as explained in the previous section or using the central differences method, using, for example, $\delta_x = 10^{-4}$. To solve (17) we write this is the linear system

$$DH(x^k)(x^{k+1} - x^k) = -H(x^k),$$

and we perform a LU decomposition of the matrix $DH(x^k)$ to easily solve it. We iterate Eq. (17) until we get k such that $||x^{k+1}-x^k||<\varepsilon$ (with $\varepsilon=0.5\times 10^{-14}$) or until the maximum number of iterates is exceeded, in which case we decide that the method does not converge. In the first case, we consider x^{k+1} as a fixed point of the Poincaré map, P, and so, a point belonging to a periodic orbit of the vector field F.

D. Continuation of periodic orbits: The Euler-Newton method

The Euler-Newton method is a method of continuation of implicit curves given by the zeros of some function $f:\mathbb{R}^{n+1}\to\mathbb{R}^n$ of class C^r with $r\geq 1$ once we know a point $x^*\in\mathbb{R}^{n+1}$ such that $f(x^*)=0$. The whole idea of this method consists in finding the derivative of the implicit curve (we know that it exists locally if $\mathrm{rank}\,(\mathrm{D}f(x^*))=n$ by these Implicit Function Theorem), apply the Euler method to findes a first approximation of the following point of the curve inset the desired direction and then refine this approximation usinges a Newton-like method. A more detailed explanation of how does this method work can be found in [27].

If we denote $g:I\subseteq\mathbb{R}\to\mathbb{R}^{n+1}$ the implicit curve parameterized by the arc length then it can be proved that

$$\frac{dg_j}{ds} = (-1)^j \frac{A_j}{\sqrt{\sum_{k=0}^{k=n} A_k^2}},$$

where A_j is the determinant of $Df(x^*)$ without the j-th column. It can also be proved that then the sequence $\{x_i\}_i$ defined by

$$x_{i+1} = x_i - Df(x_i)^{\top} (Df(x_i)Df(x_i)^{\top})^{-1} f(x_i),$$

where $x_0 = x^* + h\nabla g$, does converge to $\left\{x \in \mathbb{R}^{n+1} \mid \exists t \in I \text{ with } g(t) = x\right\}$ if h is small enough (see [2]). To obtain the whole curve as long as it is regular we only have to apply these steps repeatedly.

As we have already mentioned in earlier sections our particular interest in this method is to apply it to do the continuation of fixed points for the Poincaré map with respect to parameters and therefore to study bifurcations of periodic orbits. We apply the method to f=H where the n+1 variables of H are x and the parameter Q.