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Gran Via de les Corts Catalanes 585, 08007 Barcelona6
4Barcelona Graduate School of Mathematics BGSMath7
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Hypercycles are catalytic systems with cyclic architecture. These systems have been suggested to play a key10

role in the maintenance and increase of information in prebiotic replicators. It is known that for a large enough11

number of hypercycle species (n > 4) the coexistence of all hypercycle members is governed by a stable12

periodic orbit. Previous research has characterized saddle-node (s-n) bifurcations involving abrupt transitions13

from stable hypercycles to extinction of all hypercycle members, or, alternatively, the outcompetition of the14

hypercycle by so-called mutant sequences or parasites. Recently, the presence of a bifurcation gap between15

a s-n bifurcation of periodic orbits and a s-n of fixed points has been described for symmetric five-member16

hypercycles. This gap was found between the value of the replication quality factor Q from which the periodic17

orbit vanishes (QPO) and the value where two unstable (non-zero) equilibrium points collided (QSS). Here, we18

explore the persistence of this gap considering asymmetries in replication rates in five-member hypercycles as19

well as considering symmetric, larger hypercycles. Our results indicate that both the asymmetry in Malthusian20

replication constants and the increase in hypercycle members enlarge the size of this gap. The implications of21

this phenomenon are discussed in the context of delayed transitions associated to the so-called saddle remnants.22

Keywords: Bifurcations; Complex Systems; Cooperation; Hypercycles; Periodic Orbits; Origins of Life.23

I. Introduction24

The detailed characterization of bifurcations in nonlinear25

systems becomes a very important issue to understand qualita-26

tive changes in dynamics. Mathematical investigations of co-27

operative systems have been carried out using different mod-28

eling approaches, the hypercycle system being one of the29

most important ones. Hypercycles are catalytic sets of macro-30

molecules that can catalyze their own replication or the repli-31

cation of other species of the network, which has a cyclic ar-32

chitecture [1]. Catalytic sets have been a subject of study in33

different fields. For instance, these sets have been largely in-34

vestigated in the framework of prebiotic evolution [1, 5, 6, 20],35

suggested of being responsible for one of the major transi-36

tions in evolution: the transition from quasispecies to hyper-37

cycles as a possible way to surpass the information crisis at38

early stages of biological evolution [1, 3, 6]. However, similar39

mathematical models have been used to investigate virus dy-40

namics [1, 7–9], the immune system [10], ecological systems41

[6, 11, 17, 18], and neural networks [12, 13].4243

The analysis of bifurcations in hypercycles has been classi-44

cally restricted to low dimensional time-continuous systems,45

specially for so-called symmetric hypercycles [15, 16, 26],46

for which all of the species have the same kinetic properties47

(i.e., they are considered neutral mutants [16]). Few works48

have explored asymmetries in hypercycles, for instance in49

two-member cycles [24] or in larger hypercycles by means50

of numerical results [5]. Moreover, few studies have focused51

on the dynamics of large hypercycles [16], and especially, in52

the bifurcations found in hypercycles with n ≥ 5 species. It53

is known that, under appropriate parameter values, hypercy-54

cles are bistable systems. Under bistability, the asymptotic55

coexistence or extinction of hypercycles depends on the ini-56

tial conditions. It is also known that the nature of the co-57

existence attractor largely depends on the dimension of the58

hypercycle. By dimension we mean the number of species59

forming the hypercycle, which determines the phase space di-60

mension. The bifurcations for this type of systems are mainly61

given by saddle-node (hereafter s-n) bifurcations, which in-62

volve a catastrophic (i.e., sharp) extinction as the bifurcation63

parameters crosses its bifurcation value [16, 24, 26].64

The detailed mechanisms responsible for bifurcations in hy-65

percycles have been provided by several authors [15, 24, 26].66

For instance, Silvestre and Fontanari [16] showed that the con-67

ditions of viability for symmetric hypercycles competing with68

an error-tail hold for all n, not only when fixed points were69

stable. That is because they found numerically that the via-70

bility condition of hypercycle was the same as the one that71

guarantees the existence of real fixed points. In particular,72

considering a symmetric hypercycle with n = 12 members,73

and catalytic constants ki = 1, for all i, and A = 10−374

(Malthusian replication constant), there is a nonzero equilib-75

rium point if and only if Q & 0.19639, Q being the copying76

fidelity during replication. They found numerically that only77

when Q & 0.19639 there exists a stable periodic solution and78

so the hypercycle is viable. Therefore, the existence of an un-79

stable fixed point seemed to be a necessary condition for the80

presence of stable periodic orbits in a hypercycle.81

More recently, Guillamon et al. investigated the periodic or-82

bits in symmetric hypercycles with n = 5 [19]. In particular,83

they studied how these orbits behave in terms of Q using both84

numerical and analytical methods. The results they obtained85

using A = 0.5 were the value QSS = 0.91607, computed an-86

alytically, at which two unstable fixed points undergo a s-n bi-87

furcation and the value of QPO = 0.91614, computed numer-88

ically, at which a s-nbifurcation of periodic orbits took place,89
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FIG. 1. (A) Hypercycle formed by n species. The phase portraits display several projections of the periodic orbits allowing coexistence of
species (A1 and A2). Panel A3 displays the same projection than in panel A2 but with parameters after the saddle-node (s-n) bifurcation of
periodic orbits. Under this scenario, the flows display transient periodic behavior since the trivial attractor is asymptotically globally stable.
(B) Bifurcation curves of periodic orbits (red) and of fixed points (blue) with respect to parameter Q for the symmetric hypercycle, i.e., δ = 0,
for A = 0.5. The parametric region in green allows for the coexistence of the hypercycle members. The bifurcation value of periodic orbits,
QPO , and of the fixed points, QSS , are indicated with dashed vertical lines. Notice that both bifurcation values do not coincide, fact which has
been denoted as a bifurcation gap. The coordinate x4 has been chosen following [19]. The smaller panels display time series for all hypercycle
members in the extinction and coexistence scenarios.

thus causing the asymptotic extinction of the system. Interest-90

ingly, and conversely to what Silvestre and Fontanari observed91

[16], the two values were not exactly the same. Therefore, a92

slight gap between the two s-n bifurcations was found (see93

Figure 1).94

In this manuscript we first analyse the impact of asymme-95

tries in Malthusian replication constants in the bifurcation gap.96

Asymmetric hypercycles are more biologically-realistic sys-97

tems since symmetric ones consider that the templates form-98

ing the hypercycle are neutral mutants [16]. However, it is99

known that mutations have differential fitness effects [22, 29].100

That is, mutants can carry deleterious, neutral, lethal, or ben-101

eficial mutations. Moreover, the analyses of bifurcations in102

larger hypercycles becomes relevant since, albeit being more103

susceptible to stochastic extinctions [23], larger hypercycles104

could store further information. Finally, we also explore the105

impact of the size of the hypercycle in the bifurcation gap,106

focusing on symmetric hypercycles.107

The paper is organized as follows. In Section II we intro-108

duce the mathematical model analysed, summarizing its dy-109

namics. Then, in Section III A, we explore asymmetric hyper-110

cycles for n = 5, the lowest dimension with the presence of111

periodic orbits. Within this section we first conduct an analyt-112

ical study of an n-component asymmetric hypercycle, follow-113

ing the work conducted on [19] for symmetric hypercycles.114

We later concentrate on the 5-component asymmetric hyper-115

cycles. This study allows to know precisely the locus of the116

s-n bifurcations of equilibria, namely Q = QSS . Then, a nu-117

merical study of the 5-component asymmetric hypercycle is118

made to carry out the bifurcation analysis. Finally, in Sec-119

tion III.B. we explore the behavior of the the bifurcation gap120

for larger hypercycles, focusing on the cases with n = 6 and121

n = 8 catalytic species.122

II. Mathematical model123

We analyze the hypercycle model introduced by Campos et124

al. [5], which describes the dynamics of an n-member hyper-125

cycle competing with an error tail (see Fig. 1A for a schematic126

diagram). The model is given by the next set of ordinary dif-127

ferential equations:128 {
ẋi = xi(AiQ+ kixi−1Q− φ),
ẋe = xe(Ae − φ) + (1−Q)

∑n
i=1 xi(Ai + kixi−1),

(1)
with i = 1, . . . , n and φ =

∑n
i=1 xi(Ai + kixi−1) + Aexe.129

State variables xi are the concentration of the templates Ii,130

xe being the concentration of the mutant replicators. To in-131

troduce the cyclic architecture of catalysts we set x0 = xn.132

Parameter Ai ∈ (0, 1] is the replication rate of species i, ki133

is the strength of the catalysis that xi−1 has on xi replication,134

and Q ∈ (0, 1] is the copying fidelity of the templates dur-135

ing replication. Concerning the mutant species, Ae ∈ (0, 1] is136

their replication rate. Finally, φ is a dilution flow that keeps137
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the total population constant also introducing competition be-138

tween all of the replicators. Since the structure of the equa-139

tions determine that
∑n
i=1 xi + xe = 1 is invariant, we con-140

sider the system in this domain and hence we can forget about141

the population of mutants, xe.142

A hypercycle is called symmetric ifAi = Ae = A and ki =143

k for all i, and asymmetric otherwise. Looking at Eq. (1), it is144

clear that a symmetric structure eases the computations. Let145

us summarize some important properties of system (1), see146

also [5, 16, 19]:147

1. It is a bistable system for some set of parameters. The148

origins is always as attractor. When n ≤ 4, there is149

bistability when Q > QSS and the coexistence attrac-150

tor - which allows the persistence of all the hypercy-151

cle members - is a non trivial equilibrium point. When152

n ≥ 5, there is bistability as well for Q > QPO, and153

the coexistence attractor is a periodic orbit.154

2. In the symmetric case and n ≥ 5, QPO and QSS do155

not coincide. Then, there is a bifurcation gap in the156

parameter space where two non-trivial equilibria exist157

but periodic orbits do not [19].158

In this paper we break the symmetry by making parame-159

ters Ai to be heterogeneous up to some extent, while keeping160

ki = 1 for all i = 1, . . . , n. In other words, here we fo-161

cus on asymmetries in the so-called Malthusian replication162

rates, given by the exponential replication (at low popula-163

tion numbers) of the hypercycle species, keeping symmetries164

in the non-linear replication terms given by heterocatalysis.165

More precisely, we will consider cases in which Ai = A for166

all i = 1, . . . , n except for one or two i values for which167

Ai = a = A − δ, where δ (with δ < A) will be consid-168

ered as the asymmetry parameter in Malthusian replication169

and a,A ∈ (0, 1]. In particular, we will mainly deal with170

three cases:171

- Case aA . . . A: A1 = a, Ae = A and Ai = A for all172

i = 2, . . . , n.173

- Case aaA . . . A: A1 = A2 = a, Ae = A and Ai = A174

for all i = 3, . . . , n.175

- Case aAa . . . A: A1 = A3 = a, Ae = A and Ai = A176

for all i = 2, 4, . . . , n.177

Given the cyclic structure of (1), these cases represent many178

other cases with one or two different values.179

Finally, we consider the effect of increasing the dimension180

(size) of the hypercycle, focusing on the symmetric case. Con-181

cretely we deal with n = 5, 6, 8.182

III. Results and discussion183

A. Asymmetric hypercycles184

1. n-member hypercycle185

We start studying analytically a general asymmetric case186

with n templates, looking for general properties of asymmet-187

ric hypercycles. In the following we are going to consider the188

system189

ẋi = xi(AiQ+ xi−1Q− φ), i = 1, . . . , n, (2)

for the different cases above mentioned, with φ =190 ∑n
i=1 xi(Ai+xi−1)+Ae(1−

∑n
i=1 xi) and x0 = xn. We re-191

call that we do not take into account the equation for xe since192
n∑
i=1

xi + xe = 1.193

We are interested in studying the fixed points of system (2),194

its saddle-node (s-n) bifurcation and the regions where peri-195

odic orbits can be found, in a way analogous to the one con-196

ducted in [19]. To simplify notation we will also refer to the197

right-hand side of (2) as the vector field F (x). Our analysis198

will consist of two steps. In the first one, we find fixed points199

and the s-n bifurcation of fixed points. In the second step, we200

determine a region in which we can find periodic orbits, i.e.,201

where they govern coexistence dynamics. For that we ana-202

lytically compute regions where it is impossible for periodic203

orbits to exist.204

Fixed points. We first deal with the case aA . . . A, which
is the simplest asymmetric structure one can consider. It is
clear that (0, . . . , 0) is always an equilibrium point. There are
also fixed points for which some of their coordinates are 0, but
we do not compute them here since there is a huge number of
possible combinations and knowing them is not necessary for
the study we want to conduct. Imposing xi 6= 0 for all i in Eq.
(2) we get 

(A− δ)Q+ xnQ− φ = 0,

AQ+ x1Q− φ = 0,
...
AQ+ xn−1Q− φ = 0,

which results in
xn =

φ− (A− δ)Q
Q

,

x1 = · · · = xn−1 =
φ−AQ
Q

.

Subtracting x1 to xn, we get xn − x1 = δ.205

Thus, we only need to find the expression of one of the xi.
Let us find x1. We first express φ in terms of x1:

φ =

n∑
i=1

xi(Ai + xi−1) + xeA = −δx1 +A+

n∑
i=1

xixi−1

= −δx1 +A+ nx21 + 2x1δ,

and substituting it into the x1 expression above we get

nx1
2 − (Q− δ)x1 +A(1−Q) = 0.

Therefore, there are two equilibrium points of the form

(x±, . . . , x±, x± + δ),
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with x± =
(Q− δ)±

√
(Q− δ)2 − 4nA(1−Q)

2n
.206

From this last expression we know that there is a s-n bifur-
cation occurring for a value of Q for which

(Q− δ)2 − 4nA(1−Q) = 0,

that is

Q = QSS = 2(
√
nA(1 + nA− δ)− nA) + δ > δ.

The two equilibrium points borning at the bifurcation exist for
Q > QSS for which we have a s-n bifurcation. The bifurca-
tion point is therefore:(

Q− δ
2n

, . . . ,
Q− δ

2n
,
Q− δ

2n
+ δ

)
,

with Q = QSS .207

In the symmetric case this point was
(
Q
2n , . . . ,

Q
2n ,

Q
2n

)
, so208

that the bifurcation point for the asymmetric case tends to the209

one for the symmetric case when δ tends to zero.210

Now that we have conducted a brief study of the simplest211

n-dimensional asymmetric hypercycle, we study hypercycles212

where two of the templates have a replication rate a = A− δ.213

In particular we are going to consider cases aaA . . . A and214

aAaA . . . A, since these are the two cases we will focus on215

lately when dealing with 5-member asymmetric hypercycles.216

In the case of 5 members, these two cases cover all possi-217

bilities when two different values of Ai are considered (rela-218

belling the templates, if necessary).219

The procedure to obtain the equilibrium points is similar to220

the above case aA . . . A. We obtain221

(x± + δ, x±, . . . , x±, x± + δ), for case aaA . . . A;
(x±, x± + δ, . . . , x±, x± + δ), for case aAaA . . . A,

(3)

where x± =
Q− 2δ ±

√
(Q− 2δ)2 − 4nA(1−Q)

2n
. Now

the bifurcation value is

Q = Q
′

SS = 2(
√
nA(a+ nA− 2δ)− nA) + 2δ > 2δ,

in both cases and the bifurcation points are222 (
Q−2δ
2n

+ δ, Q
2n
, . . . , Q

2n
, Q−2δ

2n
+ δ

)
, for case aaA . . . A;(

Q−2δ
2n

, Q−2δ
2n

+ δ, . . . , Q−2δ
2n

, Q−2δ
2n

+ δ
)
, for case aAaA . . . A.

(4)
Periodic orbits. Since our main goal here is to study the223

behaviour of periodic orbits with respect to the parameter Q,224

we first care about the conditions for their existence. In partic-225

ular we are going to locate a subset of the basin of attraction226

of the origin, and consider the complementary of this region227

as the domain where the existence of periodic orbits is possi-228

ble depending on Q. For this purpose, we define the domains229

Ωα and the hyperplanes Σα as:230

Ωα :=
{
x ∈ Rn | xi ≥ 0,

n∑
i=1

xi ≤ α
}
, (5)

Σα :=
{
x ∈ Rn |

n∑
i=1

xi = α
}
, (6)

for α ∈ (0, 1]. Observe that the dynamics of system (2)
is restricted to Ω1−xe

which is a subset on the n-simplex
Ω := Ω1. Besides, each subspace generated by vectors of
the canonical basis is invariant; in particular, the hyperplanes
xi = 0 are invariant. Thus, except for Σα, all other n faces
of Ωα, for α ∈ (0, 1], are invariant for the vector field F .
We study the flow generated by F on Σα by taking the vec-
tor v = (1, . . . , 1), which is normal to the hyperplane, and
computing v · F (x) for x ∈ Σα. We have that

cos(v, F (x)) =
v · F (x)

||v|| ||F (x)||
.

Then, when this scalar product is zero, F is tangent to the231

hyperplane. When it is positive, F points outside of Ωα, and232

when it is negative F points inside Ωα. If F points inside Ωα,233

for all points in Σα, we have that Ωα is positively invariant,234

which means that no orbits escape from Ωα in forward time.235

We also know that if the vector field F crosses transversally236

Σα for all α < α0 for some α0, then Ωα0
is contained in the237

basin of attraction of the origin. Thus, periodic orbits can only238

exist in the complementary of the region where this occurs.239

This setting is general for any case of asymmetry, but the240

determination of the suitable α values that give information241

about the location of periodic orbits must be performed case242

by case. As a general example, in this section we study the243

case aA . . . A. Next, in Section III A 2, we will apply the244

same procedure to 5-member hypercycles with two asym-245

metric members. For the case aA . . . A, the numerator of246

cos(v, F (x)) becomes247

v · F (x1, . . . , xn) = (Q− α)

(
n∑
i=1

xi−1xi − δx1

)
+Aα(Q− 1). (7)

To study the behavior of expression (7) for a given α < 1, we248

distinguish two cases. If Q ≤ α, the product (7) is negative249

(we use that δ < A) so F points inside Ωα and thus Ωα is250

positively invariant. If Q > α, we need to deepen the study251

of expression (7). We want to know when this expression is252

negative. We can first find the maximum of it. For that we will253

maximize f(x) =

n∑
i=1

xi−1xi, using the method of Lagrange254

multipliers. We want:255

max
x

n∑
i=1

xi−1xi, subject to
n∑
i=1

xi = α, (8)

together with xi ≥ 0. We obtain a unique critical point: x∗ =256

(αn , ...,
α
n ) ∈ Σα and f(x∗) = α2

n . We need to check whether257

the maximum reached on the boundary of Σα is greater than258

the value we have found.259

When n = 2, the function f(x) = x1x2 is always 0 on260

the boundary of Σα. Hence, the maximum is reached in the261

interior and turns out to be α2/2.262263

When n = 3, the function
3∑
i=1

xi−1xi is nonzero on the264

boundary when only one xi is 0. Due to the cyclic structure265
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of the previous function, it is indistinct which coordinate we266

choose to be 0. Assuming x3 = 0, we want:267

max
x

x1x2, subject to x1 + x2 = α, xi ≥ 0. (9)

Using the method of Lagrange multipliers we get that the268

maximum is α2/4. Thus, the maximum on the boundary is269

less than the maximum that is achieved in the interior of Ωα,270

which is α2/3.271

When n = 4, in the boundary of Σα either one, two, or
three of the xi may vanish. If three of them vanish, f is zero.
If two of them vanish, they can be consecutive and then we get
a problem equivalent to (9) for which the maximum is α2/4,
or non-consecutive and then the function is 0. If only one of
the terms vanishes, for instance x4, we have to consider

max
x

(x1x2 + x2x3), subject to x1 + x2 + x3 = α, xi ≥ 0.

Using again the method of Lagrange multipliers we get that272

α2/4 is the maximum, which coincides with the maximum273

reached in the interior of Ωα. Therefore, the maximum is at-274

tained both on the boundary and in its interior.275

When n > 4, we can proceed similarly. When two or more276

xi vanish, we obtain a problem equivalent to the one solved277

for a lower n. We only need to solve a “new” optimization278

problem when only one of the xi is 0. We are going to solve279

it by induction.280

Let us see now that ∀n > 4 the maximum of (8) is α2/4,
attained on the boundary when one and just one of the xi is

0. As the objective function has a cyclic structure, it does not
matter which of the xi is picked up to be 0. Let us suppose, by
induction, that the maximum α2/4 holds for n−1 replicators.
Then we take n replicators. The image of the critical point is
α2

n . We want to solve (8) on the boundary. Taking xn = 0,
we have:

f(x) = x1x2 + · · ·+ xn−2xn−1.

Now, as xi > 0, i = 1, . . . , n− 1,

f(x) ≤ x1x2 + · · ·+ xn−2xn−1 + xn−1x1,

the RHS being the function we have for n − 1 replicators.281

Hence, from the induction hypothesis, the maximum of this282

function is α2/4. Therefore, ∀n ≥ 4,
n∑
i=1

xi−1xi ≤
α2

4
, for283

n∑
i=1

xi = α, xi ≥ 0. Hence, using that
n∑
i=1

xi = α and so284

xi ≤ α, ∀i, we get285

v·F (x1, . . . , xn) ≤ (Q−α)

(
α2

4
− αδ

)
+Aα(Q−1). (10)

We are going to find a threshold for Q, denoted by Q∗, such286

that ∀Q ≥ Q∗, the region Ωα is positively invariant.287

We can find the zeros of the RHS of (10), which are α0 = 0288
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FIG. 3. Same as Fig. 2 for 5-member asymmetric hypercycles with structure aAaAA setting A = 0.5 and: δ = 0.001 (a), 0.01 (b), 0.05 (c)
and 0.1 (d).

and289

α± =
4δ +Q±

√
(4δ +Q)2 − 16(A(1−Q) +Qδ)

2
.

(11)
Looking for which Q expression (11) is real we get the290

threshold:291

Q∗ = 4δ − 8A+ 4
√
A(4A− 4δ + 1). (12)

Therefore, if Q ≥ Q∗, then v · F (x1, . . . , xn) < 0 for292

α ∈ (0, α−) ∪ (α+, Q). This means that when α < α− or293

α > α+, Ωα is positively invariant. Since for all α < α−, v ·294

F (x1, . . . , xn) < 0, for initial conditions in Ωα with α < α−,295

the total population of the hypercycle tends to 0. Moreover, in296

order to look for periodic orbits or other recurrent phenomena297

we have to concentrate on values of α ∈ (α−, α+) and Q ≥298

Q∗.299

We need to note that this interval is not sharp because the300

inequality (10) is not sharp. Hence, for values of α in the301

interval and close to the interval limits, Ωα is possibly still302

positively invariant so, to be sure to truly find interesting be-303

haviour, we should choose values of α close to the midpoint304

of the interval.305

Now, if the discriminant of (11) was to be negative, that306

is, if Q < Q∗, then α− and α+ are complex and the only307

real zero is α0 = 0. Therefore, as the RHS of (10) tends to308

−∞ when α grows, it is always less or equal than zero. Then,309

Ωα is positively invariant ∀α, which means that the origin is310

globally asymptotically stable.311

Summarizing, consider the hypercycle formed by n repli-312

cators with replication rates aA . . . A, and let Ωα be given by313

(5) and Q∗ be given by (12). Then,314

• when α ≥ Q, Ωα is positively invariant. Moreover,315

since v · F < 0 in {x ∈ Ω | x1 + · · ·+ xn > Q}, there316

can not be periodic orbits in that domain;317

• when α < Q,318

– if Q < Q∗, Ωα is positively invariant, and v ·F <319

0 in Ω. Then, there can not be periodic orbits in320

Ω;321

– if Q ≥ Q∗, Ωα is positively invariant for α ∈322

(0, α−) ∪ (α+, Q), where α+ and α− are given323

by (11). Moreover, v · F < 0 in {x ∈ Ω | x1 +324

· · ·+xn < α−}∪{x ∈ Ω | x1 + · · ·+xn > α+}.325

Then, if periodic orbits exist, for each point of the326

periodic orbit the sum of its coordinates must be327

between α− and α+.328

Hence, we have located, depending on the parameter Q,329

the regions where periodic orbits can appear. In order to find330

them explicitly, we need to resort to numerical methods, see331

Appendix V.A.332

Next, we apply the same procedure to complete all possi-333

ble asymmetric cases with two different replication rates for334

dimension n = 5, which is a trade-off between analytical335

tractability of equations and existence of periodic orbits [16].336
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In particular, as commented before, all of the remaining cases337

are aaAAA and aAaAA.338

2. Five-member hypercycle339

From (3), we know that the equilibrium points are (x± +
δ, x±, x±, x±, x± + δ) for the case aaAAA, and (x±, x± +
δ, x±, x±, x± + δ) for the case aAaAA, where x± = ((Q −
2δ) ±

√
(Q− 2δ)2 − 20A(1−Q))/10. As x± is the same

in both cases, the critical value of Q for which there is a s-n
bifurcation of fixed points, QSS , is the same:

QSS = 2
(√

5A(1 + 5A− 2δ)− 5A+ δ
)
.

Therefore, the respective bifurcation points can also be ob-340

tained from (4), with Q = QSS and n = 5.341

As our goal is to study both the bifurcations of fixed points342

and of periodic orbits in these two cases, let us find the regions343

of Ω where periodic orbits can be found. We perform the anal-344

ogous procedure explained in Section III.A.1. for the case345

aA . . . A to obtain the corresponding regions in the present346

cases. We provide the results next.347

We need to study the sign of v · F (x) which becomes

(Q− α)

(
5∑
i=1

xixi−1 − δ(x1 + x2)

)
+Aα(Q− 1),

for the aaAAA case, and

(Q− α)

(
5∑
i=1

xixi−1 − δ(x1 + x3)

)
+Aα(Q− 1)

for the aAaAA case. In both cases, given

α± =
Q+ 8δ ±

√
(8δ +Q)2 − 4(8Qδ − 4A(Q− 1))

2
,

Q∗ = 8(δ −A) +
√

4A2 − 8Aδ +A,

and adapting the calculations done in Section III.A.1, if peri-348

odic orbits exist, they must lie in the region of the parameter349

space where Q ≥ Q∗ and, moreover, the sum of the coordi-350

nates of its points, α, fulfill α > Q and α ∈ [α−, α+].351

From this point on, we need to implement numerical rou-
tines, see Appendix V.A., in order to find periodic orbits of
system (2) for the cases aaAAA and aAaAA and, in particu-
lar, the parameter values of the corresponding s-n bifurcations
of periodic orbits, QPO. An important issue is the choice of
a Poincaré section. Adapting (3) to the case n = 5, we know
that the equilibrium points are (x+δ, x, x, x, x+δ) for the case
aaAAA, and (x, x+ δ, x, x, x+ δ) for the case aAaAA, with
x = ((Q − 2δ) ±

√
(Q− 2δ)2 − 20A(1−Q))/10. Clearly,

the average copying fidelity rate at which the s-n bifurcation
of fixed points occurs is:

QSS = 2
(√

5A(1 + 5A− 2δ)− 5A+ δ
)
.

 3e-05
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 0.00011

 0.00013
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 0.00017
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Q
S

S
 -

 Q
P

O

log(A)

FIG. 4. Quantification of the gap size between the two bifurcations
for different values of A, in the symmetric case (see [19] for further
details).

Keeping in mind that our goal is to find periodic orbits, it is
clear that the Poincaré section should not be close to equilib-
rium points. A natural choice is to fix one of the coordinates,
for instance x1, at the value corresponding to the first coor-
dinate of the equilibrium point at the bifurcation Q = QSS .
Then, if Q−QSS is not too small, the Poincaré section (ΣP )
will be far enough from both of them. Accordingly, we con-
sider

ΣP =

{
x1 =

Q− 2δ

10
+ δ

}
for the aaAAA case, and

ΣP =

{
x1 =

Q− 2δ

10

}
for the aAaAA case. This choice is crucial for the success of352

the numerical continuation with respect to parameters. Tak-353

ing, for instance, the section given in [19] for the symmetric354

case, would not allow to continue the curve of periodic orbits.355

To pick an initial condition for Q and x we use the con-356

dition for the existence of periodic orbits derived in (11) and357

(12), and then we integrate several orbits with random initial358

conditions until we detect the convergence to a periodic orbit.359

Once we have obtained a periodic orbit, for an initial value360

of Q, see Appendix V.C., we proceed by continuation with361

respect of the parameter Q, see Appendix V.D. In this com-362

putational part, we need to take care of the step size and of363

the number of continuation steps. It turns out that, after pass-364

ing by the bifurcation point QPO, the continuation method365

follows the unstable periodic orbit. For every A, there exists366

a value of Q for which this unstable periodic orbit passes so367

close to the hyperplanes xi = 0 that the Newton method we368

use does not converge. Thus, as QPO depends on A and δ,369

the number of continuation steps needs to be adapted for ev-370

ery (A, δ) pair.371

The curve of equilibrium points has been computed isolat-372

ing Q in the expression for x, that is, from x± = ((Q− 2δ)±373 √
(Q− 2δ)2 − 20A(1−Q))/10.374
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FIG. 5. Bifurcation gap for the asymmetric case aaAAA with: δ = 0.001 (A), 0.01 (B), 0.05 (C) and 0.1 (D).

In the next section, we exploit the numerical implemen-375

tation explained above to plot and compare the bifurcation376

curves.377

B. Impact of asymmetry on bifurcation gaps378

Here we extend the numerical study conducted in [19] for379

symmetric hypercycles to asymmetric ones. We know explic-380

itly QSS , the value of Q for which the saddle-node (s-n) bi-381

furcation of fixed points occurs, and we want to compute the382

value of Q for which the s-n bifurcation of periodic orbits383

takes place, QPO. In [19] the authors observed that there is a384

slight difference between these two values, which they called385

gap. Here, we explore whether such a gap exists in the 5-386

member asymmetric case and, if so, how it behaves as a and387

A differ from each other, i.e., as δ changes.388

Figure 3 shows the two bifurcation curves (equilibria and389

periodic orbits) in terms of Q, taking A = 0.5, as in [19], and390

increasing δ from 0.001 to 0.1 in the four panels. We observe391

in all cases a clear difference in the position of the turning392

points, with QPO > QSS .393

By definition of δ, the larger it is, the more the hypercycle394

differs from the symmetric one. We are interested in quan-395

tifying how does the gap between the two bifurcation points396

behave when the system gets more asymmetric. For the sym-397

metric case it was shown in [19] that the gap reached a value398

of approximately 1.5× 10−4 for a certain value of parameter399

A (see Figure 4, included here for the sake of comparison). In400

Figures 5 and 6 we can appreciate that the magnitude of the401

gap for the asymmetric cases increases with δ for both con-402

figurations, aaAAA and aAaAA. Hence, as the hypercycle403

QPO −QSS (Gaps)

aaAAA aAaAA

δ = 0 5.98054× 10−5 5.98054× 10−5

δ = 0.001 6.12641× 10−5 6.01082× 10−5

δ = 0.01 1.93241× 10−4 8.33985× 10−5

δ = 0.05 2.34217× 10−3 4.96334× 10−4

δ = 0.1 4.88186× 10−3 1.28505× 10−3

TABLE I. Bifurcation gaps for cases aaAAA and aAaAA for dif-
ferent degrees of asymmetries in the hypercycle.

gets “more asymmetric”, the difference between the values404

where the bifurcations of periodic orbits and fixed points oc-405

cur is larger (see Table I below where the value QPO − QSS406

is displayed for each continuation curve).407408

Here, we make a necessary observation about errors, since409

we produce numbers that have been obtained numerically. In410

the computer codes we have written the main sources of er-411

ror are the numerical integrator and the Newton iterations. As412

integrator we have used a Runge-Kutta-Fehlberg method of413

orders 7-8 with local relative tolerance of 10−14. For the New-414

ton method we have iterated until a tolerance of 0.5 × 10−14415

has been reached.416

C. Impact of higher dimensions on bifurcation gaps417

In this section we further analyse the bifurcation gap in418

terms of Q for symmetric hypercycles with n = 6 and n = 8419
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FIG. 6. Same as Fig. 5 for case aAaAA with: δ = 0.001 (a), 0.01 (b), 0.05 (c) and 0.1 (d).

members. We have found that the results are not only analo-420

gous to the case n = 5 (see Fig. 4) but also that the distance421

increases with the dimension of the hypercycle (see Fig. 7).422

More specifically, this distance increases more than one order423

of magnitude from n = 5 to n = 8.424

There is one difficulty that one must overcome somehow
when we increase the dimension. That is, as numerical com-
putations indicate, the coordinates of the periodic orbit pass
extremely close to the origin. Then, computing the derivatives
of the Poincaré map using:

∂Pi(x)

∂xj
≈ Pi(x+ hej)− Pi(x− hej)

2h
,

it might happen that x−hej , has some negative component, in425426

which case we are not anymore in the simplex Ω1 and the flow427

will probably never come back to it (even if it did and crossed428

the Poincaré section again the solution would have nothing to429

do with the expected one). One could think that decreasing430

h would solve the problem, but doing so will lead to a huge431

numerical error in the derivative (as it happens when we have432

a small value in the denominator).433

This is why we have been forced to use more accurate algo-434

rithms to obtain the derivative of the Poincaré map in order to435

apply successfully the Euler-Newton method. This alternative436

way is explained in Section V.B. in the Appendix .437

The actual computations look for the value of Q along the438

continuation process at which the sign of the derivative of Q439

with respect to the arc length of the curve which gives the440

periodic orbit with respect to the parameter Q changes and441

then compare it with theQ of the saddle-node (s-n) bifurcation442

for the fixed points which is Q = 2
(√

nA(1 + nA)− nA
)

.443

log(a)
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FIG. 7. Distance between the s-n bifurcation of periodic orbits and
of fixed points (QSS−QPO) for symmetric hypercycles with n = 5
(blue), n = 6 (red), and n = 8 (orange).

As long as we use a small step size when applying the Euler-444

Newton method, the continuation goes on (for example using445

as step size 10−6, which is what we have done).446

IV. Conclusions447

In this manuscript we have conducted an analytical study of448

a general n-member, asymmetric hypercycle with the Malthu-449

sian replication constants: aA . . . A. We have found the co-450

existence fixed points, their bifurcation values and the region451

in which the vector field can present periodic orbits. We have452
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then focused on cases aaAAA and aAaAA for five-member453

hypercycles. In this way we have exhausted all of the possible454

asymmetries, relabelling constants and/or variables if neces-455

sary.456

Following previous results on oscillating 5-member hyper-457

cycles [19], we have checked that the gap found between the458

saddle-node (s-n) bifurcation value of fixed points and the s-n459

bifurcation value of periodic orbits in symmetric hypercycles460

also holds in asymmetric ones. Actually, the gap grows as the461

asymmetry of the system gets larger. These results strengthen462

the “gap problem” introduced in [19], as it was identified in463

the symmetric case, which is a less realistic case from a bi-464

ological point of view. Moreover, in the symmetric case, the465

gap is shown to increase for larger hypercycles. Symmetric466

hypercycles assume that all of the members of the hypercy-467

cle are neutral mutants, since they might be synthesized from468

previously existing templates by replication and mutation pro-469

cesses. In this sense, recent experimental results on muta-470

tional fitness effects for RNA viruses quantified neutral spon-471

taneous mutations happening with about 25% of probability472

[30, 31]. Hence, even for small hypercycles, asymmetries473

might be expected.474

The biological implications of these gaps could be relevant475

within the framework of so-called delayed transitions [14, 24].476

It is known that after a s-n bifurcation a saddle remnant (also477

named ghost) appears in the phase space [32–36]. In this478

phenomenon, the flow takes a long-lastly excursion just af-479

ter the s-n bifurcation before going to the only asymptotically480

globally stable attractor, which involves extinction. This phe-481

nomenon was interpreted as a kind of memory for hypercy-482

cles occurring after the bifurcation [14], possibly becoming a483

selective advantage in fluctuating environments [36]. Interest-484

ingly, this delaying phenomenon has been described in models485

for delayed switching of charge-density waves as [35], well as486

in an experiment with an electronic circuit behaving as a Duff-487

ing oscillator [37].488

Since the gap described in this article is found in between489

two different s-n bifurcations, two delayed transitions may be490

found, one when Q . QPO and another when Q . QSS .491

This could involve an enhancement of the delaying effects and492

thus a higher memory capacity of the system, therefore further493

slowing down hypercycles’ extinction. However, we must no-494

tice that delayed transition phenomena are local. This means495

that the delaying effect of the saddle remnant occurs with pa-496

rameter values extremely close to the bifurcation value. De-497

spite this fact, future research could be devoted to quantify the498

delaying times within the region [QSS , QPO].499
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[7] Szathmáry, E. [1992] ”Natural selection and dynamical coexis-525

tence of defective and complementing virus segments”. J. theor.526

Biol. 157, 383-406.527
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V. Appendices612

A. Construction of a Poincaré map613

Poincaré maps are a powerful device to study both theoreti-614

cal and computational aspects of vector fields. In this work we615

use them to compute periodic orbits because periodic orbits of616

a vector field F correspond to fixed points on periodic points617

of P , the Poincaré map associated to F and a some section.618

In its turn fixed points of P correspond to zeros of the mapH ,619

defined as620

H(x) := P (x)− x. (13)

Thus in this way we reduce the problem of obtaining peri-621

odic orbits of vector fields to the problem of finding zeros of622

functions. To define a Poincaré map first we have to choose623

a Poincarśection, ΣP . Motivated by the fact that, after the bi-624

furcation, our systems have two interior equilibrium points we625

just choose a section defined by the first coordinate fixed con-626

stant at a value which is the mid point between the two first627

coordinates of these equilibrium points (whenever they exist).628

Hence we take629

ΣP :=

{
x1 =

Q

2n

}
.

in the symmetric case and630

ΣP :=

{
x1 =

Q− 2δ

10
+ δ

}
,

in the aaAAA case and n = 5, and631

ΣP :=

{
x1 =

Q− 2δ

10

}
.

in the aAaAA case and n = 5.632

We note that we could have chosen any other xi coordinate
and proceed analogously. Then taking an initial condition in
ΣP we integrate our vector field F until we reach again ΣP
crossing it in the same sense as the vector field crosses ΣP at
the initial point x, To detect the case for which the orbit of
x ∈ ΣP does not belong to ΣP we prescribe a time limit of
integration. For the numerical integration we use a method
based on two Runge-Kutta-Fehlberg algorithms of orders 7
and 8 (RKF78) with automatic step size control, using a step
size 10−4 ≤ ∆t ≤ 10−1 and local relative tolerance 10−14.
When we detect that the orbit has crossed ΣP in the desired
sense, we proceed to obtain the point of the trajectory that is
on ΣP . For that we use the Newton method to find a zero of
the function

Φ(t) = y1(t)− Q

2n
,

where y1 denotes the first coordinate of the orbit (which we633

compute using the RKF78 method). The Newton scheme634

gives the sequence of time iterates635

tk+1 = tk −
Q
2n − y1(tk)

ẏ1(tk)
. (14)

From this, we get the next step size hk+1 = tk+1 − tk636

to perform one more step of the RKF78 integration and arrive637

closer to ΣP . We repeat this iteration until a prefixed tolerance638

(set as ε = 0.5×10−14) is reached. As a result of this process,639

we get a point that is on the orbit and on ΣP as well, and it is640

taken as P (x), the image of x by the Poincaré map.641
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B. Derivative of the Poincaré map642

In this section we provide a formula for the differential of643

the Poincaré maps we use in this work, which is based upon644

the solution of the variational equation associated to the vector645

field. It provides a much more accurate way to effectively646

compute the differential than to approximately compute the647

partial derivatives through quotiens of differences. Let F :648

Ω ⊂ Rn −→ Rn be a vector field and ϕ(t, x) its flow. The649

variational equation is650

d

dt
M(t, x) = DF (ϕ(t, x))M(t, x). (15)

Let M(t, x) be the solution of (15) with initial condition
M(0, x) = Id. It is well known that M(t, x) = Dxϕ(t, x).
Given a section ΣP = {x1 = c}, the associated Poincaré map
P is

P (y) = ϕ̂(τ(x̂), x̂), x̂ = (c, y2, ..., yn) ∈ ΣP ,

with y = (y2, ..., yn), ϕ̂ = (ϕ2, ..., ϕn), and τ(x̂) being the
time needed for the solution to arrive to ΣP as described in
Section V.A. Now we can compute the differential of P by

using the chain rule

DP (y) =
∂ϕ̂

∂t
(τ(x̂), x̂) Dyτ(x̂) +Dxϕ̂(τ(x̂), x̂) Dyx̂.

Let fj = Fj(ϕ(τ(x̂), x̂)) and mi,j = Mi,j(τ(x̂), x̂). Using
this notation we have

∂ϕ̂

∂t
(τ(x̂), x̂) = (f2, ..., fn)>,

Dxϕ̂(τ(x̂), x̂) =

 m2,1 . . . m2,n

...
...

mn,1 . . . mn,n

 ,

and

Dyx̂ =

(
0

Idn−1,n−1

)
.

Since τ is characterized by the implicit condition651

ϕ1(τ(x̂), x̂) = c, (16)

we can obtain its derivative by differentiating both sides of Eq.
(16). We have

∂ϕ1

∂t
(τ(x̂), x̂) Dyτ(x̂) +Dxϕ1(τ(x̂), x̂) Dyx̂ = 0,

so that652

Dyτ(x̂) = − 1

f1
(m1,1, ...,m1,n)

(
0

Idn−1,n−1

)
= − 1

f1
(m1,2, ...,m1,n),

and finally

DP (y) =


m2,2 − f2

f1
m1,2 . . . m2,n − f2

f1
m1,n

...
...

mn,2 − fn
f1
m1,2 . . . mn,1 − fn

f1
m1,n

 .

Therefore to apply this formula we have to integrate both the653

equation and the variational equation from the initial condi-654

tion x̂ = (c, x2, ..., xn) ∈ ΣP until we arrive again at ΣP655

crossing it in the same sense to obtain ϕ(τ(x̂), x̂), fj , and656

mi,j .657

C. Search of a periodic orbit658

As explained in Section V.A. we have to find the zeros of659

H(x) = P (x) − x. For that we use the Newton algorithm,660

which, given an initial guess x0, is defined by the following661

iteration:662

xk+1 = xk −DH(xk)−1H(xk). (17)

We have DH(x) = DP (x)− Id. We can compute DP (x)
as explained in the previous section or using the central differ-
ences method, using, for example, δx = 10−4. To solve (17)
we write this is the linear system

DH(xk)(xk+1 − xk) = −H(xk),

and we perform a LU decomposition of the matrix DH(xk)663

to easily solve it. We iterate Eq. (17) until we get k such664

that ||xk+1 − xk|| < ε (with ε = 0.5 × 10−14) or until the665

maximum number of iterates is exceeded, in which case we666

decide that the method does not converge. In the first case, we667

consider xk+1 as a fixed point of the Poincaré map, P , and so,668

a point belonging to a periodic orbit of the vector field F .669
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D. Continuation of periodic orbits: The Euler-Newton method670

The Euler-Newton method is a method of continuation671

of implicit curves given by the zeros of some function f :672

Rn+1 → Rn of class Cr with r ≥ 1 once we know a point673

x∗ ∈ Rn+1 such that f(x∗) = 0. The whole idea of this674

method consists in finding the derivative of the implicit curve675

(we know that it exists locally if rank (Df(x∗)) = n by the676

Implicit Function Theorem), apply the Euler method to find677

a first approximation of the following point of the curve in678

the desired direction and then refine this approximation using679

a Newton-like method. A more detailed explanation of how680

does this method work can be found in [27].681

If we denote g : I ⊆ R → Rn+1 the implicit curve param-
eterized by the arc length then it can be proved that

dgj
ds

= (−1)j
Aj√∑k=n
k=0 A

2
k

,

where Aj is the determinant of Df(x∗) without the j-th col-
umn. It can also be proved that then the sequence {xi}i de-
fined by

xi+1 = xi − Df(xi)
>(Df(xi)Df(xi)

>)−1f(xi),

where x0 = x∗ + h∇g, does converge to682 {
x ∈ Rn+1 | ∃t ∈ I with g(t) = x

}
if h is small enough (see683

[2]). To obtain the whole curve as long as it is regular we684

only have to apply these steps repeatedly.685

As we have already mentioned in earlier sections our partic-686

ular interest in this method is to apply it to do the continuation687

of fixed points for the Poincaré map with respect to parame-688

ters and therefore to study bifurcations of periodic orbits. We689

apply the method to f = H where the n + 1 variables of H690

are x and the parameter Q.691


