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Hypercycles are catalytic systems with cyclic architecture. These systems have been suggested to play a key
role in the maintenance and increase of information in prebiotic replicators. It is known that for a large enough
number of hypercycle species (n > 4) the coexistence of all hypercycle members is governed by a stable
periodic orbit. Previous research has characterized saddle-node (s-n) bifurcations involving abrupt transitions
from stable hypercycles to extinction of all hypercycle members, or, alternatively, the outcompetition of the
hypercycle by so-called mutant sequences or parasites. Recently, the presence of a bifurcation gap between
a s-n bifurcation of periodic orbits and a s-n of fixed points has been described for symmetric five-member
hypercycles. This gap was found between the value of the replication quality factor ) from which the periodic
orbit vanishes (Q) po) and the value where two unstable (non-zero) equilibrium points collided (Qss). Here, we
explore the persistence of this gap considering asymmetries in replication rates in five-member hypercycles as
well as considering symmetric, larger hypercycles. Our results indicate that both the asymmetry in Malthusian
replication constants and the increase in hypercycle members enlarge the size of this gap. The implications of
this phenomenon are discussed in the context of delayed transitions associated to the so-called saddle remnants.

Keywords: Bifurcations; Complex Systems; Cooperation; Hypercycles; Periodic Orbits; Origins of Life.

1. Introduction 57
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The detailed characterization of bifurcations in nonlinear
systems becomes a very important issue to understand qualita- ¢
tive changes in dynamics. Mathematical investigations of co- ®
operative systems have been carried out using different mod-
eling approaches, the hypercycle system being one of the
most important ones. Hypercycles are catalytic sets of macro- &
molecules that can catalyze their own replication or the repli-
cation of other species of the network, which has a cyclic ar-
chitecture [1]. Catalytic sets have been a subject of study in e
different fields. For instance, these sets have been largely in- es
vestigated in the framework of prebiotic evolution [1, 5, 6, 20], e
suggested of being responsible for one of the major transi- 7
tions in evolution: the transition from quasispecies to hyper- 7t
cycles as a possible way to surpass the information crisis at 72
early stages of biological evolution [1, 3, 6]. However, similar 73
mathematical models have been used to investigate virus dy- 74
namics [1, 7-9], the immune system [10], ecological systems 75
[6, 11, 17, 18], and neural networks [12, 13]. 76

The analysis of bifurcations in hypercycles has been classi- 77
cally restricted to low dimensional time-continuous systems, 78
specially for so-called symmetric hypercycles [15, 16, 26], 7
for which all of the species have the same kinetic properties &
(i.e., they are considered neutral mutants [16]). Few works &
have explored asymmetries in hypercycles, for instance in s
two-member cycles [24] or in larger hypercycles by means s
of numerical results [5]. Moreover, few studies have focused s«
on the dynamics of large hypercycles [16], and especially, in ss
the bifurcations found in hypercycles with n > 5 species. It s
is known that, under appropriate parameter values, hypercy- s
cles are bistable systems. Under bistability, the asymptotic ss
coexistence or extinction of hypercycles depends on the ini- ss

tial conditions. It is also known that the nature of the co-
existence attractor largely depends on the dimension of the
hypercycle. By dimension we mean the number of species
forming the hypercycle, which determines the phase space di-
mension. The bifurcations for this type of systems are mainly
given by saddle-node (hereafter s-n) bifurcations, which in-
volve a catastrophic (i.e., sharp) extinction as the bifurcation
parameters crosses its bifurcation value [16, 24, 26].

The detailed mechanisms responsible for bifurcations in hy-
percycles have been provided by several authors [15, 24, 26].
For instance, Silvestre and Fontanari [16] showed that the con-
ditions of viability for symmetric hypercycles competing with
an error-tail hold for all n, not only when fixed points were
stable. That is because they found numerically that the via-
bility condition of hypercycle was the same as the one that
guarantees the existence of real fixed points. In particular,
considering a symmetric hypercycle with n = 12 members,
and catalytic constants k; = 1, for all ¢, and A = 103
(Malthusian replication constant), there is a nonzero equilib-
rium point if and only if @ 2 0.19639, @) being the copying
fidelity during replication. They found numerically that only
when @ 2 0.19639 there exists a stable periodic solution and
so the hypercycle is viable. Therefore, the existence of an un-
stable fixed point seemed to be a necessary condition for the
presence of stable periodic orbits in a hypercycle.

More recently, Guillamon et al. investigated the periodic or-
bits in symmetric hypercycles with n = 5 [19]. In particular,
they studied how these orbits behave in terms of @) using both
numerical and analytical methods. The results they obtained
using A = 0.5 were the value Qss = 0.91607, computed an-
alytically, at which two unstable fixed points undergo a s-n bi-
furcation and the value of Q po = 0.91614, computed numer-
ically, at which a s-nbifurcation of periodic orbits took place,



90
91
92
93

94

95
96
97
98
99
100
101
102
103
104
105
106

107

108
109
110
11
112
113
114
115

116

08
A1
X, 04f

% 04 038

X

038 05 :
A2 A3
X504 X 5 025

% 04 08 0 025 05

X X

B extinction

i

200 400 600" 9000 9600

time \
Yy

0.095 |-

coexistence

Population
Population

:
L T

0075 |-

s-n bifurcation of periodic orbits .
s-n bifurcation of fixed points =~ =———

<«—— GAP ———»!
0045 J-mmmm b

.
I
I
|
i
i
I
0065 f=- ot
H
I
0.055 |-+
1
:
|
:

0.035

0.91607 0.9161 091613

copying fidelity, Q

091616

FIG. 1. (A) Hypercycle formed by n species. The phase portraits display several projections of the periodic orbits allowing coexistence of
species (Al and A2). Panel A3 displays the same projection than in panel A2 but with parameters after the saddle-node (s-n) bifurcation of
periodic orbits. Under this scenario, the flows display transient periodic behavior since the trivial attractor is asymptotically globally stable.
(B) Bifurcation curves of periodic orbits (red) and of fixed points (blue) with respect to parameter () for the symmetric hypercycle, i.e., § = 0,
for A = 0.5. The parametric region in green allows for the coexistence of the hypercycle members. The bifurcation value of periodic orbits,
Qpro, and of the fixed points, Q) 55, are indicated with dashed vertical lines. Notice that both bifurcation values do not coincide, fact which has
been denoted as a bifurcation gap. The coordinate x4 has been chosen following [19]. The smaller panels display time series for all hypercycle

members in the extinction and coexistence scenarios.

thus causing the asymptotic extinction of the system. Interest-117
ingly, and conversely to what Silvestre and Fontanari observedi1s
[16], the two values were not exactly the same. Therefore, a1
slight gap between the two s-n bifurcations was found (seeizo
Figure 1). 121

In this manuscript we first analyse the impact of asymme-'#
tries in Malthusian replication constants in the bifurcation gap.
Asymmetric hypercycles are more biologically-realistic sys-
tems since symmetric ones consider that the templates form-'*
ing the hypercycle are neutral mutants [16]. However, it is
known that mutations have differential fitness effects [22, 29].12+
That is, mutants can carry deleterious, neutral, lethal, or ben-125
eficial mutations. Moreover, the analyses of bifurcations in'2
larger hypercycles becomes relevant since, albeit being more'?
susceptible to stochastic extinctions [23], larger hypercyclesi?
could store further information. Finally, we also explore the
impact of the size of the hypercycle in the bifurcation gap,
focusing on symmetric hypercycles.

The paper is organized as follows. In Section II we intro-ize
duce the mathematical model analysed, summarizing its dy-1so
namics. Then, in Section III A, we explore asymmetric hyper-ras
cycles for n = 5, the lowest dimension with the presence ofis
periodic orbits. Within this section we first conduct an analyt-1ss
ical study of an n-component asymmetric hypercycle, follow-1ss
ing the work conducted on [19] for symmetric hypercycles.ias
We later concentrate on the 5-component asymmetric hyper-is
cycles. This study allows to know precisely the locus of thers;

s-n bifurcations of equilibria, namely Q = QQgs. Then, a nu-
merical study of the 5-component asymmetric hypercycle is
made to carry out the bifurcation analysis. Finally, in Sec-
tion III.B. we explore the behavior of the the bifurcation gap
for larger hypercycles, focusing on the cases with n = 6 and
n = 8 catalytic species.

II. Mathematical model

We analyze the hypercycle model introduced by Campos et
al. [5], which describes the dynamics of an n-member hyper-
cycle competing with an error tail (see Fig. 1A for a schematic
diagram). The model is given by the next set of ordinary dif-
ferential equations:

& =2 (AiQ + kiwi1Q — 9),
Te = Ie(Ae - ¢) + (1 - Q) Z:I:l xz(AZ + kixi—l)a
ey
with 7 = 1, Lo, n and ¢ = Z?:l ZL’Z(AZ + kixi,l) + Aexe.
State variables x; are the concentration of the templates I,
z. being the concentration of the mutant replicators. To in-
troduce the cyclic architecture of catalysts we set xg = x,.
Parameter A; € (0, 1] is the replication rate of species 4, k;
is the strength of the catalysis that x;_1 has on x; replication,
and @ € (0,1] is the copying fidelity of the templates dur-
ing replication. Concerning the mutant species, A, € (0, 1] is
their replication rate. Finally, ¢ is a dilution flow that keeps
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the total population constant also introducing competition be-1ss
tween all of the replicators. Since the structure of the equa-iss
tions determine that Z?:l x; + x. = 1 is invariant, we con-
sider the system in this domain and hence we can forget about
the population of mutants, z..

A hypercycle is called symmetric if A; = A, = Aand k; =%
k for all ¢, and asymmetric otherwise. Looking at Eq. (1), it is'?!
clear that a symmetric structure eases the computations. Let'92
us summarize some important properties of system (1), see
also [5, 16, 19]: e

1. It is a bistable system for some set of parameters. Thes+
origins is always as attractor. When n < 4, there istes
bistability when Q > (Qgs and the coexistence attrac-19
tor - which allows the persistence of all the hypercy-is7
cle members - is a non trivial equilibrium point. Whentes
n > b, there is bistability as well for Q@ > Q) po, andiss

the coexistence attractor is a periodic orbit. 200

201
2. In the symmetric case and n > 5, Qpo and Qgsgs do202

not coincide. Then, there is a bifurcation gap in the203
parameter space where two non-trivial equilibria exist,
but periodic orbits do not [19].

In this paper we break the symmetry by making parame-
ters A; to be heterogeneous up to some extent, while keeping
k; = 1forallt = 1,...,n. In other words, here we fo-
cus on asymmetries in the so-called Malthusian replication
rates, given by the exponential replication (at low popula-
tion numbers) of the hypercycle species, keeping symmetries
in the non-linear replication terms given by heterocatalysis.
More precisely, we will consider cases in which A; = A for
all 2 = 1,...,n except for one or two 7 values for which
A; = a = A -9, where § (with § < A) will be consid-
ered as the asymmetry parameter in Malthusian replication
and a, A € (0,1]. In particular, we will mainly deal with
three cases:

- CaseaA...A: Ay = a, A, = Aand A; = A for all

1=2,...,n.
- CaseaaA.. . A: Ay = Ay =a,Ac = Aand A; = A
forall: =3,...,n.

-Caseala...A: Ay = A3 =a, A, =Aand A; = A
forallt =2,4,...,n.
Given the cyclic structure of (1), these cases represent many
other cases with one or two different values.
Finally, we consider the effect of increasing the dimension
(size) of the hypercycle, focusing on the symmetric case. Con-
cretely we deal withn = 5,6, 8.

III. Results and discussion
A. Asymmetric hypercycles

1. n-member hypercycle

We start studying analytically a general asymmetric case
with n templates, looking for general properties of asymmet-

ric hypercycles. In the following we are going to consider the
system

T =2i(AiQ+x,1Q — ¢),

for the different cases above mentioned, with ¢ =
Z?:l x; (Al +£L‘i,1) +Ae(1 — Z?:l {EZ) and z9 = x,,. We re-
call that we do not take into account the equation for x. since

n
in +x. = 1.
i=1

We are interested in studying the fixed points of system (2),
its saddle-node (s-n) bifurcation and the regions where peri-
odic orbits can be found, in a way analogous to the one con-
ducted in [19]. To simplify notation we will also refer to the
right-hand side of (2) as the vector field F'(z). Our analysis
will consist of two steps. In the first one, we find fixed points
and the s-n bifurcation of fixed points. In the second step, we
determine a region in which we can find periodic orbits, i.e.,
where they govern coexistence dynamics. For that we ana-
Iytically compute regions where it is impossible for periodic
orbits to exist.

1=1,...,n,

Fixed points. We first deal with the case aA ... A, which
is the simplest asymmetric structure one can consider. It is
clear that (0, ..., 0) is always an equilibrium point. There are
also fixed points for which some of their coordinates are 0, but
we do not compute them here since there is a huge number of
possible combinations and knowing them is not necessary for
the study we want to conduct. Imposing x; # 0 for all 7 in Eq.
(2) we get

(A=0)Q+2,Q — ¢ =0,
AQ+11Q —¢ =0,

AQ"‘I‘n_lQ_(ﬁ:O,

which results in

. _ 0 (A-0)Q
n — Q )
o 9 —AQ

Ty =" =Tpn-1= —~ -

Q

Subtracting z; to z,,, we get x,, — r1 = 0.
Thus, we only need to find the expression of one of the z;.
Let us find z1. We first express ¢ in terms of x1:

¢ =3 wi(Ai+ai)t A= 0z + A+ mimig
i=1 i=1
—dz1 + A+ na? + 2216,

and substituting it into the x; expression above we get
nri? —(Q — &)z + A(1 — Q) =0.
Therefore, there are two equilibrium points of the form

(mi,...,mi,xi —|—5),
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2n
From this last expression we know that there is a s-n bifur-
cation occurring for a value of ) for which

(Q—0)* —4nA(1-Q) =0,

—4nA(l - Q)

with z4 =

that is
Q= Qss = 2(

The two equilibrium points borning at the bifurcation exist for
@ > Qgg for which we have a s-n bifurcation. The bifurca-
tion point is therefore:

nA(l4+nA—29)—nA)+4d>0.

-4 -6 -4 2t

(QQn Y Q2n ’ Q2n + 5) ’ 22

233

with Q) = st. 234
In the symmetric case this point was (%, e %, %), SQ?35

that the bifurcation point for the asymmetric case tends to the™
one for the symmetric case when § tends to zero. =7

Now that we have conducted a brief study of the simplest
n-dimensional asymmetric hypercycle, we study hypercycles *
where two of the templates have a replication rate a = A — 62
In particular we are going to consider cases aaA ... A and™
aAaA ... A, since these are the two cases we will focus on”*
lately when dealing with 5-member asymmetric hypercycles.243
In the case of 5 members, these two cases cover all possi-244
bilities when two different values of A; are considered (rela-"*
belling the templates, if necessary). 2

The procedure to obtain the equilibrium points is similar to”"
the above case aA ... A. We obtain

(ry+6,24,..., 24,z +0), forcase aaA...A;
(x4, 24 +9,...,24,24 +9), forcase adaA...A,
(3)
Q—26+ —2(5 —4nA(1 —
where x4 = \/ nA( Q). Now™*®
2n 249

the bifurcation value is 250

Q = Qs = 2(v/nA(a + nA — 25) — nA) + 20 > 25, >
252

in both cases and the bifurcation points are 053
(925 45,2, 2,92 4 5),

) 2n) ?2n

forcase aaA ... A;

for case aAaA ... A. x5
“)
Periodic orbits. Since our main goal here is to study the
behaviour of periodic orbits with respect to the parameter @,
we first care about the conditions for their existence. In partic-
ular we are going to locate a subset of the basin of attractionzss
of the origin, and consider the complementary of this region,,
as the domain where the existence of periodic orbits is possi-s,
ble depending on (). For this purpose, we define the domains,,
., and the hyperplanes ., as: 260

{xGR”\ T; ZO,Z%— Sa},

=1

Yo = {xER” \ Za:z :a},
i=1

(Q726 Q;n% +5,..., Q2 Q;n% +5)’

2n 2n

261

Qu = (5)e62

264

(6)

265

for a« € (0,1]. Observe that the dynamics of system (2)
is restricted to €2y_,, which is a subset on the n-simplex
Q := ;. Besides, each subspace generated by vectors of
the canonical basis is invariant; in particular, the hyperplanes
x; = 0 are invariant. Thus, except for X, all other n faces
of Q,, for @ € (0,1], are invariant for the vector field F.
We study the flow generated by F' on X, by taking the vec-
tor v = (1,...,1), which is normal to the hyperplane, and
computing v - F(z) for z € . We have that

v- F(x)
ol @)

Then, when this scalar product is zero, F' is tangent to the
hyperplane. When it is positive, F' points outside of €2, and
when it is negative F' points inside (2. If F' points inside €2,
for all points in 3, we have that 2, is positively invariant,
which means that no orbits escape from €2, in forward time.
We also know that if the vector field F' crosses transversally
Y, for all @ < g for some «, then €2, is contained in the
basin of attraction of the origin. Thus, periodic orbits can only
exist in the complementary of the region where this occurs.

This setting is general for any case of asymmetry, but the
determination of the suitable « values that give information
about the location of periodic orbits must be performed case
by case. As a general example, in this section we study the
case aA...A. Next, in Section III A2, we will apply the
same procedure to 5-member hypercycles with two asym-
metric members. For the case aA... A, the numerator of
cos(v, F(z)) becomes

cos(v, F(z)) =

veF(x,...,x,) =

— Oé) <Z Ti—1X; — 5:171)
i=1

+Aa(Q — 1). )

To study the behavior of expression (7) for a given o < 1, we
distinguish two cases. If @ < «, the product (7) is negative
(we use that § < A) so F points inside €2, and thus €, is
positively invariant. If () > «, we need to deepen the study
of expression (7). We want to know when this expression is
negative. We can ﬁrst find the maximum of it. For that we will

Z x;—1%;, using the method of Lagrange

i=1
multipliers. We want:

n
max E Ti—1T4,
T
i=1

together with z; > 0. We obtain a unique critical point: * =
(2., n) € 3, and f(z*) = %2 We need to check whether

the maximum reached on the boundary of ¥, is greater than
the value we have found.

When n = 2, the function f(x) = zixs is always 0 on
the boundary of ¥,. Hence, the maximum is reached in the

interior and turns out to be o /2.
3

When n = 3, the function Z T;_1x; 1S nonzero on the
i=1
boundary when only one z; is 0. Due to the cyclic structure

maximize f(x

n
subject to Z T =,

=1

(®)
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FIG. 2. Bifurcation diagrams for 5-member asymmetric hypercycles with structure aa AAA setting A = 0.5 and: § = 0.001 (a), 0.01 (b),
0.05 (c) and 0.1 (d). The s-n bifurcation of periodic orbits is indicated with red curves, while the s-n bifurcation of fixed points is indicated in

blue.

of the previous function, it is indistinct which coordinate we
choose to be 0. Assuming x3 = 0, we want:
max x1Tg,
xr

subjectto z; +xy =a, x; > 0.

©))
Using the method of Lagrange multipliers we get that the
maximum is «?/4. Thus, the maximum on the boundary is
less than the maximum that is achieved in the interior of €2,
which is a2/3.

When n = 4, in the boundary of ¥, either one, two, or
three of the x; may vanish. If three of them vanish, f is zero.
If two of them vanish, they can be consecutive and then we get
a problem equivalent to (9) for which the maximum is o /4,
or non-consecutive and then the function is 0. If only one of2

. . . 81
the terms vanishes, for instance x4, we have to consider

282

m;lX(I1$2 + x213), subjectto z1+z2+a3=q, x; >0,
Using again the method of Lagrange multipliers we get that
az/ 4 is the maximum, which coincides with the maximum?s4
reached in the interior of €),. Therefore, the maximum is at-
tained both on the boundary and in its interior.

When n > 4, we can proceed similarly. When two or more
x; vanish, we obtain a problem equivalent to the one solved
for a lower n. We only need to solve a “new” optimization
problem when only one of the x; is 0. We are going to solve
it by induction. 286

Let us see now that ¥n > 4 the maximum of (8) is a? /4,27
attained on the boundary when one and just one of the x; iszss

285

0. As the objective function has a cyclic structure, it does not
matter which of the x; is picked up to be 0. Let us suppose, by
induction, that the maximum «? /4 holds for n — 1 replicators.
Then we take n replicators. The image of the critical point is
’%. We want to solve (8) on the boundary. Taking z,, = 0,
we have:

fl@) =zza+ -+ Tp_oTp_1.
Now,asz; > 0,2 =1,...,n—1,
flx) <@z + - 4 Tpoop_1 + Tp_121,

the RHS being the function we have for n — 1 replicators.
Hence, from the induction hypothesis, the maximum of this
n 2

L a
function is o /4. Therefore, Vn > 4, in,lxi < T
i=1

n n
Zmi = «, x; > 0. Hence, using that Zmi = « and so
=1 i=1
r; < «a, Vi, we get

, for

2

v-F(zy,...,2,) < (Q—a) (O; - a5> +Aa(Q-1). (10)

We are going to find a threshold for @), denoted by @), such
that V@) > Q.. the region (2, is positively invariant.
We can find the zeros of the RHS of (10), which are ag = 0
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Q
and 0.1 (d).
and 312
40+Q+/(40+Q)2-16(A1-Q)+Qs) ™
+ = . 314
? (11)

Looking for which @) expression (11) is real we get the::
threshold:

317
Q. =46 — 8A+ 4\/A(AA — 45 + 1). (12)
318
Therefore, if Q@ > Q., then v - F(xy,...,2,) < 0 for

a € (0,a-) U (a4, Q). This means that when a < a_ orste
a > ay, §), is positively invariant. Since for all @ < a_, v 320
F(zy,...,z,) <0, for initial conditions in €, with @ < cv_ 32"
the total population of the hypercycle tends to 0. Moreover, in,,,
order to look for periodic orbits or other recurrent phenomena,,,
we have to concentrate on values of a € (a_, oy ) and Q >,
Q*' 325
We need to note that this interval is not sharp because the,,
inequality (10) is not sharp. Hence, for values of « in the,,,
interval and close to the interval limits, (2, is possibly still
positively invariant so, to be sure to truly find interesting be-
haviour, we should choose values of « close to the midpointszs
of the interval. 330
Now, if the discriminant of (11) was to be negative, thatss
is, if @ < @, then a_ and a4 are complex and the onlyss
real zero is cg = 0. Therefore, as the RHS of (10) tends tosss
—oo when «a grows, it is always less or equal than zero. Then,ss4
Q, is positively invariant Vo, which means that the origin issss
globally asymptotically stable. 336

Summarizing, consider the hypercycle formed by n repli-
cators with replication rates aA . . . A, and let €),, be given by
(5) and Q. be given by (12). Then,

e when a > @, €, is positively invariant. Moreover,
sincev-F<0in{zx €Q |z + -+ x, > Q}, there
can not be periodic orbits in that domain;

e when a < Q,

- if Q < Q., Q) is positively invariant, and v - F' <
0 in 2. Then, there can not be periodic orbits in
95

—-if Q@ > Q., Qg is positively invariant for a €
(0,a—) U (a4, @), where oy and «_ are given
by (11). Moreover, v - F' < Oin {x € Q | z1 +
et a, <a_fU{z e Qx4+, > ay )
Then, if periodic orbits exist, for each point of the
periodic orbit the sum of its coordinates must be
between a_ and oy .

Hence, we have located, depending on the parameter @),
the regions where periodic orbits can appear. In order to find
them explicitly, we need to resort to numerical methods, see
Appendix V.A.

Next, we apply the same procedure to complete all possi-
ble asymmetric cases with two different replication rates for
dimension n = 5, which is a trade-off between analytical
tractability of equations and existence of periodic orbits [16].
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In particular, as commented before, all of the remaining cases
are aaAAA and aAaAA.

2. Five-member hypercycle

From (3), we know that the equilibrium points are (x4 +
0,x4,x4,24,x+ + 0) for the case aaAAA, and (zy, x4 +
0,zy,x4,x4 + 0) for the case aAaAA, where 4+ = ((Q —
28) £ /(Q —26)2 —20A(1 — Q))/10. As x4 is the same
in both cases, the critical value of @) for which there is a s-n
bifurcation of fixed points, Qsg, is the same:

Qss =2 (VBA(L+5A—25) —54+4).

Therefore, the respective bifurcation points can also be ob-
tained from (4), with Q = Qsgs and n = 5.

As our goal is to study both the bifurcations of fixed points
and of periodic orbits in these two cases, let us find the regions
of 2 where periodic orbits can be found. We perform the anal-
ogous procedure explained in Section III.A.1. for the case
aA...A to obtain the corresponding regions in the present
cases. We provide the results next.

We need to study the sign of v - F'(x) which becomes

5
(Q—a) (Z i1 — 0(x1 + x2)> + Aa(Q — 1),

for the aa AAA case, and

(Q@—0) (Z i1 —6(z1 + :c;;)) + Ao(@Q — 1)
i=1

for the aAa A A case. In both cases, given
352

- Q+85+ /(80 +Q)2 —4(8Q5 —4A(Q — 1)) **

, 354

2
Q.=8(0—A)+V4A2 —8A5 + A, %9

356

and adapting the calculations done in Section III.A.1, if peri-*
odic orbits exist, they must lie in the region of the parameter®®
space where (Q > @, and, moreover, the sum of the coordi-**°
nates of its points, a, fulfill @ > Q and @@ € [a—, a4 ]. 360

From this point on, we need to implement numerical rou-**'
tines, see Appendix V.A., in order to find periodic orbits of*?
system (2) for the cases aaAAA and aAaAA and, in particu-3%
lar, the parameter values of the corresponding s-n bifurcations®*
of periodic orbits, @ po. An important issue is the choice of*®
a Poincaré section. Adapting (3) to the case n = 5, we know*®
that the equilibrium points are (x40, x, =, x, x+9) for the case®”’
aaAAA, and (x,x+ 0, x,x, x4 ) for the case aAaA A, with*®
= ((Q —20) £ /(Q —26)2 — 20A(1 — Q))/10. Clearly,®
the average copying fidelity rate at which the s-n bifurcation®”®
of fixed points occurs is: o

372

Qss :2(\/5A(1+5A—26) —5A+5). e

374

0.00017 T T T T T
0.00015
0.00013

0.00011

Qss - Qpo

9e-05

Te-05

5e-05

3e-05

-3 -2.5 -2 -1.5 -1 -0.5 0
log(A)

FIG. 4. Quantification of the gap size between the two bifurcations
for different values of A, in the symmetric case (see [19] for further
details).

Keeping in mind that our goal is to find periodic orbits, it is
clear that the Poincaré section should not be close to equilib-
rium points. A natural choice is to fix one of the coordinates,
for instance x;, at the value corresponding to the first coor-
dinate of the equilibrium point at the bifurcation Q = Qgs.
Then, if ) — Qs is not too small, the Poincaré section (X p)
will be far enough from both of them. Accordingly, we con-

sider
—20
Ep:{l‘lelO +5}

for the aa AAA case, and

Zp = {1‘1 = Q1025}

for the aAa A A case. This choice is crucial for the success of
the numerical continuation with respect to parameters. Tak-
ing, for instance, the section given in [19] for the symmetric
case, would not allow to continue the curve of periodic orbits.

To pick an initial condition for @) and = we use the con-
dition for the existence of periodic orbits derived in (11) and
(12), and then we integrate several orbits with random initial
conditions until we detect the convergence to a periodic orbit.

Once we have obtained a periodic orbit, for an initial value
of @, see Appendix V.C., we proceed by continuation with
respect of the parameter (), see Appendix V.D. In this com-
putational part, we need to take care of the step size and of
the number of continuation steps. It turns out that, after pass-
ing by the bifurcation point () po, the continuation method
follows the unstable periodic orbit. For every A, there exists
a value of @ for which this unstable periodic orbit passes so
close to the hyperplanes x; = 0 that the Newton method we
use does not converge. Thus, as () po depends on A and 6,
the number of continuation steps needs to be adapted for ev-
ery (A, 0) pair.

The curve of equilibrium points has been computed isolat-
ing  in the expression for z, that is, from z+ = ((Q —20) +

V(Q =252 = 20A(1 — Q))/10.
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FIG. 5. Bifurcation gap for the asymmetric case aa AAA with: § = 0.001 (A), 0.01 (B), 0.05 (C) and 0.1 (D).

In the next section, we exploit the numerical implemen-
tation explained above to plot and compare the bifurcation
curves.

B. Impact of asymmetry on bifurcation gaps

Here we extend the numerical study conducted in [19] for
symmetric hypercycles to asymmetric ones. We know explic-
itly Qss, the value of @) for which the saddle-node (s-n) bi-
furcation of fixed points occurs, and we want to compute the
value of ) for which the s-n bifurcation of periodic orbits
takes place, Q@ po. In [19] the authors observed that there is a
slight difference between these two values, which they called
gap. Here, we explore whether such a gap exists in the 5-
member asymmetric case and, if so, how it behaves as a and"®
A differ from each other, i.e., as § changes. 408

Figure 3 shows the two bifurcation curves (equilibria and"”
periodic orbits) in terms of @, taking A = 0.5, as in [19], and**®
increasing ¢ from 0.001 to 0.1 in the four panels. We observe*™
in all cases a clear difference in the position of the turning*"
points, with Qpo > Qss. 1

By definition of §, the larger it is, the more the hypercycle*"
differs from the symmetric one. We are interested in quan-*'
tifying how does the gap between the two bifurcation points*®
behave when the system gets more asymmetric. For the sym-*'
metric case it was shown in [19] that the gap reached a value
of approximately 1.5 x 10~* for a certain value of parameter
A (see Figure 4, included here for the sake of comparison). In*"”
Figures 5 and 6 we can appreciate that the magnitude of the
gap for the asymmetric cases increases with ¢ for both con-ss
figurations, aaAAA and aAaAA. Hence, as the hypercycless

4

6

Qpro — Qss (Gaps)
aaAAA aAaAA
=0 [5.98054 x 10 °[5.98054 x 10~°
5 =0.001/6.12641 x 107°|6.01082 x 10~°
§=0.01{1.93241 x 107*|8.33985 x 10~°
5 =0.05(2.34217 x 1072|4.96334 x 104
§=0.1 |4.88186 x 1073[1.28505 x 1073

TABLE 1. Bifurcation gaps for cases aa AAA and aAaAA for dif-
ferent degrees of asymmetries in the hypercycle.

gets “more asymmetric”, the difference between the values
where the bifurcations of periodic orbits and fixed points oc-
cur is larger (see Table I below where the value Qpo — Qss
is displayed for each continuation curve).

Here, we make a necessary observation about errors, since
we produce numbers that have been obtained numerically. In
the computer codes we have written the main sources of er-
ror are the numerical integrator and the Newton iterations. As
integrator we have used a Runge-Kutta-Fehlberg method of
orders 7-8 with local relative tolerance of 10~ !4, For the New-
ton method we have iterated until a tolerance of 0.5 x 10~ 14
has been reached.

C. Impact of higher dimensions on bifurcation gaps

In this section we further analyse the bifurcation gap in
terms of () for symmetric hypercycles withn = 6 and n = 8
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FIG. 6. Same as Fig. 5 for case aAaAA with: § = 0.001 (a), 0.01 (b), 0.05 (c) and 0.1 (d).

members. We have found that the results are not only analo-
gous to the case n = 5 (see Fig. 4) but also that the distance
increases with the dimension of the hypercycle (see Fig. 7).
More specifically, this distance increases more than one order
of magnitude fromn = 5ton = 8.

There is one difficulty that one must overcome somehow
when we increase the dimension. That is, as numerical com-
putations indicate, the coordinates of the periodic orbit pass
extremely close to the origin. Then, computing the derivatives
of the Poincaré map using:

OP;(x) _ Pi(x + he;) — P;(x — hej)
8a:j - 2h ’

it might happen that x —he;, has some negative component, in
which case we are not anymore in the simplex €2; and the flow
will probably never come back to it (even if it did and crossed
the Poincaré section again the solution would have nothing to
do with the expected one). One could think that decreasing
h would solve the problem, but doing so will lead to a huge
numerical error in the derivative (as it happens when we have,,,
a small value in the denominator). s
This is why we have been forced to use more accurate algo-,,;
rithms to obtain the derivative of the Poincaré map in order to
apply successfully the Euler-Newton method. This alternative
way is explained in Section V.B. in the Appendix . war
The actual computations look for the value of @) along the
continuation process at which the sign of the derivative of )
with respect to the arc length of the curve which gives the"*
periodic orbit with respect to the parameter () changes and

then compare it with the () of the saddle-node (s-n) bifurcation::

for the fixed points which is Q) = 2 (\/nA(l +nA) — nA) 5

8

<108

25

05 M

0 L L L
-2.5 -2 -1.5 -1 -0.5

log (A)

FIG. 7. Distance between the s-n bifurcation of periodic orbits and
of fixed points (Qss — @ po) for symmetric hypercycles withn = 5
(blue), n = 6 (red), and n = 8 (orange).

As long as we use a small step size when applying the Euler-
Newton method, the continuation goes on (for example using
as step size 1075, which is what we have done).

IV. Conclusions

In this manuscript we have conducted an analytical study of
a general n-member, asymmetric hypercycle with the Malthu-
sian replication constants: aA ... A. We have found the co-
existence fixed points, their bifurcation values and the region
in which the vector field can present periodic orbits. We have
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then focused on cases aa AAA and aAaAA for five-membersss
hypercycles. In this way we have exhausted all of the possiblesss
asymmetries, relabelling constants and/or variables if neces-sss
sary. 486

Following previous results on oscillating 5-member hyper-ss
cycles [19], we have checked that the gap found between thesss
saddle-node (s-n) bifurcation value of fixed points and the s-n,
bifurcation value of periodic orbits in symmetric hypercycles,,
also holds in asymmetric ones. Actually, the gap grows as the,
asymmetry of the system gets larger. These results strengthen,,
the “gap problem” introduced in [19], as it was identified in,,
the symmetric case, which is a less realistic case from a bi- o4
ological point of view. Moreover, in the symmetric case, the,
gap is shown to increase for larger hypercycles. Symmetric,
hypercycles assume that all of the members of the hypercy-,
cle are neutral mutants, since they might be synthesized from,,
previously existing templates by replication and mutation pro-,,
cesses. In this sense, recent experimental results on muta-
tional fitness effects for RNA viruses quantified neutral spon-
taneous mutations happening with about 25% of probability
[30, 31]. Hence, even for small hypercycles, asymmetries500
might be expected.

The biological implications of these gaps could be relevantsos
within the framework of so-called delayed transitions [14, 24].s02
It is known that after a s-n bifurcation a saddle remnant (alsosos
named ghost) appears in the phase space [32-36]. In thissos
phenomenon, the flow takes a long-lastly excursion just af-sos
ter the s-n bifurcation before going to the only asymptoticallysos
globally stable attractor, which involves extinction. This phe-sor
nomenon was interpreted as a kind of memory for hypercy-sos

10

cles occurring after the bifurcation [14], possibly becoming a
selective advantage in fluctuating environments [36]. Interest-
ingly, this delaying phenomenon has been described in models
for delayed switching of charge-density waves as [35], well as
in an experiment with an electronic circuit behaving as a Duff-
ing oscillator [37].

Since the gap described in this article is found in between
two different s-n bifurcations, two delayed transitions may be
found, one when Q@ < @po and another when Q < Qgs.
This could involve an enhancement of the delaying effects and
thus a higher memory capacity of the system, therefore further
slowing down hypercycles’ extinction. However, we must no-
tice that delayed transition phenomena are local. This means
that the delaying effect of the saddle remnant occurs with pa-
rameter values extremely close to the bifurcation value. De-
spite this fact, future research could be devoted to quantify the
delaying times within the region [Qss, @po].
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V. Appendices
A. Construction of a Poincaré map

Poincaré maps are a powerful device to study both theoreti-ess
cal and computational aspects of vector fields. In this work wess
use them to compute periodic orbits because periodic orbits ofsss
a vector field I correspond to fixed points on periodic pointssas
of P, the Poincaré map associated to F' and a some section.sso
In its turn fixed points of P correspond to zeros of the map H e+

11

defined as

H(z):= P(x) — . (13)

Thus in this way we reduce the problem of obtaining peri-
odic orbits of vector fields to the problem of finding zeros of
functions. To define a Poincaré map first we have to choose
a PoincarSection, > p. Motivated by the fact that, after the bi-
furcation, our systems have two interior equilibrium points we
just choose a section defined by the first coordinate fixed con-
stant at a value which is the mid point between the two first
coordinates of these equilibrium points (whenever they exist).

Hence we take
Q
Yip = {331 =5, ("
in the symmetric case and
Yp = {,1131: 10 +5},
in the aa AAA case and n = 5, and
-2
Zpiz{xlelo }

in the aAa A A case and n = 5.

We note that we could have chosen any other x; coordinate
and proceed analogously. Then taking an initial condition in
>.p we integrate our vector field F' until we reach again Xp
crossing it in the same sense as the vector field crosses ¥ p at
the initial point =, To detect the case for which the orbit of
x € X p does not belong to X p we prescribe a time limit of
integration. For the numerical integration we use a method
based on two Runge-Kutta-Fehlberg algorithms of orders 7
and 8 (RKF78) with automatic step size control, using a step
size 1074 < At < 107! and local relative tolerance 10~ .
When we detect that the orbit has crossed > p in the desired
sense, we proceed to obtain the point of the trajectory that is
on X p. For that we use the Newton method to find a zero of
the function

Q-2

() =yu(t) — o

where y; denotes the first coordinate of the orbit (which we
compute using the RKF78 method). The Newton scheme
gives the sequence of time iterates

Lyt
tk+1:tk—2",7yl(k). (14)
1 (k)
From this, we get the next step size hypy1 = tpr1 — tk

to perform one more step of the RKF78 integration and arrive
closer to X p. We repeat this iteration until a prefixed tolerance
(setase = 0.5 x 10~ %) is reached. As a result of this process,
we get a point that is on the orbit and on X p as well, and it is
taken as P(z), the image of x by the Poincaré map.



642

643
644
645
646
647
648
649

650

653
654
655
656

657

658

659
660

661

B. Derivative of the Poincaré map

In this section we provide a formula for the differential of
the Poincaré maps we use in this work, which is based upon
the solution of the variational equation associated to the vector
field. It provides a much more accurate way to effectively
compute the differential than to approximately compute the
partial derivatives through quotiens of differences. Let F' :
) C R" — R™ be a vector field and ¢(¢, x) its flow. The
variational equation is

iM(t, x) = DF(p(t,z))M(t, ).

o (15)

Let M(t,z) be the solution of (15) with initial condition
M(0,z) = Id. It is well known that M (t,z) = D,p(t, ).
Given a section ¥ p = {x1 = c}, the associated Poincaré map_
Pis

1

P(y) = @(T(‘%)v‘%)v = (C» Y2, 7yn) €Xp,

with y = (y2,..,yn),® = (¢2,..., Pn), and 7(&) being the
time needed for the solution to arrive to X p as described in
Section V.A. Now we can compute the differential of P byss2

J

1

12

using the chain rule

_ 99
ot

Let f; = Fj(¢(7(2),2)) and m; ; = M; j(7(Z),2). Using
this notation we have

DP(y) (1(2),&) Dy1(2) + Dyp(7(2£),2) DyZ.

Py
S r(@),8) = (fasoos fu)T
ma 1 ma.n
D, ¢(7(2), &) = : : ;
Mn1 My n

and

. 0
Dyl' - (Idnl,nl ) '

Since 7 is characterized by the implicit condition
p1(7(2),2) =, (16)

we can obtain its derivative by differentiating both sides of Eq.
(16). We have

so that

. 0 1
DyT(I’) = 7ﬁ(m171, ...,mlm) ( Idn_l - ) = 7*(771172, ...,mlm),

and finally 662

Iz

Mo — FM12 I2

- Man — mel,n
DP(y) =

mnz—%ml’g

)

mp,1 — %ml,n

s

Therefore to apply this formula we have to integrate both the
equation and the variational equation from the initial condi-
tion & = (¢, za,...,2,) € Yp until we arrive again at Xp
crossing it in the same sense to obtain ¢(7(Z), ), f;, and
mi, .
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C. Search of a periodic orbit oos

666

As explained in Section V.A. we have to find the zeros ofesr
H(xz) = P(z) — x. For that we use the Newton algorithm,ees

which, given an initial guess x°, is defined by the followingess

fi

(

iteration:

oF = 2F — DH(2*) T H (o). (17

We have DH (x) = DP(x) — Id. We can compute D P(z)
as explained in the previous section or using the central differ-
ences method, using, for example, §, = 10~%. To solve (17)
we write this is the linear system

DH(m’“)(ackJrl — xk) = —H(mk),

and we perform a LU decomposition of the matrix D H (z*)
to easily solve it. We iterate Eq. (17) until we get k such
that [|z*+1 — 2%|| < e (with e = 0.5 x 1071%) or until the
maximum number of iterates is exceeded, in which case we
decide that the method does not converge. In the first case, we
consider z*t! as a fixed point of the Poincaré map, P, and so,
a point belonging to a periodic orbit of the vector field F'.
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D. Continuation of periodic orbits: The Euler-Newton method

The Euler-Newton method is a method of continuation
of implicit curves given by the zeros of some function f :
R™*1 — R™ of class C™ with » > 1 once we know a point
z* € R such that f(z*) = 0. The whole idea of this
method consists in finding the derivative of the implicit curve
(we know that it exists locally if rank (D f(z*)) = n by these
Implicit Function Theorem), apply the Euler method to findess
a first approximation of the following point of the curve iness
the desired direction and then refine this approximation usingsss
a Newton-like method. A more detailed explanation of how,,
does this method work can be found in [27]. oor

If we denote g : I C R — R™*! the implicit curve param-_
eterized by the arc length then it can be proved that

6

8
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dg; _

) e E—
d =n
s Vo A2
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where A; is the determinant of D f(z*) without the j-th col-
umn. It can also be proved that then the sequence {z;}, de-
fined by

Tip1 =i — Df ()T (Df (@)D f () ") f i),

where 1z = z* + hVg, does converge to
{z € R" | 3t € I with g(t) = '} if h is small enough (see
[2]). To obtain the whole curve as long as it is regular we
only have to apply these steps repeatedly.

As we have already mentioned in earlier sections our partic-
ular interest in this method is to apply it to do the continuation
of fixed points for the Poincaré map with respect to parame-
ters and therefore to study bifurcations of periodic orbits. We
apply the method to f = H where the n + 1 variables of H
are x and the parameter ().



