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h i g h l i g h t s

• We study the population dynamics of small hypercycles with short-circuits.
• Mean field and cellular automata models are used to study the dynamics and bifurcations.
• We identify a rich repertoire of transcritical and saddle–node bifurcations.
• Small hypercycles are shown to be vulnerable to catalytic short-circuits.
• The vulnerability increases at growing degradation rates of the hypercycle members.
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a b s t r a c t

It is known that hypercycles are sensitive to the so-called parasites and short-circuits. While the impact
of parasites has been widely investigated for well-mixed and spatial hypercycles, the effect of short-
circuits in hypercycles remains poorly understood. In this article we analyze the mean field and spatial
dynamics of two small, asymmetric hypercycles with short-circuits. Specifically, we analyze a two-
member hypercycle where one of the species contains an auto-catalytic loop, as the simplest hypercycle
with a short-circuit. Then, we extend this system by adding another species that closes a three-member
hypercycle while keeping the auto-catalytic short-circuit and the two-member cycle. The mean field
model allows us to discard the presence of stable or unstable periodic orbits for both systems. We
characterize the bifurcations and transitions involved in the dominance of the short-circuits i.e., in the
reduction of the hypercycles’ size. The spatial simulations reveal a random-like and mixed distribution
of the replicators in the all-species coexistence, ruling out the presence of large-scale spatial patterns
such as spirals or spots typical of larger, oscillating hypercycles. A Monte Carlo sampling of the parameter
space for the well-mixed and the spatial models reveals that the probability of finding stable hypercycles
with short-circuits drastically diminishes from the two-member to the three-member system, especially
at growing degradation rates of the replicators. These findings pose a big constraint in the increase of
hypercycle’s size and complexity under the presence of inner cycles, suggesting the importance of a rapid
growth of hypercycles able to generate spatial structures (e.g., rotating spirals) prior to the emergence
of inner cycles. Our results can also be useful for the future design and implementation of synthetic
cooperative systems containing catalytic short-circuits.
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1. Introduction

The precise description and prediction of the steps preceding
the origin of life in our planet is one of the most challenging and
hard problems in science. Despite this difficulty, several theories
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have been suggested in the last decades to describe possible
scenarios behind the emergence of the first stable replicating
systems, in what has been labeled as the crystallization of life
in the framework of phase transitions phenomena [1]. The first
groundbreaking discovery by Miller and Urey, which proved the
Oparin and Haldane hypothesis, revealed that organic molecules
(mainly two types of amino acids) could be synthesized from
inorganic ones in the Earth primitive conditions [2]. Miller’s
approach opened a new era and since then, geological, physical,
and chemical requirements for the beginning of life have been
discussed with diligence [3–6]. For instance, the possibility of
abiotic synthesis of the building blocks of RNA and DNA [7–9].
Subsequent research on the understanding of the origin of
life was deepened substantially by the theory of Eigen and
Schuster [10], who put evolution and heredity into the picture
using biochemical andmore formalmathematical arguments. They
argued that at spontaneous error rates during replication of about
10−2 changes per nucleotide [11], the first faithfully reproducing
molecules should be single-stranded RNAs not exceeding 50–100
nucleotides [10,12]. This conjecture arose within the theoretical
framework of quasispecies theory [13]. Quasispecies theory was
conceived as a chemically-plausible mathematical formulation for
the dynamics and evolution of information of macromolecules
under large mutation rates (as expected in prebiotic evolution).
Roughly, a quasispecies is a set of sequences that is generated
by replication–mutation dynamics of an initial template (often
named the master sequence). Differently to the concept of species,
a quasispecies is a set of closely-related mutants which are (as a
whole, and not individually) under the filter of natural selection.

Assuming RNAs as the building blocks of the first living forms,
stability against hydrolysis [14] and replicability [15] might favor
RNAs that display a loop and stem structure similar to that of
modern tRNAs [12], which are about 76–90 nucleotides long.
Indeed, some smaller, functional ribozymes (i.e., RNAwith catalytic
activity) of about 50 nucleotides have been described in viroids
[16] and other RNAs [17]. Some of these hypothetic prebiotic
RNAs were supposed to participate in ribosome-free translation
of an appropriate messenger as suggested in [18]. In this sense,
ligase reactions by RNA catalysts are known to occur even with
small RNA sequences [19]. The RNA-first theory has some powerful
arguments in its favor [1]. First of all, all life is based on RNA/DNA
as the stable storage of genetic information. Second, RNA can
act as informational carrier and enzyme at the same time, thus
encoding in the same molecule the two characteristics needed
for evolutionary potential: message and reproduction. Third,
RNA is a beautiful example of Schrödinger’s aperiodic crystals,
which are point–point local templating complements [1]. Also,
it is known that certain introns can catalyze their own excision
from single-stranded RNA (ssRNA). Furthermore, the same RNA
sequences can catalyze transesterification reactions for elongation
of one monomer [20], ligation of two independent ssRNAs
[21,22], and cleavage of RNA into smaller sequences [20,16].
Despite the previous ribozyme reactions, self-replication through
RNA-catalyzed templated RNA synthesis seems to be quite
limited. However, recent in vitro experiments evolving catalysts
at sub-zero temperatures revealed that the combination of RNAs
with cold-adaptative mutations with a previously described 5′

extension operating at ambient temperatures enabled catalyzing
the synthesis of an RNA sequence longer than itself (adding up
to 206 nucleotides) [23]. Furthermore, a recent work by Vaidya
and colleagues revealed that mixtures of RNA fragments that
self-assemble into ribozymes spontaneously formed cooperative
catalytic cycles, providing experimental evidences for the viability
of spontaneous hypercycles (see below for the definition of
hypercycles) formation from existing RNAs [24].

The understanding of the properties of the first replicating
molecules is crucial to disentangle the origin of life problem.
Such replicating entities could carry compositional [25–27] or
genetically-encoded [13,10] information. A simple and thus
plausible initial scenario concerning genetically-encoded systems
could be given by a set of ribozymes replicating at extremely large
error rates due to the lack of proof reading mechanisms. Such
a system, similar to a quasi-species, could perform a wide and
rapid exploration of the sequence space thus being able to find
genotypes with catalytic phenotypes capable of forming the so-
called hypercycles. Hypercycles are sets of macromolecules that
are able to catalyze the reproduction of othermacromolecules [10]
(see also Ref. [28]). With auto-catalysis, a given replicator type
catalyzes its own replication, while when a given replicator
type catalyzes the replication of a different macromolecule
then the relation is called hetero-catalytic (or cross-catalytic).
Usually, the term hypercycle is used for sets of molecules with
a cyclic and closed catalytic architecture, where the catalytic
interactions from one member to the other (or to itself) are
named catalytic connections or links (using the networks jargon).
These hypercycles could contain several catalytically-connected
molecules able to increase the information of the entire system
while keeping the individual replicators below the critical length
imposed by the error threshold [13,29]. Since no molecule in the
hypercycle can outcompete another because they are forced to
cooperate, a large genetic message given by all the information
of all templates could be attained, thus crossing the information
threshold [13].

Following theprevious scenario, it seems reasonable to envision
the origin of life as a process starting from a small set of RNA
molecules with hypercyclic organization. Such small sets could
also become the nucleating agents towards more complex and
disordered catalytic networks able to unleash the major transition
towards more diverse, fully functional, self-replicating systems, as
suggested by Kauffman [1,30] (see also [31,32]), beyond the cyclic
architecture proposed by Eigen and Schuster. Such proto-genetic
structures could have then grown in size and evolved towards
more complex structures bymeans of spatial organization [33–35]
or compartmentalization in protocells [12].

Hypercycles, however, due to the nature of their interactions,
were criticized as stable systems involved in the origin of life
since they are sensitive to the so-called parasites and short-
circuits [10,36]. Parasites are replicators that receive catalysis from
another species but do not reciprocate the catalytic aid [10]. Short-
circuits, which can be of different nature, are catalytic connections
generating inner and smaller catalytic sub-cycles [13,27]. Short-
circuits have been suggested to pose a serious problem towards
the growth of hypercycle systems, since smallest and thus fastest
catalytic cycles may outcompete the larger and slower ones,
thus constraining hypercycles’ size, complexity, and functionality.
Despite this intuitive assertion, few literature has addressed the
impact of short-circuits in hypercycles (see below). Oppositely,
multitude of articles have analyzed the impact of parasites,
showing that they can resist parasites by means of spatial self-
structuring [33,35,34].

The effect of different configurations and sub-cycles in spatial
hypercycles was addressed numerically in [35]. This approach
revealed that hypercycles are able to coexist with inner cycles in
an exclusive manner by means of spiral patterns [35]. According
to [35], spatial self-structuring seems to play an important
role in the stability of hypercycles with short-circuits, although
independent communities are formed and thus there exists a
physical separation between the sets of cycles forming the entire
system.Actually, the simulations in [35] revealed that asymmetries
in diffusion constants could involve the outcompetition of different
cycles. Similarly, changes in the kinetic constants also involved
processes of outcompetition between cycles, resulting in the loss of
some of the hypercycle members (involving a loss of information).
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(a) Hypercycles. (b) Mean field dynamics. (c) Spatial dynamics.

Fig. 1. (a) Minimal hypercycles with short-circuits: (up) two-member hypercycle (S1 and S2) with an auto-catalytic short-circuit (S1); (down) three-member hypercycle (S1 ,
S2 , and S3) including the two-member hypercycle and the auto-catalytic replicator. (b) Dynamics of the mean field model represented by phase portraits (black circles are
stable fixed points) for the two-member system (up) and the three-member hypercycle (down) in the all-species coexistence scenario (see Section 2). (c) Schematic diagram
of the spatial dynamics simulated with cellular automata models. Here we display the microscopic structure of an alkali feldspar mineral surface (image obtained from [37])
and the spatial domain (i.e., a two-dimensional lattice, Γ ) used for the simulations. The state-transition rules for the two-member hypercycle with the auto-catalytic short-
circuit are displayed. Replicators can interact and reproduce, can be degraded, and can diffuse along the sites in Γ .
Alternatively, it could be possible that well-mixed hypercycles
with short-circuits displayed stable coexistence, depending on
the kinetic constants. Moreover, the exclusion of short-circuits
driven by spatio-temporal phenomena has been described in
hypercycles able to self-organize in rotating spiral waves, behavior
that usually appears in hypercycles with five or more species
(see e.g., [33,35]). However, the effect of short-circuits in smaller
spatial hypercycles not able to form large-scale spatial structures
have not been investigated. Such questions, crucial in early,
small hypercycles remain thus unexplored. In this sense, a full
description of the dynamics and transitions (i.e., bifurcations)
in hypercycles with short-circuits seems necessary in order to
hypothesize how these catalytic systems could circumvent this
problem. Also, a comparison between the well-mixed system and
the spatial counterpart seemsnecessary to reveal if space promotes
small hypercycles with resistance to the short-circuits, as has been
suggested in [35].

In this contribution we will focus on the dynamics of the
smallest hypercycles with short-circuits. Here, by short-circuit we
mean an inner closed cycle in which a given species establishes
a single catalytic connection with another species (or with itself)
inside a larger catalytic cycle, see Fig. 1(a). To do so, we will
investigate a particular hypothetical scenario in the origin of life
formed by small systems of catalytically-connected ribozymes.
Our scenario considers the presence of small functional RNA
molecules able to promote the replication of other molecules
that are not able to replicate without the catalytic support. This
might correspond, for example, to a scenariowhere ligase reactions
in a given replicator might depend on the catalytic activity of
another different template. We are interested in exploring the
impact of short-circuits in these primordial systems and their
role in the bifurcations (transitions) between phases. We will
first investigate a two-species hypercycle that contains an auto-
catalytic replicator as the minimal catalytic system with a short-
circuit. Then, we will explore a three-member hypercycle that
contains the previous system. The three-member system, albeitwe
are not explicitly modeling its formation from the two-member
system, could arise from the growth (by means of replication
and mutation) of the two-member one. Finally, we will quantify
the likelihood of survival of the different catalytic cycles in the
parameter space, comparing the outcomes of the well-mixed and
the spatial systems.

2. Mean field model

We consider two minimal hypercycle systems with short-
circuits. First, wewill investigate a two-member hypercycle where
one of the replicators is auto-catalytic. Then, we will extend this
system to a three-member hypercycle by adding another species
to the two-member architecture, see Fig. 1(a). Notice that our
systems only consider auto- and hetero-catalytic interactions, and
the species are not able to reproduce alone i.e., in a Malthusian
way. Hence, our systems are similar to Kauffman’s model of
catalytic networks [30]. In our case we study the population
dynamics of purely catalytic small networks, assuming an early
appearance of short-circuits that could limit a stable persistence
of the whole hypercycle. A model can be obtained for the three-
member hypercycle (and the two-member one, see below), from:

ẋ1 = x1 (k11x1 + k12x2 + k13x3) θ(x)− εx1, (1)
ẋ2 = x2 (k21x1) θ(x)− εx2, (2)
ẋ3 = x3 (k32x2) θ(x)− εx3, (3)

where θ(x) = 1 − (x1 + x2 + x3) is a logistic growth term
that introduces competition between the hypercycle elements. For
short, we will also write system (1)–(3) as

ẋ = F(x), x = (x1, x2, x3).

The variables xi ≥ 0, i = 1, 2, 3, are the population numbers of
the hypercycle species Si (e.g., small ribozymes). The parameters
kij > 0 (also with j = 1, 2, 3 and j ≠ i) are the hetero-catalytic
replication constants, i.e., the rate of replication of species i due to
the catalytic aid from replicator j. Constant k11 > 0 denotes, as
we previously mentioned, the constant of auto-catalytic growth of
species S1. Finally, the parameter ε > 0 represents the density-
independent degradation rates of the species, which is taken to be
equal in all species for the sake of simplicity. We emphasize that
kij and ε will be kept strictly positive. Notice that the dynamical
system for the two-member hypercycle with the auto-catalytic
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species can be obtained from system (1)–(3) setting x3 = 0.
Defining

A =

k11 k12 k13
k21 0 0
0 k32 0


and D(x) =

x1 0 0
0 x2 0
0 0 x3


,

the system above can be written as ẋ = F(x) = θ(x)D(x)Ax − εx.
It is clear from the equations that (0, 0, 0) is a fixed point and that
the coordinate planes


xj = 0


, for j = 1, 2, 3, are invariant. As a

consequence, no solutions can cross such planes.
The system has biological meaning for non-negative values of

the variables xj. Moreover, any solution in that domain will enter
into

Ω =

x ∈ R3

| x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x1 + x2 + x3 ≤ 1


and remains in Ω forever. Indeed, let φ(x) = x1 + x2 + x3 and
compute the scalar product F · gradφ for xj ≥ 0, x1 + x2 + x3 = δ,
with δ > 0. We have

F · gradφ = (x1 (k11x1 + k12x2 + k13x3)+ x2k21x1
+ x3k32x2) θ(x)− ε(x1 + x2 + x3).

If δ ≥ 1, θ(x) ≤ 0 andhence F ·gradφ ≤ −εδwhichmeans that the
solutionsmust cross transversally all the planes {x1 + x2 + x3 = δ}
with δ ≥ 1, and finally enter intoΩ .
Therefore we consider system (1)–(3) on the domain Ω since it
contains the long-term behavior and the interesting dynamics.

2.1. Equilibrium points

As we have already mentioned the origin is always an equilib-
rium point and it is stable since ε > 0. Thus, we concentrate on the
nontrivial equilibrium points of system (1)–(3) in the domain Ω ,
which we classify in terms of the parameters. We introduce some
definitions to simplify the notation in the forthcoming computa-
tions:

α2 :=
k21 − k11

k12
, α3 :=

k21
k32
,

β3 :=
k12
k13


k21 − k11

k12
−

k21
k32


,

µ2 := 1 + α2, µ3 := 1 + α3 + β3,

∆ :=


1 −

k11
k21

2

− 4

1 −

k12
k32


,

ε1 :=
k11
4
, ε2 :=

k21
4µ2

, ε3 :=
k21
4µ3

.

(4)

Note that it follows straightforwardly from these definitions that
β3 =

k12
k13
(α2 − α3) and that

α2 > 0 ⇐⇒ k11 < k21, β3 > 0 ⇐⇒
k11
k21

+
k12
k32

< 1. (5)

Proposition 1. System (1)–(3) admits the following equilibrium
points inΩ:

(i) Equilibrium points of type (x1, 0, 0) exist if and only if ε ≤ ε1,
and in that case they are given by
P±

=

p±

1 , 0, 0


if 0 < ε < ε1,

P0
=

p01, 0, 0


if ε = ε1,

(6)

where p±,0
1 are the two solutions of ξ 2 − ξ + ε/k11 = 0, that is,

p±

1 =
1
2


1 ±


1 −

ε

ε1


, and p01 =

1
2
. (7)
(ii) Equilibrium points of the form (x1, x2, 0) exist inΩ if and only if
ε ≤ ε2 and k11 ≤ k21 (equivalently, α2 ≥ 0). In this case, they
are given by
Q±

= (q±

1 , q
±

2 , 0) if 0 < ε < ε2,

Q 0
= (q01, q

0
2, 0) if ε = ε2,

(8)

where q±

1 are the two solutions of µ2ξ
2
− ξ + ε/k21 = 0, that

is,

q±

1 =
1

2µ2


1 ±


1 −

ε

ε2


, q01 =

1
2µ2

, and

q±,0
2 = α2q

±,0
1 . (9)

In the case that k11 = k21 we have α2 = 0 and µ2 = 1.
Consequently, ε2 = ε1 and therefore Q±

= P± and Q 0
= P0. If

k11 > k21 (that is, α2 < 0) there are no fixed points of this type
inΩ .

(iii) Equilibrium points of the form (x1, x2, x3) exist in Ω if and only
if ε ≤ ε3 and (k11/k21)+ (k12/k32) ≤ 1 (equivalently, β3 ≥ 0).
In this case, they are given by
R±

= (r±

1 , r
±

2 , r
±

3 ) if 0 < ε < ε3
R0

= (r01 , r
0
2 , r

0
3 ) if ε = ε3,

where r±

1 are the two solutions of µ3ξ
2
− ξ + ε/k21 = 0, that

is,

r±

1 =
1

2µ3


1 ±


1 −

ε

ε3


, r01 =

1
2µ3

and

r±,0
2 = α3r

±,0
1 , r±,0

3 = β3r
±,0
1 .

In the case that (k11/k21)+ (k12/k32) = 1 (i.e. β3 = 0) we have
µ3 = µ2, ε3 = ε2 and therefore R±

= Q± and R0
= Q 0. On the

contrary, if (k11/k21)+ (k12/k32) > 1 (that is β3 < 0) there are
no fixed points of this type in the domainΩ .

The proof of the proposition is elementary and has been omitted.
The stability of these equilibria is provided by Proposition 2. In
Figs. 2 and 3we show the relative positions of points P±,0,Q±,0 and
R±,0. For the sake of clarity, in Fig. 2, we only show the evolution of
the first coordinate of P±,0 and Q±,0 in terms of the parameter ε. It
is worth noticing the straightforward relation

4(ε2 − ε1) = (k21 − k11)(k12 − k11)/(k21 + k12 − k11), (10)

which implies, under the hypothesis of existence of Q±,0 (k21 >
k11), that sign(ε2 − ε1) = sign(k12 − k11). Panels (a–c) in Fig. 2
illustrate the three different possibilities of sign(ε2 − ε1).

We also want to emphasize that the condition k11 > k21 does
not lead to a disappearance of equilibria Q±,0 but to the negativity
of the second component, which does notmake sense, biologically,
in our model. In Fig. 4 we show both the collision of points P±,0

with the homologous Q±,0 that occurs when k11 = k21 (panel
(a)) and the coincidence of the first coordinates of P±,0 and Q±,0

together with the vanishing of q±,0
2 (panel (b)). In Section 2.3, we

further explore this seeming bifurcation. Similar comments are
applicable to the condition (k11/k21)+(k12/k32) < 1 and the points
Q±,0 and R±,0. The biological implications of these observations are
commented in the next remark.

Another way to visualize the evolution of points Q±, that will
be complemented in Section 2.3 when we study bifurcations, is
given in Fig. 5, where we show the number of equilibria on the
(k11, k21)-plane. On this plane, the condition ε = ε2 beyond which
the points Q± vanish writes as k21 = 4 ε (k12 − k11)/(k12 − 4 ε).

Remark 1. Notice that in order to have nontrivial equilibria Q±,0

the condition to be satisfied is k11 < k21, that is, auto-catalysis
needs to be weaker than hetero-catalysis. In other words, the
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Fig. 2. Position of the first coordinate of the fixed points P+ , Q+ (solid lines) and P− , Q− (dotted lines) when moving ε from 0 to ε1 and ε2 , respectively. The three panels
show different relations among the parameters. (a) Case ε1 < ε2; we use the set k11 = 0.25, k12 = 0.35, k21 = 0.5; (b) case ε1 = ε2; we use the set k11 = k12 = 0.35,
k21 = 0.5; (c) case ε1 > ε2: k11 = 0.4, k12 = 0.35, k21 = 0.5.
Fig. 3. Equilibriumpoints for different relations amongparameters. (a) ε1 < ε2 < ε3 .Weuse the set of parameters k11 = 0.15, k12 = 0.3, k21 = 0.5, k13 = 0.45, k32 = 0.75.
Observe that k12 < k13 and k11 < k12 . (b) ε1 < ε2 = ε3 . Setting the parameters to k11 = 0.22, k12 = 0.25, k21 = 0.5, k13 = 0.25, k32 = 0.75. Notice that
k12 = k13 and k11 < k12 . (c) ε1 = ε2 = ε3 . Using k11 = 0.25, k12 = 0.25, k21 = 0.5, k13 = 0.25, k32 = 0.75. Here k11 = k12 = k13 . (d) ε1 < ε3 < ε2 . Fixing now
k11 = 0.25, k12 = 0.3, k21 = 0.5, k13 = 0.25, k32 = 0.75. Observe that k12 > k13 and k11 < k12 .
hypercycle must dominate over the inner short-circuit. On the
other hand, the condition to have the equilibria R±,0, namely
k11/k21 + k12/k32 < 1, implies, in particular, that k11/k21 < 1 and
k12/k32 < 1. In biological terms, the second inequality means that
species S2 must invest more in the 3-hypercycle than in the former
hypercycle of two species tomaintain the nontrivial equilibriawith
population S3 active. Taking into account the whole inequality, we
appreciate that the existence of these nontrivial points implies
also a balance between the two restrictions: if the auto-catalytic
activity in S1 is close to the catalysis activity from S1 to S2, then the
catalysis from S2 to S1 must be veryweak compared to the catalysis
from S2 to S3, and vice versa.

2.2. Invariant lines and stability

Determining the invariant lines of system (1)–(3) is very useful
in our study: first, because of its dynamical consequences; second,
and not less important, because they help in the computation of
the eigenvectors and eigenvalues of the equilibrium points which
are located on them.

The next result establishes which are these invariant lines.

Lemma 1. System (1)–(3) has the following invariant lines through
the origin.

(i) L1 = {tv1 | t ∈ R}, with v1 = (1, 0, 0).
(ii) L2 = {tv2 | t ∈ R}, with v2 = (1, α2, 0) and α2 as defined

in (4).
(iii) L3 = {tv3 | t ∈ R}, with v3 = (1, α3, β3) and α3, β3 as defined

in (4).
(iv) Lj = {tvj | t ∈ R}, j = 4, 5, with v4 = (0, 1, 0) and

v5 = (0, 0, 1).
(v) L6 = {tv6 | t ∈ R}, with v6 = (1, 0, β6) and β6 = −k11/k13 <

0.

Moreover, each equilibrium point is on one of these lines.We also have

• L2 intersects Ω \ {0} if and only if k21 ≥ k11 or, equivalently,
α2 ≥ 0. If k21 = k11 then L2 = L1.
Fig. 4. Case k11 = k21 . (a) Evolution of the first coordinate of the fixed points P+ ,
Q+ (solid lines) and P− , Q− (dotted lines) when moving ε from 0 to ε1 and ε2 ,
respectively. We use k11 = k21 = 0.4, k12 = 0.35, which implies µ2 = 1 and,
therefore ε1 = ε2 . (b) Plot of the first coordinate of P±,0 , and the first and second
coordinates of Q±,0 in terms of k11 . Note that p±,0

1 = q±,0
1 and q±,0

2 = 0(<0) for
k11 = k21 (k11 > k21).

• L3 intersectsΩ \ {0} if and only if β3 ≥ 0. If β3 = 0 then L3 = L2.
If α2 = β3 = 0 then L1 = L2 = L3.

• L6 never intersectsΩ \ {0}.

Proof. We evaluate the vector field F at the points of the line tv
for some unknown vector v andwe look for v such that on this line
the vector field has the direction of v, that is F(tv) ∝ v. We begin
by looking for v of the form v = (1, α, β). The proportionality
condition reads

F(tv) = t

((k11 + αk12 + βk13)(1 − (1 + α + β)t)t − ε)

α (k21(1 − (1 + α + β)t)t − ε)

β (αk32(1 − (1 + α + β)t)t − ε)


∝

1
α
β


. (11)

• If α = 0 and β = 0, v has to be a multiple of v1 = (1, 0, 0).
• If α ≠ 0 and β = 0 the condition (11) implies k11 +αk12 = k21,

which gives (ii).



J. Sardanyés et al. / Physica D 347 (2017) 90–108 95
Fig. 5. Representation, on the (k11, k21) plane, of the existence of points Q± in Proposition 1(ii). The other parameters are kept constant: k12 = 0.5, k13 = 0.5,
k32 = 0.95. (a) Number of fixed points for ε = 0.05. On the red line (with negative slope), a saddle–node bifurcation occurs; more precisely, this is the line given by
k21 = 4 ε (k12 − k11)/(k12 − 4 ε). The blue line (positive slope) is not a bifurcation curve indeed, but the line on which some component of Q± vanishes, thus losing its
biological meaning. (b) Position of the saddle–node bifurcation line for different values of ε in the parameter space (k11, k21). The insets display possible dynamics tied to
scenarios A and B (discussed in Section 3). Scenario A corresponds to the persistence of the auto-catalytic species alone, while scenario B corresponds to the persistence of
the two-member hypercycle. (c) Stability diagram for the fixed points x+

1 (upper branch), x−

1 (lower branch), and x = 0. Green color denotes attractor and red repeller. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
• If α ≠ 0 and β ≠ 0 the condition (11) implies k11 + αk12 +

βk13 = k21 = αk32, which has the unique solution for α and β
given in (iii).

• If α = 0 and β ≠ 0 the condition (11) implies k11 + βk13 = 0,
which gives β = −k11/k13 < 0. This provides an invariant line
but it does not cut the interior ofΩ .

Finally we look for v of the form v = (0, α, β). The proportionality
condition now reads as

F(tv) =

0
α (−εt)
β

−εt + αk32t2(1 − (α + β)t)


 ∝

0
α
β


,

which gives the further invariant lines generated by v4 = (0, 1, 0)
and v5 = (0, 0, 1). The statement concerning the equilibrium
points follows from a direct check. �

We denote by DF(x) the Jacobian matrix of F at a point x.

Proposition 2. Consider the equilibrium points P±,0, Q±,0 and R±,0

described in Proposition 1. Then:

(i) The eigenvalues λ±,0
j of DF at the points P±,0 are given by

λ±

1 = 2k11p±

1


1
2

− p±

1


, λ±

2 =
k21 − k11

k11
ε,

λ±

3 = −ε < 0.

Moreover, λ+

1 < 0 and λ−

1 > 0. In particular, at the point
P0, the eigenvalues become λ01 = 0, λ02 = (k21 − k11)/4 and
λ03 = −ε1 < 0.

(ii) The equilibrium points Q±,0 lie on the invariant line L2 and v2 =

(1, α2, 0) is an eigenvector of DF . The eigenvalues λ±,0
j of DF at
the points Q±,0 are:

λ
±,0
1 =

k13
k12

β3

α3
ε, λ

±,0
2 = ε − k21µ2


q±,0
1

2
,

λ
±,0
3 = −α2ε < 0,

where q±,0
1 is the first component of Q±,0, respectively. In

particular, sign (λ±,0
1 ) = sign (β3); λ

+

2 < 0, λ−

2 > 0 and
λ02 = 0; and λ±,0

3 < 0.
In the case k11 = k21 the points Q±,0 coincide with the points
P±,0.

(iii) The equilibrium points R±,0 lie on the invariant line L3 and v3 =

(1, α3, β3) is an eigenvector of DF . The eigenvalues λ±,0
j of DF

at the points R±,0 are given by:

λ
±,0
1 = ε − µ3k21


r±,0
1

2
,

λ
±,0
2 = −

1
2


1 −

k11
k21


+
ε

2

√
∆,

λ
±,0
3 = −

1
2


1 −

k11
k21


−
ε

2

√
∆.

Moreover, λ+

1 < 0, λ−

1 > 0, λ01 = 0, λ±

2,3 < 0 if ∆ ≥ 0, and
Re λ±

2,3 < 0 if ∆ < 0.
In the case (k11/k21)+(k12/k32) = 1 the points R±,0 coincide

with Q±,0.
The proof of this proposition has been deferred to Appendix.

2.3. Bifurcations

In this section we use the information provided by Propo-
sitions 1 and 2 to identify the different bifurcations and sce-
narios of stability in the space of parameters. We focus on the
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Fig. 6. PQ -bifurcation 2-dimensional diagrams. The diagrams show (i) the regions of existence and non-existence of the equilibrium points P±,0 and Q±,0 together with
(ii) the signs of the three (real) eigenvalues of the associated Jacobian matrix. The bifurcation curves appearing correspond to a pass through 0 of one or more of these
eigenvalues. Observe that the appearance of equilibria R±,0 , related to β3 > 0, causes a change in the stability of the points Q− . The sign (β3) has been denoted by � in the
diagram. The cases, represented with different colors, correspond to those listed in Table 1. From top to bottom, (a) k11 < k12 and (b) k11 = k12 . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
2-dimensional space, theminimal dimension inwhich themost in-
teresting bifurcation types appear. As stated above, the dynamics
of the two-member hypercycle with the short-circuit is described
by system (1)–(2) with x3 = 0. In terms of parameters k11, k12, k21
and ε, we have the cases given in Table 1.

We note that bifurcations of equilibria in Ω are due to two
reasons: either a saddle–node bifurcation when ε overcomes the
thresholds ε1 and ε2, or a transcritical bifurcation that makes at
least one equilibrium to leaveΩ and switch its stability character.
According to Table 1, these events occur whenever we have an
equality (we mean, in k21 − k11 or in ε). The number of equalities
that meet simultaneously correspond to the so-called codimension
of the bifurcation.

In Figs. 6 and 7, we illustrate all these bifurcations on the
plane (ε, k21) (degradation rate and catalysis from population 1
to population 2, respectively). The bifurcation diagram is shown
on the four quadrants although only the first one makes sense in
our model (since ε2, k21 > 0). For the sake of clarity, we have
divided the figures in three panels: in Fig. 6 we represent the cases
(a) k11 < k12, (b) k11 = k12 and, in Fig. 7, we display the case
k11 > k12. We remind that the sign of k12 − k11 is equivalent to
the sign of ε2 − ε1 as seen in (10). On these panels, we plot the
bifurcation curves identified in Table 1. Both ε = ε1 and k21 =

k11 are straight lines on this plane and correspond, respectively,
to the locus where the saddle–node bifurcation of points P± and
the transcritical bifurcation occur. The curve where the points Q±

collide, ε = ε2, becomes a rational function in terms of k21 (see the
blue curves in the figures):

ε2(k21) :=
k21 k12

4 (k21 + k12 − k11)
.
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Fig. 7. PQ -bifurcation 2-dimensional diagrams. Same situation as presented in Fig. 6 but in the case k11 > k12 . We remind that the symbol � denotes sign(β3) and that the
cases represented with different colors correspond to those listed in Table 1. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
Observe that ε2(k11) = k11/4 and that ε2(k21) is asymptotic to the
lines ε = k12/4 and k21 = k11 − k12.

On the different regions determined by all these bifurcation
curves, the existing P±,0,Q±,0 points have beenwritten. Aside each
equilibrium point P±,0 or Q±,0, triplets with symbols denote the
signs of the corresponding eigenvalues, which are always real; for
instance, (+ 0−) would indicate λ1 > 0, λ2 = 0 and λ3 < 0.
The eigenvalues of Q±,0 depend as well on β3, which involves
other parameters; the stability notation, thus, also considers this
circumstance.

In Figs. 6 and 7, the cases described in Table 1 have been
overlayed as well. This allows to match these classes with the
above described bifurcations. For instance, transitions from case I
to case II (see Figs. 6(a), (b) and 7), from III to IV (see Fig. 6(a)) or
fromV toVI (see Fig. 7), induce a saddle–node bifurcation involving
the equilibria P± that merge into P0 when ε = ε1 and then
disappear. Analogous bifurcations occur for equilibria Q±,0 when
ε = ε2 from IV to VI (see Fig. 6(a)) or from III to V (see Fig. 7).

On the other hand, equilibria Q± undergo transcritical bifurca-
tions when k21 = k11, that is, from III to I (see Figs. 6(a), (b) and
7). In these cases, the second component of Q±, i.e. q±

2 , becomes
negative (see Fig. 4(b)) thus leaving Ω and, at the same time, one
eigenvalue changes sign. Depending on the sign of β3, the trans-
critical ‘‘exchange’’ is made with points P± or R±.

All other bifurcations are, at least, of codimension two. For
instance, when ε = ε1 = ε2 or the two conditions ε = ε1 and
k11 = k21 hold simultaneously, as those observed from III to VI
(see Fig. 6(b)) and from IV to V (moving from Fig. 6(a) to Fig. 7).

The analysis of bifurcations in the phase space (x1, x2, x3)
becomes more cumbersome just because of the increase in the
number of parameters and conditions to be taken into account, but
it does not show other codimension-1 bifurcations qualitatively
different from those described in the phase space (x1, x2). More
precisely, in the 3D case we have to take into account the new
parameters k13 and k23 and the conditions k11/k21 + k12/k32 =

1 (related to the transcritical bifurcation between points R± and
points Q±) and ε = ε3 (saddle–node bifurcation of points R±).
We think that these comments give already a fair idea of the
bifurcations in the three dimensional case, so to avoid unnecessary
intricacy in the manuscript we do not present the exhaustive
study of bifurcations in this case. Fig. 15 in the Appendix Section
includes a biparametric diagram displaying the different dynamics
for the three-member hypercycle in terms of parameters k11/k21
and k12/k32.

2.4. Non-existence of periodic orbits

In this sectionwewill explore both analytically and numerically
whether periodic orbits (stable or unstable) can be found in the
parameter space of the models.

2.4.1. Two-member system
The two-member system can be seen as the three-member

system restricted to {x3 = 0}, which is invariant. We denote by F12
the vector field F restricted to {x3 = 0}. We take as domain of F12
the set

Ω2 = Ω ∩ {x3 = 0} = {(x1, x2) | x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1} .

Note that, in the same way as in the three-member system, the
solutions in {(x1, x2) | x1 ≥ 0, x2 ≥ 0} enter into Ω2 and then
remain there because Ω2 is positively invariant. We have the
following properties

Proposition 3. (i) The vector field F12 has no periodic orbits inΩ2.
(ii) The origin is a global attractor for F12 in Ω2 if and only if either

k21 ≤ k11 and ε > ε1 or k21 > k11 and ε > max {ε1, ε2}.

Proof. Since F12 is a planar vector field we can easily prove (i)
using the Poincaré–Bendixson theorem. We already know that the
domain Ω2 is positively invariant. Let (x1, x2) ∈ Ω2 and consider
its ω-limit. It must be an equilibrium point, a periodic orbit or a
graph formed by equilibrium points and homo/heteroclinic orbits
connecting them. If there is a periodic orbit, by a Poincaré–Hopf
theorem there should be an equilibrium point inside it, but this
possibility cannot happen in our case since all equilibrium points
are contained in invariant lines, and then the periodic orbit
should intersect one of such invariant lines. This is impossible by
uniqueness of solutions.

From Proposition 1 we know that the conditions in (ii) imply
that F12 has no equilibrium points in Ω2 except the origin. Then
the ω-limit set of every solution must be the origin.
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Table 1
Existence and stability of equilibria inΩ in the planar case. Each case is displayed in the parameter spaces of Figs. 6 and 7 with different colors: Case I (light green); II (blue);
III (pink); IV (white, Fig. 6(a)); V (dark green); and VI (white).

Case k21 − k11 ε P− P+ Q− Q+

I <0 ε < ε1 Saddle Attractor @ @
II <0 ε > ε1 @ @ @ @
III >0 ε < min {ε1, ε2} Saddle Saddle Saddle Attractor
IV >0 ε1 < ε < ε2 @ @ Saddle Attractor
V >0 ε2 < ε < ε1 Saddle Saddle @ @
VI >0 ε > max {ε1, ε2} @ @ @ @
Conversely, if the conditions on the parameters do not hold
there are other equilibrium points in Ω2 and hence the origin
cannot be a global attractor. �

2.4.2. Three-member system
Concerning the 3D system we provide a quite complete

analytical description of the dynamics when β3 ≤ 0. For β3 > 0
we have to proceed numerically (numerical integrations along the
work have been performed with a Runge–Kutta–Fehlberg (RKF78)
method, with automatic step size control, using a step size 10−4

≤

1t ≤ 10−1 and the local relative tolerance 10−14).

Proposition 4. Assume β3 ≤ 0. Then:

(i) The vector field F has no periodic orbits inΩ .
(ii) If either k21 ≤ k11 and ε > ε1 or k21 > k11 and ε >

max {ε1, ε2}, the origin is a global attractor for F .

Before proving Proposition 4 we state an auxiliary result. If α2 > 0
we introduce

Ω+

α2
= {x ∈ Ω | x2 ≥ α2x1} , Ω−

α2
= {x ∈ Ω | x2 < α2x1} .

If α2 ≤ 0, for any η > 0 we introduce

Ω+

η = {x ∈ Ω | x2 ≥ ηx1} , Ω−

η = {x ∈ Ω | x2 < ηx1} .

ClearlyΩ = Ω+
α2

∪Ω−
α2

andΩ = Ω+
η ∪Ω−

η , respectively.

Lemma 2. (i) If α2 > 0 then, given any initial condition in Ω+
α2
,

the solution enters into Ω−
α2

or converges to a fixed point in
{x ∈ Ω | x2 = α2x1, x3 = 0}.

(ii) If α2 ≤ 0 then, for any η > 0, given any initial condition in
Ω+
η , the solution enters into Ω−

η or converges to a fixed point in
{x ∈ Ω | x2 = 0, x3 = 0} if α2 = 0 or converges to the origin if
α2 < 0.

Proof. We recall that the coordinate axes are invariant and that
Ω is positively invariant. We introduce the functions φγ (x) =

−γ x1 + x2 for γ ≥ α2. The set

φγ = 0


represents a plane

for which gradφγ is an orthogonal vector. We compute the scalar
product F ·gradφγ on points of


φγ = 0


∩(Ω \ ∂Ω) (in particular,

points with strictly positive coordinates and such that θ(x) > 0).
We have

F · gradφγ = −γ ẋ1 + ẋ2
= x1θ(x) (−γ (k11x1 + k12x2 + k13x3)+ k21x2)
= γ x1θ(x) ((k21 − k11 − γ k12) x1 − k13x3) < 0.

Notice that we have used that ε(γ x1 − x2) = 0 on {φγ = 0}. The
above inequality indicates that the solutions starting inΩ+

α2
\∂Ω+

α2

cross all planes

φγ = 0


, with γ ≥ α2 = (k21−k11)/k12, transver-

sally. In particular,Ω−
α2

is positively invariant. Then every solution
either arrives at


φα2 = 0


∩ Ω \ ∂


φα2 = 0


∩Ω


in which

case it crosses this set transversally and enters into Ω−
α2

or tends
to ∂


φγ = 0


∩Ω


for some γ ≥ α2. In the latter case the so-

lution must follow the dynamics on this boundary (by continuity),
which is one-dimensional and hence the solution converges to an
equilibrium point laying on {x ∈ Ω | x2 = α2x1, x3 = 0}.

If α2 ≤ 0 the previous computations also give that the solu-
tions either arrive at


φη = 0


∩Ω and cross it transversally or go

to ∂

φη = 0


∩Ω


. �

Proof of Proposition 4. (i) From Lemma 2we know that the long
term dynamics is in either Ω−

α2
if α2 > 0 or in Ω−

η , for all
η > 0, if α2 ≤ 0. Now we introduce ψγ (x) = −γ x2 + x3,
for γ > 0, and we compute the scalar product F · gradψγ on
ψγ = 0


∩Ω−

α2
or

ψγ = 0


∩Ω−

η . We have

F · gradψγ = −γ (x2k21x1θ(x)− εx2)+ x3k32x2θ(x)− εx3
= x2θ(x) (−γ k21x1 + x3k32)
= γ k32x2θ(x) (−α3x1 + x2) ,

where we have used that ε(γ x2 − x3) = 0 on {ψγ = 0}. Note
that β3 ≤ 0 is equivalent to

α2 =
k21 − k11

k12
≤

k21
k32

= α3.

Then, under this assumption,

F · gradψγ ≤ γ k32x2θ(x) (−α2x1 + x2) < 0,

and hence a solution starting in Ω−
α2

must cross all planes
ψγ = 0


, γ > 0, and tend to {x3 = 0}. Since in this plane

there are no periodic orbits, as it is proved in Proposition 3, we
conclude that there are no periodic orbits.

(ii) According to Lemma 1, the conditions on the parameters
imply that F has a unique equilibrium point at the origin,
which is asymptotically stable. By Proposition 3, the set
{x ∈ Ω | x3 = 0} is contained in the basin of attraction of the
origin. Since the basin is an open set it also contains a set
{x ∈ Ω | 0 ≤ x3 < δ} for some δ > 0. In (i) we have proved
that all solutions tend to {x3 = 0}. Then they first enter into
{x ∈ Ω | 0 ≤ x3 < δ} and then converge to the origin. �

When β3 > 0 we have to deal with the non-existence of
periodic orbits numerically. To facilitate the study we first provide
some features of the dynamics. We introduce the planes through
the origin generated by one of the coordinate axis and the vector
v3 = (1, α3, β3) which generates the line L3, see Lemma 1. More
precisely, let Πi be the plane Πi = {tei + sv3 | t, s ∈ R}, where
{ei}i are the vectors of the canonical basis. These planes divide Ω
into three subdomainsΩ = Ω12 ∪Ω23 ∪Ω31. Taking into account
the equations of the planes we can write

Ω12 = {(x1, x2, x3) ∈ Ω | α3x3 ≤ β3x2, x3 ≤ β3x1},
Ω23 = {(x1, x2, x3) ∈ Ω | x3 ≥ β3x1, x2 ≥ α3x1},
Ω31 = {(x1, x2, x3) ∈ Ω | α3x3 ≥ β3x2, α3x1 ≥ x2}.

We denote byΣi ⊂ Πi the common boundary ofΩij andΩki with
j, k ≠ i, j ≠ k. We can check that at each such boundaries Σi the
vector field is transversal and crosses fromΩki toΩij.

An equation representing Π1 is φ1(x1, x2, x3) = −β3x2 +

α3x3 = 0. The vector gradφ1 = (0,−β3, α3) points from Ω12
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Fig. 8. An example of the set of 5000 initial conditions onΣ1 whose flow has been
integrated numerically to check the non-existence of periodic orbits for β3 > 0.
The parameter values randomly selected for this particular simulation were k11 =

0.227510, k12 = 0.140495, k13 = 0.378144, k21 = 0.403362, k32 = 0.432082, and
ε = 0.041691.

to Ω31. We compute the scalar product F · gradφ1 and use the
conditions that the points belong to Π1 and Ω31, that is, x3 =

(β3/α3)x2 and x2 ≤ α3x1 respectively. Then, we have

F · gradφ1 = −β3(x2k21x1θ(x)− εx2)+ α3(x3k32x2θ(x)− εx3)
= x2θ(x)[−β3k21x1 + α3k32x3]
= x2θ(x)[−β3k21x1 + β3k32x2]

= β3x2θ(x)k32[−α3x1 + x2] ≤ 0. (12)

The inequality is strict except at the boundary of Σ1. Completely
analogous computations check the result forΣ2 andΣ3. ForΣ2 we
represent φ2 as φ2(x1, x2, x3) = β3x1 − x3 = 0 and we compute
F · gradφ2 using β3x1 = x3 and α3x1 < x2. ForΣ3 we representΠ3
as φ3(x1, x2, x3) = −α3x1 + x2 = 0 and we compute F · gradφ3
using α3x1 = x2 and x3 > βx1.

This suggests that some solutions may turn around the axis
generated by v3 visiting the domains Ω12, Ω23 and Ω31 in the
indicated order and eventually tend to the origin or to the stable
fixed point on L3 (when it exists).

The calculation in (12) shows that Σ1 is a good Poincaré
section for computational purposes. Accordingly, we have used it
to compute the Poincaré map, P , numerically and check the non-
existence of periodic orbits for a huge set of parameter values and
initial conditions. We have chosen random initial conditions on
Σ1 and integrated the system (1)–(3) in forward time. We have
checked that all of the trajectories we have considered (i.e., 5000
initial conditions for each of the 100000 parameter sets, see one
instance in Fig. 8), never lead to a periodic orbit. Parameter values
were randomly chosen from the set {(k11, k12, k13, k21, k32, ε) ∈

[10−3, 0.5]×[10−3, 0.5]×[10−1, 0.5]×[10−1, 0.5]×[10−1, 0.5]×
[10−2, 0.2]}. To gain control and reduce the computing time, we
additionally implemented several exit conditions to discard initial
conditions: either after 2500 time units, or when they reached the
basin of attraction of the origin, or the basin of attraction of the line
L3 (see Lemma 1(iii)) or escaped from the simplex Ω , we stopped
the computation and took another initial condition.We checked as
well that the Poincaré map cannot have periodic orbits of periods
2, 3 or 6, that is, fixed points of P2, P3 or P6.

3. Stochastic spatial dynamics

It has been suggested that mineral surfaces would have played
a key role during the emergence of life because the assembly
of complex biomolecules in a three-dimensional environment is
implausible [37]. In this sense, honeycombed feldspar mineral
surfaces could have provided a suitable organized environment
for the synthesis of complex molecules, also protecting them
from dispersion and hydrolysis. Following these ideas, previous
researches have used computational models to investigate the
spatial dynamics of hypercycles [38,33,39,40]. In this section
we explore the behavior of the hypercycles with short-circuits
previously characterized, nowconsidering space in an explicitway.
To do so we build stochastic cellular automata (CA) models. To
simulate the hypercycle interactions on a surface, we define a state
space given by a L × L lattice, 0 ∈ Z2, with periodic boundary
conditions (i.e., toroidal space). The automaton has L2 cells and
ν + 1 states, Sn, n = 1, . . . , ν, being the nth hypercycle member
(see Fig. 1(c)), and the other state, S0, corresponding to empty sites.
As in the previous sections, we will focus on hypercycles of size
ν = 2 and ν = 3, keeping the catalytic interactions previously
analyzed. The CA works as follows. At each generation τ , we
asynchronously choose L2 random cells (this updating procedure
ensures that, on average, each cell is updated once per generation).
Every time we choose a random cell, say 0(x, y) (where (x, y) is
a spatial coordinate of Γ ), we also choose two different random
neighbors of 0(x, y), named 0(k, l) and 0(m, p), considering a
Moore neighborhood (i.e. 8 nearest cells). If 0(x, y) is empty
nothing will happen. If 0(x, y) contains a replicator, then we apply
the following state-transition rules:

1. Auto-catalytic replication: If both cells 0(x, y) and 0(k, l) are
occupied by S1, S1 will replicate with probability r11 ∈ [0, 1]
towards 0(m, p) (if empty). If 0(k, l) is empty or 0(m, p) is
occupied, nothing will happen. This process is represented by
the next reaction:

S1(x, y)+ S1(k, l)+ S0(m, p)

+ s
r11

−→ S1(x, y)+ S1(k, l)+ S1(m, p),

hereafter s are some available building blocks (i.e., nucleotides)
needed for replication, which are not explicitly considered.

2. Hetero-catalytic replication: If the cell 0(x, y) is occupied by
a hypercycle species Si, and the cell 0(k, l) is occupied by Sj
(where j = i − 1 and using the convention that if i = 1
then j = ν, thus introducing the cyclic architecture) Si will
replicate with probability rij ∈ [0, 1] to 0(m, p) (provided it
is empty). The parameters rij are the probabilistic version of the
constants kij presented in themean field equations. This process
is represented by the following reactions:

Si(x, y)+ Sj(k, l)+ S0(m, p)

+ s
rij

−→ Si(x, y)+ Sj(k, l)+ Si(m, p).

The previous reaction for n = 2 considers the two-member
hypercycle structure. However, for the 3-member hypercycle
it does not consider the short-circuit between species S1 and
S2. Hence, for this larger hypercycle we need to introduce the
reaction:

S1(x, y)+ S2(k, l)+ S0(m, p)

+ s
r12

−→ S1(x, y)+ S2(k, l)+ S1(m, p).

After replication rule 1 or 2 is applied to 0(x, y), the
replicator in this cell will decay following rule 3:

3. Degradation: The replicator Sn(x, y)will decaywith probability
ε ∈ [0, 1], according to reaction:

Sn(x, y)
ε

−→ S0(x, y)+ s,

with n = 1, . . . , ν. Here we will also consider equal degrada-
tion rates for all the species, as we did for themean-fieldmodel.

After replication and decay rules are applied, we will apply
the rule of diffusion, explained below.
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Fig. 9. Spatial and temporal dynamics of the two-member hypercycle with a short-circuit. Populations S1 and S2 in all panels are represented, respectively, in black and red.
Mean population values (N̄i ± SD, represented with circles and computed averaging over 10 independent replicas at τ = 5000 time generations) are shown together with
the equilibria obtained from the mean field model (solid lines), both the stable (superscript s) and unstable ones (superscript u): (a) tuning r11 with r12,21 = 0.5; (b) tuning
r21 setting r11 = r12 = 0.5; (c) tuning r12 with r11 = 0.25 and r21 = 0.5. In (d) we change ε setting D = 0.25, r11 = 0.25, and r12,21 = 0.5. In (a)-(c) we display the results
using D = 0.25 and ε = 0.05, using the probabilities rij as the parameters governing the mean-field model, that is, taking kij = rij . The insets display an enlarged view of the
stable equilibria for S2 near the transition points. (a.1) Time series using r11 = 0.3, r12,21 = 0.5 and ε = 0.05. Here we display, overlapped, 3 runs of the spatial dynamics
and the dynamics obtained numerically from the mean field model (solid lines, with k11 = 0.3, k12,21 = 0.5, and ε = 0.05). (c.1) Time series with r12 = 0.2, r11 = 0.25,
r21 = 0.5, and ε = 0.05. Panels (a.2.) and (c.2) display, respectively, the spatial distribution of replicators at the end of one of the replicates in (a.1) and (c.1), respectively. In
all of the simulations we used as initial conditions N1(τ = 0) = N2(τ = 0) = 1/3. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
4. Diffusion: We choose a random position, say 0(q, u). If 0(q, u)
contains a replicator, it will diffuse towards a randomly cho-
sen neighbor, 0(w, z), with probability D ∈ [0, 1], or remain
in the same place with probability (1 − D). Following Ref. [38],
if the replicator diffuses, it will interchange the position with
the replicator living in the neighboring cell. If the neighbor is
empty, it will just move towards the neighbor with probability
D. The reaction is

Sc(q, u)+ Sd(w, z)
D

−→ Sd(q, u)+ Sc(w, z),
with c, d = 0, . . . , ν.

Hereafter, we will denote

Ni =
1
L2

L
r=1

L
p=1

Si(r, p), with i = 1, . . . , ν,

as the normalized population of replicators Si in 0, N0 being the
normalized number of empty sites. In all of our simulationswewill
fix L = 200, if not otherwise specified. The initial conditions for the
two-member hypercycle will be N1,2(τ = 0) = 1/3, while for the
three-member hypercyclewill beN1,2,3 = 1/4. All other remaining
sites will be empty (i.e., N0(τ = 0) = 1/3 for the two-member
and N0(τ = 0) = 1/4 three-member hypercycles). Other initial
configurations will be used to compute the survival probabilities
in the parameter space (see Section 4).

Next, we present the results of this computationalmodel for the
two-member hypercycle containing an auto-catalytic species and
for the three-member hypercycle containing the previous system,
see Fig. 1(a). This will allow us to compare themean field dynamics
with its spatial counterpart, characterizing the critical probability
values calculated from the mean field model, and thus unveiling
the changes in the survival and extinction patterns introduced by
space.
3.1. Spatio-temporal dynamics: the impact of diffusion

Here we investigate the spatio-temporal dynamics for the
hypercycle with an inner auto-catalytic short-circuit (Fig. 1(a)).
Firstly, we compute the equilibrium population values of species
i = 1, 2 tuning the CA probabilities. We run several replicates
and plot the mean equilibrium population values (± standard
deviation), N i(±SD), for several values of the catalysis and
degradation probabilities. In Fig. 9(a) we display the population
equilibria tuning the probability of auto-catalytic growth of S1
averaging, for each probability value, 10 independent replicas after
discarding τ = 5000 generations. The populations S1 and S2
are shown with black and red circles, respectively. Notice that at
increasing r11, the equilibrium populations of S1 and S2 increase
and decrease, respectively, since the first species undergoes a
faster growth. This tendency at increasing r11 holds up to a
critical value of r11 at which the second species of the hypercycle
becomes extinct while the population of the first species continues
increasing, althoughmore slowly. In these analyseswealso plot the
equilibrium populations of both replicators obtained numerically
from the mean field model previously analyzed using as kinetic
constants the same values of the probabilities of the spatial
simulations (we also plot the unstable branches of equilibria; we
use superscripts s, for stable, and u, for unstable, to distinguish
both branches). Notice that the results at increasing r11 match the
results obtained from themean-fieldmodel (displayedwith a solid
black (for S1) and red (S2) line). The critical value of r11 causing the
extinction of S2 populations is slightly lower for the spatial system
(see the inset in Fig. 9(a)). For this particular case, S2 disappears
at a lower value of r11 compared to the well-mixed system. We
note that in panels (a–d) of Fig. 9 we used a diffusion probability
of D = 0.25. As we will comment on below, diffusion typically
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Fig. 10. Dependence of the population equilibria (stable states, Ss1,2,3) on themodel probabilities for the three-member hypercycle with two short-circuits. Mean population
values (N̄i ±SD, computed averaging over 10 independent replicas at τ = 5000 time generations) for the spatial dynamics, using D = 0.25 (circles). In (a) we tune r11 setting
r12,21,13 = 0.5 and r32 = 1. In (b) we change r21 setting r11 = 0.25, r12,13 = 0.5 and r32 = 1. In (c) we tune r12 , with r11 = 0.25, r21 = 0.5, r32 = 1, and r13 = 0.75. In (d)
we tune r32 with r11 = 0.15, r12,13 = 0.5, and r21 = 1. In (e) we change r13 with r11 = 0.25, r12 = 0.5, r21 = 0.75, and r32 = 1. In (a–e) we used ε = 0.05. Finally in (f) we
tune ε with r11 = 0.25, r12,13 = 0.5, r21 = 0.75, and r32 = 1. The solid lines correspond to the predictions of the mean field model using the same values of the probabilities
as rate constants e.g., k11 = r11 , k12 = r12 , etc. In all panels populations S1 and S2 are represented in black and red, respectively, while S3 population values are indicated in
blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
affects the critical parameter values causing the transitions in the
spatialmodel (which are homologous to the bifurcations described
in the previous sections, and which share the same nature). For
instance, the transition of Fig. 9(a) is a continuous and smooth one,
corresponding to the transcritical bifurcation.

A smooth transition corresponding also to a transcritical
bifurcation is found at decreasing r21. In this case, there exists
a critical value of the catalytic aid from species 1 to species
2 that involves the outcompetition of the second hypercycle
element by the auto-catalytic one. Here the spatial simulations also
reveal a slight difference between the bifurcation value predicted
by the mean field model and the one obtained with the CA.
Further analyses using r12 and ε as control parameters reveal
abrupt transitions that correspond to the saddle–node bifurcations
predicted by themean fieldmodel. For these two cases, differences
between the bifurcation values obtained from the mean field
model and the CA simulations are also obtained (the effect of
diffusion on the critical parameter values will be analyzed below).

As mentioned above, the dynamics of the CA model matches
the dynamics predicted by the mean field model. For example, in
Fig. 9(a.1) we display the time dynamics of the two replicators
using the same parameter values than in Fig. 9(a) fixing r11 = 0.3.
For this particular parameters combination we plot three runs of
the CA model, overlapping the mean field dynamics (solid line).
Also, the time dynamics near the transition point in Fig. 9(c) is
displayed in Fig. 9(c.1). Here it can be seen that the dynamics
predicted by the mean field model matches again the spatial
dynamics. This result is general for our spatial model. Finally, in
Fig. 9(a.2) and Fig. 9(c.2) we show the spatial patterns of the two
replicator species (here also black for S1 and red for S2) at the
end of one of the simulations displayed in Fig. 9(a.1) and (c.1),
respectively, when S1 and S2 coexist. The spatial patterns for these
runs reveal a well-mixed distribution of the two species. Other
simulations in the coexistence scenarios revealed these types of
spatial patterns (for the two- and three-member system analyzed
below, results not shown).
The dynamics of the three-member hypercycle containing
the two-member short-circuit and the auto-catalytic species are
displayed in Figs. 10 and 11. Here, similarly to the two-member
system, the equilibrium populations are very close to the values
predicted by the mean-field model given by Eqs. (1)–(3). This can
be seen in panels (a–f) in Fig. 10. The nature of the transitions
involved in the extinctions of the different hypercycle members
in the spatial model coincide with the bifurcations of the three-
member system. For example, the transitions displayed in Fig. 10
are smooth (i.e., transcritical bifurcations) for parameters r11
and r21 (as we previously described), as well as for r12 and r32.
Here, the increase of r11 beyond the critical value involves the
outcompetition of the two- and three-member hypercycle by the
auto-catalytic species. However, the increase of r21 displays two
effects, a first transition involving the survival of the two-member
hypercycle and a second one (for a large enough value of r21) that
allows the persistence of the three-member system. The parameter
r32 (i.e., the catalytic aid from species S2 to S3) causes, above a
critical value, the survival of the three-member system. Below this
critical value, the aid of S2 to S3 is not large enough to ensure the
survival of the whole system. Notice that this parameter has no
effect on the population equilibrium of S1. As we previously did,
in all the panels we overlap the equilibrium values for each species
predicted by themean fieldmodel (solid lines). Aswe discussed for
the two-member system, there exist small variations in the critical
parameter values involved in the transitions.

In Fig. 11(a) we display an example of coexistence of the three
hypercyclemembers. For this particular probabilities combination,
species S3 achieves low population numbers. The spatial patterns
of the replicators at τ = 0 (initial random conditions) and
τ = 5000 are displayed. Here also, well-mixed (i.e., random-like)
spatial patterns are observed at the end of the simulation. Fig. 11(b)
displays the spatio-temporal dynamics near the critical value of ε
causing the extinction of all the species. Here, while the dynamics
for the mean field model under these parameters combination
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Fig. 11. Spatio-temporal dynamics for n = 3 hypercycles with short-circuits (here also: S1 (black), S2 (red), and S3 (blue)). (a) Coexistence scenario with: r11 = 0.25,
r21 = 0.75, r12 = 0.5, r13 = 0.7, r32 = 1, D = 0.25, and ε = 0.05. (b) Coextinction of all hypercycle members near a saddle–node bifurcation using the same parameters as
in (a) except for: r13 = 0.5, and ε = 0.0792. The solid trajectories are the predictions of the mean field model using the probabilities values of the CA as constants. Notice
that in the extinction the system undergoes a long transitory plateau before a rapid collapse. Here, noise drives the system to undergo the so-called saddle-remnant (ghost)
effect that arises in the deterministic system after a saddle–node bifurcation (see e.g., [41,42]). For each of the simulations we display the spatial patterns at different times.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. (a–d) Critical parameter values causing the transitions for the two-member hypercyclewith the short-circuit identified in Fig. 9(a–d), computed setting τ = 2×104 ,
for different diffusion probabilities. Each data point is themean value (±SD) of the critical parameter (r̄c11 in (a), r̄c21 in (b), r̄c12 in (c), and εc in (d)) averaged over 10 independent
runs. The dashed lines indicate the transition values predicted by themean fieldmodel, using the probabilities as parameters. (e) Dynamics for different diffusion probabilities
driving to extinction or survival scenarios: (upper) we set r11 = 0.45, r12,21 = 0.5, ε = 0.05, with D = 0.05 (S2 extinction) and D = 0.8 (hypercycle survival), here we only
plot the population of S2 (red). (lower) Simulations using r11 = 0.25, r12 = 0.2, r21 = 0.5, with D = 0.3 (hypercycle extinction) and D = 0.9 (hypercycle survival), here we
display the population dynamics for S1 (black) and S2 (red). In each panel in (e) we display 3 different runs for each value of diffusion. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
does not involve the extinction of the whole hypercycle (ε is
below its critical value causing the saddle–node bifurcation), the
spatial dynamics involves the extinction. Interestingly, the time
trajectory, which achieves extinction at τ ≈ 19 000 generations,
undergoes a long and flat plateau before collapsing. This dynamical
effect, which has been described for two-member hypercycles (for
both mean field and spatial stochastic dynamics [41]) is due to
the transient behavior near a saddle–node bifurcation, which is
extremely long causing the so-called delayed transition [38]. The
asymptotic state for this scenario is an absorbing state where the
full hypercycle becomes extinct, as reported in [41]. The simulation
displayed in Fig. 11(b) falls in the extinction regime, where the flat
plateau preceding extinction can be clearly seen.

Up to now, we have discussed the impact and the transitions
tied to the auto-catalytic and hetero-catalytic probabilities among
replicators, having evidences that diffusion slightly changes
the values of these parameters causing the bifurcations when
compared to the values predicted by the mean field models. In
order to analyze how diffusion affects these transition values, we
computed the critical probability values causing the transitions in
the populations at increasing values of the diffusion probability
D. For the two-member system we display the results in Fig. 12.
For each value of D we ran 10 simulations (replicas) during
τ = 2 × 104 generations for several values of the investigated
probabilities (e.g., r11 in Fig. 12(a)). From all these replicas we
computed themeanprobability value causing a change of behavior.
For example, separating the survival from the extinction of S2.
Then we plotted the mean critical values against probability D.
Fig. 12(a) displays the results for the mean critical probability of
auto-catalytic growth, rc11(±SD), causing the transition towards S2
extinction. As expected, formaximumvalues ofD, the critical value
approaches the one predicted by the mean field model (this result
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Fig. 13. Critical parameter values causing the different transitions displayed in Fig. 10 tuning the diffusion probability. Here each data point is the mean value (±SD) of the
critical parameters averaged over 10 independent runs (at τ = 2× 104 generations). Here the dashed lines indicate the transition values predicted by the mean field model.
We specifically computed (a) r̄c11 , (b) r̄

c
21 , (c) r̄

c
12 , (d) r̄

c
32 , (e) r̄

c
13 , and (f) ε̄c . The parameter values used for each panel are the same as in Fig. 10.
is observed in all of our analyses, see Figs. 12 and 13). Low values
of D promote (under the analyzed parameters combination) the
extinction of S2, while increasing D values make the value of rc11
larger. This indicates that mixing favors the survival of the two-
member hypercycle. The effect of D in the critical value of r21 is
similar to the previous case. The increase of the catalytic aid of
the first replicator to the second one promotes the survival of the
whole hypercycle. The changes in the critical probabilities for r12
and ε are displayed in Fig. 12(c) and (d), respectively. In Fig. 12(e)
we display several trajectories for which changes in D involve
a qualitative change in the dynamics i.e., survival or extinction
depending on diffusion.

The same analyses have been carried out for the three-member
system. The results can be found in Fig. 13. Here we must notice
that several bifurcations can be found tuning a single parameter.
For instance, as shown in Fig. 10(a), the increase of r11 involves
a first bifurcation that causes the extinction of S3 and then there
exists a second critical value causing S2 extinction. Both transitions
are governed by transcritical bifurcations. To account for these
different values, different probability values have been sampled
to find their critical values. For instance, Fig. 13(a) displays the
mean critical values of r11 that involve the survival of the whole
three-member system, of the two-member hypercycle, and of the
auto-catalytic replicator. Diffusion, for both transitions, is shown
to increase the values of rc11 at which the transition takes place,
favoring the persistence of all replicators since a higher value of rc11
is needed for S1 to outcompete the hypercycles. The critical values
of the other parameters as a function of diffusion are displayed in
Fig. 13. We notice that in all of the panels displayed in Figs. 12
and 13, we also plot (using a dashed line) the bifurcation values
predicted by the mean field model.

4. Hypercycle persistence in parameter space

In our previous analyses we have focused on the dynamics
and the transitions obtained from both mean field and stochastic
spatial models for the hypercycles with the short-circuits.
However, it is also interesting to characterize how probable it is
to find all of the characterized scenarios in the parameter spaces
of both systems. For instance, how probable is the coexistence of
all the hypercycle species or how probable is the persistence of
only the first autoacatalytic replicator, thus obtaining a simpler
system with a lower potential information. In this section we will
estimate the likelihood of survival of each of the replicators in
the parameter space of the two model approaches: mean field
and spatial stochastic models. To do so, we built a Monte Carlo
(MC) algorithm, which works as follows for the two modeling
approaches. At eachMC iteration,M , we randomly select themodel
parameters (probabilities in the CA) from a uniform distribution.
For the two-member system we select {k11, k21, k12} ∈ U(0, 1)
for the mean field model (and {r11, r21, r12,D} ∈ U(0, 1) for the
CA). For the three-member hypercycle, we proceed in a similar
way, selecting randomly the parameters {k11, k21, k12, k32, k13} ∈

U(0, 1) for the mean field model (and {r11, r21, r12, r32, r13,D} ∈

U(0, 1) for the CA). For each selected combination of random
parameters we integrate numerically the mean field model (for
which we study to final values of time t = 2.5 × 104 and t =

5 × 104) or run simulations for the CA (with τ = 104). At these
times the population of each hypercycle member is evaluated.

For the two-member hypercycle with the short-circuit two
possible scenarios (predicted by the mean field model) are
possible: only-survival of S1 given by scenario (A), and scenario
(B) where the hypercycle replicators S1 and S2 coexist. Similarly,
scenarios (A) and (B) are also found for the three-member
hypercycle. For this case, another scenario is possible: scenario
(C) where the three replicator species survive. For the mean field
model, the survival of species i is consideredwhen xi > 10−5 (with
i = 1, 2, 3) and thus extinction is assumed with xi ≤ 10−5. For the
CA model, since replicators only replicate catalytically, we assume
survival when Si ≥ 2 and extinction if Si ≤ 1. As a first approach
(case (i) in Table 2) we use the same initial population values:
x1,2(0) = 1/3 (two-member hypercycle) and x1,2,3(0) = 1/4
(three-member system) in the mean field model; and N1,2(τ =

0) = 1/3 and N1,2,3(τ = 0) = 1/4 for the CA model. However,
different initial configurationswill be also analyzed (see below and
Table 2).

First, we display those regions in the probabilities space of the
CA where each scenario is found by means of two-dimensional
projections (Fig. 14). For the two-member hypercycle we display
the spaces (r11, r21) and (r21,D). The different scenarios in the
probabilities space (r11, r21) are clearly separated, with scenario
(A) dominating at increasing values of r11. From theMC simulations
we can estimate the survival probability ΠS of the replicators for
each of the scenarios above. Such a probability is computed as:
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Fig. 14. Monte Carlo (MC) sampling in the parameter spaces setting ε = 0.05, τ = 104 , and L = 100. (a) Projections on (r11, r21) and (r12,D), for the spatially-extended
two-membered hypercycle. Black dots indicate those regions in each parameter space with only survival of S1 (scenario (A)) while blue dots indicate persistence of the two
species (scenario (B)). (b) Computation of the survival probability Πs for the scenarios (A) and (B) from the MC sampling for ε = 0.025 (white bars); ε = 0.05 (red bars);
ε = 0.075 (gray bars); and ε = 0.1 (green bars). The thick lines inside the bars of the histogram (also represented in (d)) are the values ofΠS obtained from theMC sampling
of the mean field model. (c) Same analysis for the three-membered hypercycle with the short-circuits. As before, we plot those pairs of values giving place to scenario (A)
(black dots); and scenario (B) (blue dots). Here another scenario given by the survival of the three-member hypercycle is possible (scenario (C), red dots). The projections
are displayed in the probability spaces (a) (r11 , r21), (b) (r12 , r32), and (c) (r13 , D). (d) Survival probability (ΠS ) for each of the three scenarios (A), (B), and (C) computed as in
(b). The MC algorithm was run over M = 2 × 105 iterations for both mean field and CA simulations. In all the analyses we used N1,2(0) = 1/3 for n = 2; N1,2,3(0) = 1/4
for n = 3 as initial populations for the CA. For the mean field we set x1,2(0) = 1/3 for n = 2; x1,2,3(0) = 1/4 for n = 3 as initial conditions (case (i) in Table 2). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 2
Survival probabilities (ΠS) computed with the Monte Carlo (MC) algorithm (from M = 2 × 105 iterations). We use four different values of degradation: ε =

0.025, 0.05, 0.075, 0.1, and three different initial conditions (cases (i–iii)). For the mean field (xi(0)) and the CA model (Ni(0)): case (i) si(0) = 1/3 for n = 2; si(0) = 1/4
for n = 3. Case (ii) s1(0) = 0.6 and s2(0) = 0.1 for n = 2; s1(0) = 0.6 and s2,3(0) = 0.1 for n = 3. Case (iii) s1(0) = 0.1 and s2(0) = 0.6 for n = 2; s1,2(0) = 0.1, and
s3(0) = 0.6 for n = 3, with si(0) ∈ {xi(0),Ni(0)}. In the mean field we consider survival of replicator i if xi > 10−5 and extinction if xi ≤ 10−5 at t = 25 000 (the values
inside the parentheses display the same simulations using t = 5 × 104). For the CA we use L = 100, considering Si > 1 (survival) and Si ≤ 1 (extinction) at τ = 104 .

Hypercycle Scenario ΠS , mean field dynamics ΠS , spatial dynamics
ε = .025 ε = .05 ε = .075 ε = .1 ε = .025 ε = .05 ε = .075 ε = .1

n = 2 (A) 0.4891 (0.4925) 0.4758 (0.4768) 0.4475 (0.4460) 0.4001 (0.4017) 0.5118 0.5069 0.4821 0.4359
Case (i) (B) 0.4684 (0.4655) 0.4017 (0.3993) 0.3133 (0.3116) 0.2129 (0.2128) 0.4426 0.3527 0.2410 0.1284

n = 2 (A) 0.4893 (0.4943) 0.4797 (0.4787) 0.4550 (0.4549) 0.4174 (0.4192) 0.5114 0.5082 0.4841 0.4428
Case (ii) (B) 0.4683 (0.4633) 0.3994 (0.3988) 0.3138 (0.3114) 0.2153 (0.2152) 0.4432 0.3517 0.2427 0.1298

n = 2 (A) 0.4848 (0.4887) 0.4416 (0.4426) 0.3494 (0.3476) 0.2450 (0.2448) 0.5108 0.5005 0.4604 0.3938
Case (iii) (B) 0.4655 (0.4622) 0.3834 (0.3815) 0.2751 (0.2768) 0.1627 (0.1611) 0.4414 0.3482 0.2302 0.1138

n = 3 (A) 0.4880 (0.4927) 0.4751 (0.4773) 0.4444 (0.4427) 0.3876 (0.3899) 0.5123 0.5076 0.4792 0.4325
Case (i) (B) 0.3732 (0.3694) 0.3421 (0.3409) 0.2843 (0.2846) 0.1944 (0.1938) 0.3556 0.3117 0.2324 0.1261

(C) 0.1147 (0.1143) 0.0815 (0.0805) 0.0329 (0.0332) 0.0041 (0.0043) 0.1045 0.0566 0.0098 1.5×10−5

n = 3 (A) 0.4931 (0.4923) 0.4781 (0.4793) 0.4562 (0.4558) 0.4199 (0.4184) 0.5134 0.5075 0.4839 0.4409
Case (ii) (B) 0.3701 (0.3716) 0.3438 (0.3421) 0.2862 (0.2878) 0.2074 (0.2095) 0.3597 0.3155 0.2333 0.1317

(C) 0.1124 (0.1116) 0.0777 (0.0779) 0.0314 (0.0315) 0.0038 (0.0041) 0.0994 0.0539 0.0091 1.5×10−5

n = 3 (A) 0.4898 (0.4900) 0.4537 (0.4542) 0.3632 (0.3638) 0.2373 (0.1779) 0.5109 0.5011 0.4653 0.4005
Case (iii) (B) 0.3678 (0.3683) 0.3078 (0.3088) 0.1946 (0.1953) 0.0887 (0.0851) 0.3573 0.3047 0.2007 0.0907

(C) 0.1117 (0.1113) 0.0723 (0.0714) 0.0231 (0.0234) 0.0015 (0.0017) 0.1015 0.0508 0.0068 5 × 10−7
ΠS = NS/M , where NS is the number of probabilities (parameters)
combinations fulfilling the survival condition of each scenario, and
M is the number ofMC iterations (we useM = 2×105). We notice
that larger values of M gave qualitatively similar results (results
not shown).

The results for the two-member hypercycle with the auto-
catalytic replicator are found in Fig. 14(b). Notice that the
probability to find scenario (A) is larger than the one for scenario
(B). This result is accentuated for large values of the degradation
rate, ε. Here, we also computed these probabilities numerically
from the mean field model, and the results have been overlapped
to the histograms with a black vertical line for each scenario and
value of ε. The values ofΠS are similar between themean field and
the CA models. The same computations have been carried out for
the three-member hypercycle. Here, as shown in the projections
of Fig. 14(c) as well as in the histogram of Fig. 14(d), scenario
(c) becomes less probable in the parameter space. This actually
means that the likelihood of persistence for the three-member
hypercycle in the parameter space is low. This result becomes
clear in the histogram. For low values of ε (i.e., ε = 0.025),
the survival probabilities of the first species are ΠS ≈ 0.5.
For the same degradation rates, the probability to find the two-
member hypercycle is of ΠS ≈ 0.37, while for the three-member
hypercycle this probability becomes ΠS ≈ 0.1. These differences
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become stronger at increasing degradation rates. For instance,
ΠS ≈ 0.45 for scenario (A), ΠS ≈ 0.1 for scenario (B), and
ΠS ≈ 10−5 for scenario (C), when ε = 0.1. The values of ΠS for
all the other scenarios and degradation rates are shown in Table 2
(case (i)).

The previous results have been computed using a given initial
configuration of replicators (or initial conditions). Specifically,
starting with equal populations for each of the replicator species
(case (i)). Since in Section 2 we characterized saddle–node
bifurcations, therewill exist (for some parameter values) scenarios
of bistability. It means that depending on the initial conditions,
different asymptotic states may be achieved. Hence, we repeated
the analyses for the mean field and the CAmodels considering two
different cases: case (ii): s1(0) = 0.6 and s2(0) = 0.1 for n = 2;
s1(0) = 0.6 and s2,3(0) = 0.1 for n = 3. Case (iii): s1(0) = 0.1
and s2(0) = 0.6 for n = 2; s1,2(0) = 0.1, and s3(0) = 0.6 for
n = 3, with si(0) ∈ {xi(0),Ni(0)}. The results are also displayed
in Table 2. Similar results to case (i) have been obtained. However,
ΠS for case (iii) diminishes for the mean field model, especially for
ε = 0.075 and ε = 0.1, where the survival probabilities become
smaller when compared to the other two cases.

5. Conclusions

The nature of the first self-replicating systems on Earth and
how they might have grown in complexity remain an open
question. However, compelling evidences indicate that ribozymes
might be good candidates for primordial replicative systems
[1,24,23]. Ribozymes are catalytic RNA molecules that can be
both functional and message carriers. In this sense, ribozymes
could have been the building blocks of the so-called hypercycles.
Pointing in this direction, recent experimental findings [23]
revealed that variants of bacteria ribozymes could assemble to
form cooperative cycles, being able to outcompete smaller auto-
catalytic cycles. Hypercycles have been widely investigated since
Eigen and Schuster proposed them. Hypercycles would integrate
and ensure the coexistence of several, distinct templates by
means of cooperation. Eigen and Schuster argued that such a
system might be able to store further information by integrating
several templates, each of them below the critical length imposed
by the error threshold [10]. Hypercycles were early criticized
mainly because catalytic parasites and short-circuits could impair
their growth. While the impact of parasites has been largely
investigated [33,35,34], the dynamics and transitions caused by
short-circuits remain largely unexplored.

In this article we provide a full description of the dynamics
for two small hypercycles containing inner catalytic cycles using
mean field and stochastic spatial simulations. The first system is
a two-member hypercycle in which one of the replicators is auto-
catalytic, thus being the smallest hypercycle with a short-circuit.
Then, we extend this system by adding another species to the two-
member hypercycle thus closing a three-member hypercycle with
two short-circuits inside. We study these particular architectures
since we are interested in a possible system that might have
evolved from the two-member hypercycle, in which a newmutant
species could have been synthesized increasing the size of the
hypercycle while keeping the previous structure. Although we are
not explicitly modeling this growth, we are interested in analyzing
the changes in the dynamics and the bifurcations found in this
larger system, as well as in the dynamics of the smaller one.
The mean field models allow us to provide a detailed description
of the nature of the bifurcations involving the reduction of
the hypercycles and the dominance of the inner short-circuits.
Moreover, the spatial simulations reveal that the dynamics is very
similar to the one predicted by the mean field models, especially
at maximum diffusion probabilities. The mean field model also
allowed us to discard the presence of periodic orbits for both
two- and three-member systems. Both mean field and spatial
models reveal scenarios where all the hypercycle species coexist
in a stable manner, being the hypercycle able to coexist with
the members establishing shorter, inner cycles. Although this
coexistence scenario drastically reduces at increasing degradation
rates.

It is known that oscillating hypercycles (hypercycles with
n > 4 members) typically form self-organized spatial patterns.
For instance, spiral waves [33,35] or clusters [43]. Such spatial
patterns have been suggested to be crucial for the survival of
the hypercycle under the presence of parasites. Moreover, the
presence of spiral waves also ensured the exclusive coexistence
between hypercycles and inner catalytic cycles [35]. Asmentioned,
our results indicate that no oscillations are found in the mean field
models, suggesting that no oscillatory behavior may be found in
the spatial simulations. Indeed, the spatial patterns obtained in our
simulations are given by well-mixed (random-like) patterns. Our
results suggest that without self-structuring, small hypercycles
are very sensitive to the short-circuits, especially at increasing
degradation rates. Following our results and [35], it seems that a
minimum number of hypercycle species would be required prior
to the emergence of the short-circuits to ensure the formation of
large-scale spatial patterns allowing a stable coexistence with the
short-circuits in a stable manner. As mentioned, however, under
appropriate parametric conditions (especially at low degradation
rates), the hypercycles are able to persist with the short-circuits.
These results have been found in both the mean field and spatial
models.

Finally, as stated by Kauffman [1]: ‘‘The essential feature of
auto-catalysis is independent of its precise biochemical definition.
Therefore, study on auto-catalysis would also be applicable to
several areas including ecosystems, immune system, and neural
and social networks’’. Hence, our results can be useful for other
catalytic systems beyond the origins-of-lifemolecular hypercycles,
in which inner cycles may arise. For instance, our results can help
to build synthetic cooperative systems containing short-circuits. In
this sense, recent articles have reported the experimental building
of synthetic cooperative populations in bacteria [44] and yeast [45]
populations.
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Appendix

A.1. Proof of Proposition 2

To ease the reading the proof has been divided into three cases.
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A.1.1. Case I: fixed points of the form (x1, 0, 0)
The differential DF(x1, 0, 0) is given by the following triangular

matrixk11

2x1(1 − x1)− x21


− ε k12x1(1 − x1)− k11x21 k13x1(1 − x1)− k11x21

0 k21x1(1 − x1)− ε 0
0 0 −ε

,
whose eigenvalues are

λ1 = k11

2x1(1 − x1)− x21


− ε,

λ2 = k21x1(1 − x1)− ε, λ3 = −ε.

• Regarding points P±, for simplicity, let us denote, p1 to indicate
the first component p±

1 of P±. From Proposition 1, p1 satisfies
p21 − p1 + ε/k11 = 0. So, the first eigenvalue satisfies

λ1 = k11


−p21 + p1 −

ε

k11


+ (−2p21 + p1)


= 2k11p1


1
2

− p1


.

Using that p+

1 > 1/2 and p−

1 < 1/2 it is clear that λ+

1 < 0 and
λ−

1 > 0. On the other hand, since (1 − p±

1 )p
±

1 = ε/k11 we have

λ±

2 = k21p1(1 − p1)− ε = k21
ε

k11
− ε =

k21 − k11
k11

ε,

whose sign depends on the difference k21−k11. The eigenvalues
λ±

3 = −ε are always negative.
• At the point P0

= (1/2, 0, 0) we have ε = ε1 = k11/4 and
x1 = 1/2. Thus, the previous formulae read

λ01 = 0, λ02 =
k21 − k11

4
, λ03 = −ε1 < 0.

A.1.2. Case II: fixed points of the form (x1, x2, 0)
We remind that Q±,0

= (q±,0
1 , α2q

±,0
1 , 0) and let us introduce

θ±,0
= (1 − q±,0

1 − α2q
±,0
1 ) = (1 − µ2q

±,0
1 ), and Σ±,0

=

k11q
±,0
1 +k12α2q

±,0
1 . The condition ofQ±,0 being equilibriumpoints

givesΣ±,0θ±,0
= ε, k21q

±,0
1 θ±,0

= ε. To simplify the notation we
will not write the superscripts (±, 0). Using the previous relations
and notation we have

DF(Q ) =

 k11q1θ − k21q21 k12q1θ − k21q21 k13q1θ − k21q21
k21α2q1(θ − q1) −k21α2q21 −k21α2q21θ

0 0 k32α2q1θ − ε

 .
From the block structure of DF(Q ) one gets that

λ1 = k32α2qθ − ε =


k32
k21

·
k21 − k11

k12
− 1


ε =

k13
k12

β3

α3
ε

is an eigenvalue. We know that Q±,0 are located on the line L2.
Since it is an invariant line, v2 = (1, α2, 0) is an eigenvector of
DF(Q±,0). Computing DF(Q±,0)v2 will provide the corresponding
eigenvalue. Indeed, DF(Q )v1 = (ε − k21µ2q2)v1, so it follows that

λ2 = ε − k21µ2q2

is another eigenvalue. Finally, from the trace of DF(Q ) we get the
third eigenvalue,

λ3 = trDF(Q )− λ1 − λ2 = k11qθ − k21q(1 − µ2q) = −α2ε.

Observe that the sign of the eigenvalues λ1 and λ3 does not
depend on ε but only on the values of the parameters kij. Precisely,
we have sign (λ±,0

1 ) = sign (β3) and λ
±,0
3 < 0 since k11 < k21.
However, the sign of λ2 is different for λ+

2 , λ
−

2 and λ02. Let us show
this by expressing λ2 in a more suitable form. Thus,

λ±

2 = ε − k21µ2

q±

1

2
= ε −

k21
4µ2


1 ±


1 −

ε

ε2

2

= ε − ε2


2 −

ε

ε2
± 2


1 −

ε

ε2


= 2


−(ε2 − ε)∓

√
ε2

√
ε2 − ε


= −2

√
ε2 − ε

√
ε2 − ε ±

√
ε2

,

so λ+

2 < 0, λ−

2 > 0, and λ02 = 0. If ε = ε2, the other two
eigenvalues are given by λ01 =

k13
k12

β3
α3
ε2, λ03 = −α2ε2.

In the particular case k11 = k21 the points Q±,0 coincide with the
points P±,0.

A.1.3. Case III: fixed points of the form (x1, x2, x3)
Assuming now that x1x2x3 ≠ 0 leads, in (1)–(3), to x2 =

k21/k32x1 = α3x1. Thus, the differential matrix becomes

DF(R±,0)

=



k11
k21
ε − k21r21

k12
k21
ε − k21r21

k13
k21
ε − k21r21

α3(ε − k21r21 ) −
k221
k32

r21 −
k221
k32

r21

−k21β3r21 β3


k32
k21
ε − k21r21


−k21β3r21

 ,

where ri denotes r±,0
i , i = 1, 2, 3, each of the components of

the points R±,0 and it has been used that ε/θ = k21r1 = k32r2
and r2 = α3r1, r3 = β3r1. The computation of its eigenvalues
can be carried out using that the invariant line to where they
belong provides the eigenvector (1, α3, β3) and, consequently, its
associated eigenvalue. The other two eigenvalues are obtained
using the determinant and the trace of the matrix. Like in
the previous cases, we denote by (λ±

1 , λ
±

2 , λ
±

3 ) and (λ01, λ
0
2, λ

0
3)

the associated eigenvalues to the equilibrium points R±, R0,
respectively.

We start dealing with R±. A first eigenvalue λ±

1 is given by the
expression

λ±

1 = ε +
k221(k12 − k13 − k32)+ k21(k11k32 − k32k13)

k32k13
r21

= ε + k21


k12
k13


k21
k32

−
k21 − k11

k12


−

k21
k32

− 1


r21

= ε − µ3k21r21 .

This is,

λ+

1 = ε − µ3k21(r+

1 )
2, λ−

1 = ε − µ3k21(r−

1 )
2.

As we did for the eigenvalue λ2 of the points Q±, having in mind
the definition of r±

1 (see (4)) it is straightforward to check that

λ±

1 = −2
√
ε3 − ε

√
ε3 − ε ±

√
ε3

,

so then λ+

1 < 0 and λ−

1 > 0. Concerning λ±

2 , λ
±

3 , one has that

λ+

2 = λ−

2 = −
1
2


1 −

k11
k21


+
ε

2

√
∆,

λ+

3 = λ−

3 = −
1
2


1 −

k11
k21


−
ε

2

√
∆,

where∆ has been already defined in (4). Observe that:
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Fig. 15. Biparametric diagram displaying the different dynamics for the three-member hypercycle. The red curve is given by t = 1 −
1
4 (1 − s)2 and corresponds to∆ = 0.

Thus, the yellow–blue zone represents, in this space of parameters, those values for which λ±,0
2 , λ

±,0
3 are complex (conjugate). The green zone corresponds to those values

for which λ±,0
2,3 are real (and negative). The phase portraits on the left display the coexistence attractors found in the green (up) and yellow–blue (down) region of the

biparametric space (the orbits have been obtained numerically). In red we display the heteroclinic connections, obtained by integrating in negative time starting near the
stable fixed point R+ . These heteroclinic trajectories connect the point R− to the point R+: (top) saddle–node to stable node; (bottom) unstable node × stable focus to stable
node × stable focus. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
• If ∆ ≥ 0 then λ±

2,3 are real and since |∆| < 1 − k11/k21 then
λ±

2,3 < 0. Moreover |λ±

3 | > |λ±

2 |.

• If∆ < 0 then λ±

2,3 are complex and Re λ±

2,3 = −
1
2


1 −

k11
k21


<

0.

Regarding the point R0, corresponding to ε = ε3, the same
expressions obtained for λ±

1,2,3 hold, that is

λ02 = −
1
2


1 −

k11
k21


+
ε3

2

√
∆,

λ03 = −
1
2


1 −

k11
k21


−
ε3

2

√
∆,

and, last but not least, using that r01 = 1/2µ3, it follows that
λ01 = 0.

One can represent graphically the focus-node transition in
the eigenvalues λ±,0

2,3 . To do it, let us denote s = k11/k21 and
t = k12/k32. From the assumptions k11 < k21 and (k11/k21) +

(k12/k32) < 1 it follows that (s, t) ∈ (0, 1) and satisfy s + t < 1.
The bifurcation curve∆ = 0 reads t = 1−(1−s)2/4 and separates
both behaviors (see Fig. 15).
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