IOC 17013 Exercises — Lecture 2

1. Consider a feedback system with

\[P(s) = \frac{1}{10s + 1}, \quad C(s) = k, \quad F(s) = 1. \]

Find the least positive gain \(k \) such that the following conditions hold simultaneously

- The feedback system is internally stable.
- \(|e(\infty)| \leq 0.1 \) when \(r(t) \) is the unit step and \(n = d = 0 \).
- \(\|y\|_{\infty} \leq 0.1 \) for all \(d(t) \) such that \(\|d\|_{2} \leq 1 \), with \(r = n = 0 \).

2. Consider the standard feedback system with \(F = 1, \ r = n = 0 \) and \(d(t) = \theta(t) \sin \omega t \), and assume that it is internally stable. Show that

\[\lim_{t \to +\infty} y(t) = 0 \]

iff either \(P \) has a zero at \(s = j\omega \) or \(C \) has a pole at \(s = j\omega \). If possible, check this a Simulink simulation for a particular example. \textit{Hint:} Remember the condition under which the final value theorem holds.

3. Consider a feedback system with plant \(P \) strictly proper and sensor \(F \) proper. Find conditions on \(P \) and \(F \) for the existence (you do not have to compute it) of a proper controller so that, simultaneously,

- (a) the feedback system is internally stable,
- (b) \(y(t) - r(t) \to 0 \) when \(r \) is a unit step, and
- (c) \(y(t) \to 0 \) when \(d \) is a sinusoid of frequency 100 rad s\(^{-1}\).