Geometry and Dynamics of singular symplectic manifolds

Eva Miranda (UPC-CEREMADE-IMCCE-IMJ)

Fondation Sciences Mathématiques de Paris IHP-Paris

Symplectic Geometry	Poisson Geometry
ω	П
$\iota_{X_f}\omega = -df$	$X_f := \Pi(df, \cdot)$
one symplectic leaf	a symplectic foliation
Darboux theorem	Weinstein's splitting theorem
$\omega = \sum_{i=1}^{n} dx_i \wedge dy_i$	$\Pi = \sum_{i=1}^{k} \frac{\partial}{\partial x_i} \wedge \frac{\partial}{\partial x_i} + \sum_{kl} \phi_{kl}(z) \frac{\partial}{\partial z_k} \wedge \frac{\partial}{\partial z_l}$
$L_X\omega=0$	$L_X\Pi = 0$
$H^1_{DR}(M) = \frac{\text{symplectic v.f}}{\text{Hamiltonian v.f}}$?= $\frac{\text{Poisson v.f}}{\text{Hamiltonian v.f}}$
$H^k_{DR}(M)$ (cochains $\Omega^k(M)$)	$\mathbf{?}:=H^k_\Pi(M)$ (cochains $\mathfrak{X}^m(M)$)

Plan for today

• Weinstein's splitting theorem and normal form theorems.

Figure: Alan Weinstein and Reeb foliation

- Poisson cohomology. Some computations.
- Compatible Poisson structures and commuting first integrals.

Schouten Bracket of vector fields in local coordinates

• Case of vector fields, $A = \sum_i a_i \frac{\partial}{\partial x_i}$ and $A = \sum_i b_i \frac{\partial}{\partial x_i}$. Then

$$[A, B] = \sum_{i} a_{i} \left(\sum_{j} \frac{\partial b_{j}}{\partial x_{i}} \frac{\partial}{\partial x_{j}} \right) - \sum_{i} b_{i} \left(\sum_{j} \frac{\partial a_{j}}{\partial x_{i}} \frac{\partial}{\partial x_{j}} \right)$$

• Re-denoting $\frac{\partial}{\partial x_i}$ as ζ_i ("odd coordinates"). Then $A = \sum_i a_i \zeta_i$ and $B = \sum_i b_i \zeta_i$ and $\zeta_i \zeta_j = -\zeta_j \zeta_i$ Now we can reinterpret the bracket as,

$$[A, B] = \sum_{i} \frac{\partial A}{\partial \zeta_{i}} \frac{\partial B}{\partial x_{i}} - \sum_{i} \frac{\partial B}{\partial \zeta_{i}} \frac{\partial A}{\partial x_{i}}$$

Schouten Bracket of multivector fields in local coordinates

We reproduce the same scheme for the case of multivector fields.

$$[A, B] = \sum_{i} \frac{\partial A}{\partial \zeta_{i}} \frac{\partial B}{\partial x_{i}} - (-1)^{(a-1)(b-1)} \sum_{i} \frac{\partial B}{\partial \zeta_{i}} \frac{\partial A}{\partial x_{i}}$$

is a (a+b-1)-vector field. where

$$A = \sum_{i_1 < \dots < i_a} A_{i_1, \dots, i_a} \frac{\partial}{\partial x_{i_1}} \wedge \dots \wedge \frac{\partial}{\partial x_{i_a}} = \sum_{i_1 < \dots < i_a} A_{i_1, \dots, i_a} \zeta_{i_1} \dots \zeta_{i_a}$$

and

$$B = \sum_{i_1 < \dots < i_b} B_{i_1, \dots, i_b} \frac{\partial}{\partial x_{i_1}} \wedge \dots \wedge \frac{\partial}{\partial x_{i_b}} = \sum_{i_1 < \dots < i_b} B_{i_1, \dots, i_b} \zeta_{i_1} \dots \zeta_{i_b}$$

with
$$\frac{\partial(\zeta_{i_1}...\zeta_{i_p})}{\partial\zeta_{i_k}}:=(-1)^{(p-k)}\eta_{i_1}\ldots\widehat{\eta}_{i_k}\eta_{i_{p-1}}$$

Theorem (Schouten-Nijenhuis)

The bracket defined by this formula satisfies,

Graded anti-commutativity
$$[A, B] = -(-1)^{(a-1)(b-1)}[B, A]$$
.

Graded Leibniz rule

$$[A, B \wedge C] = [A, B] \wedge C + (-1)^{(a-1)b} B \wedge [A, C]$$

Graded Jacobi identity

$$(-1)^{(a-1)(c-1)}[A, [B, C]] + (-1)^{(b-1)(a-1)}[B, [C, A]] + (-1)^{(c-1)(b-1)}[C, [A, B]] = 0$$

If X is a vector field then, $[X, B] = L_X B$.

Poisson cohomology computation kit

- Space of cochains $\mathfrak{X}^m(M)$.
- Differential $d_{\Pi}(A) := [\Pi, A]$.
- Poisson cohomology

$$H_{\Pi}^{k}(M) := \frac{\ker d_{\Pi} : \mathfrak{X}^{k}(M) \longrightarrow \mathfrak{X}^{k+1}(M)}{\operatorname{Im} d_{\Pi} : \mathfrak{X}^{k-1}(M) \longrightarrow \mathfrak{X}^{k}(M)}$$

- Computation is difficult. It can be infinite-dimensional. Tools: Mayer-Vietoris, spectral sequences.
- Particular cases: (M,Π) symplectic $H^k_{\Pi}(M) \cong H^k_{DR}(M)$.
- $\bullet \ (M,\Pi) \ b\text{-Poisson,} \ H^k_\Pi(M) \cong H^k_{DR}(M) \oplus H^{k-1}_{DR}(Z).$

Poisson cohomology computation kit

- Hamiltonian vector fields $X_f = -[\Pi, f]$ (1-coboundary).
- Poisson vector fields $[\Pi, X] = -L_X \Pi = 0$ (1-cocycle).
- Poisson structures $[\Pi, \Pi] = 0$ (2-cocycle).
- Compatible Poisson structures $[\Pi_1, \Pi_2] = 0$ (2-cocycle).

•

$$H_{\Pi}^1 = \frac{\text{Poisson vector fields}}{\text{Hamiltonian vector fields}}.$$

Example 5: Cauchy-Riemann equations and Hamilton's equations

• Take a holomorphic function on $F: \mathbb{C}^2 \longrightarrow \mathbb{C}$ decompose it as F = G + iH with $G, H: \mathbb{R}^4 \longrightarrow \mathbb{R}$.

Cauchy-Riemann equations for F in coordinates $z_j=x_j+iy_j$, j=1,2

$$\frac{\partial G}{\partial x_i} = \frac{\partial H}{\partial y_i}, \quad \frac{\partial G}{\partial y_i} = -\frac{\partial H}{\partial x_i}$$

Reinterpret these equations as the equality

$$\{G,\cdot\}_0 = \{H,\cdot\}_1 \quad \{H,\cdot\}_0 = -\{G,\cdot\}_1$$

with $\{\cdot,\cdot\}_j$ the Poisson brackets associated to the real and imaginary part of the symplectic form $\omega=dz_1\wedge dz_2$ ($\omega=\omega_0+i\omega_1$).

• Check $\{G, H\}_0 = 0$ and $\{H, G\}_1 = 0$ (integrable system).

Example 2: Determinants in \mathbb{R}^3

• Dynamics: Given two functions $H, K \in \mathcal{C}^{\infty}(\mathbb{R}^3)$. Consider the system of differential equations:

$$(\dot{x}, \dot{y}, \dot{z}) = dH \wedge dK \tag{1}$$

H and K are constants of motion (the flow lies on H=cte. and K=cte.)

• Geometry: Consider the brackets,

$$\{f,g\}_H := \det(df, dg, dH) \quad \{f,g\}_K := \det(df, dg, dK)$$

They are antisymmetric and satisfy Jacobi,

$$\{f,\{g,h\}\}+\{g,\{h,f\}\}+\{h,\{f,g\}\}=0.$$

The flow of the vector field

$$\{K,\cdot\}_H := \det(dK,\cdot,dH)$$

and $\{-H,\cdot\}_K$ is given by the differential equation (1) and

$${H,K}_H = 0, \quad {H,K}_K = 0$$