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Abstract

In this paper we study the monotonicity of positive (or non-negative) viscosity solutions to uni-
formly elliptic equations F(∇u,D2u) = f (u) in the half plane, where f is locally Lipschitz con-
tinuous (with f (0) ≥ 0) and zero Dirichlet boundary conditions are imposed. The result is ob-
tained without assuming the u or |∇u| are bounded.
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1. Introduction

We consider the following problem:{
F(∇u,D2u) = f (u), in D≡ {(x,y) ∈ R2 : y > 0}
u(x,0) = 0 ∀x ∈ R,

(1)

with F : R2 × S2 → R uniformly elliptic, f locally Lipschitz continuous with f (0) ≥ 0, and
we study the monotonicity of positive (or non-negative) solutions. More precisely we consider
F : R2×S2→ R satisfying the following structural hypotheses,

(F1) Uniform ellipticity: There exist constants 0 < θ ≤Θ such that for all X ,Y ∈ S2 with Y ≥ 0,

−Θ trace(Y )≤ F(ξ ,X +Y )−F(ξ ,X)≤−θ trace(Y ),

for every ξ ∈ R2.
(F2) Homogeneity: F(tξ , tX) = t ·F(ξ ,X) for all t > 0. We further assume F(0,0) = 0.
(F3) Structure condition: There exists γ > 0 such that for all X ,Y ∈ S2, and ξ1,ξ2 ∈ R2, we

have,

P−
θ ,Θ(X−Y )− γ |ξ1−ξ2| ≤ F(ξ1,X)−F(ξ2,Y )≤P+

θ ,Θ(X−Y )+ γ |ξ1−ξ2|,
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where P±
θ ,Θ are the extremal Pucci operators, defined as,

P+
θ ,Θ(X) =−θ ∑

λi>0
λi(X)−Θ ∑

λi<0
λi(X),

P−
θ ,Θ(X) =−Θ ∑

λi>0
λi(X)−θ ∑

λi<0
λi(X),

(2)

with λi(X), i = 1, . . .n, the eigenvalues of X .
(F4) Symmetry: F(ξ tQ,QtXQ) = F(ξ ,X) where Q ∈ O(n) = {Q ∈ S2 : Q ·Qt = Id}.

Some comments about the hypothesis: it can be checked that,

P−
θ ,Θ(X) = inf

A∈Aθ ,Θ

{−trace(AX)} , P+
θ ,Θ(X) = sup

A∈Aθ ,Θ

{−trace(AX)}

for Aθ ,Θ =
{

A ∈ S2 : θ |ξ |2 ≤ 〈Aξ ,ξ 〉 ≤Θ|ξ |2 ∀ξ ∈ R2
}

. Notice that when Θ = θ = 1 we
have P+

θ ,Θ = P−
θ ,Θ = −∆. Also we point out that nonlinear degenerate operators, such as the

p-laplacian operator, are not included because of the uniform ellipticity assumption above. We
also remark that (F3) is equivalent to uniform ellipticity when ξ1 = ξ2 and that hypothesis (F4)
is naturally satisfied by Pucci’s operators. Just mention that in [8], Pucci’s operators are defined
with a different sign convention. Both definitions are related through the following expressions

M−(M,θ ,Θ) =−P+
θ ,Θ(M), M+(M,θ ,Θ) =−P−

θ ,Θ(M),

where M±(M,θ ,Θ) is the notation used in [8].

The main result in this paper is the following:

Theorem 1. Let u be a non-negative (nontrivial) viscosity solution of (1), with F : R2×S2→R
satisfying (F1)− (F4). Assume f locally Lipschitz continuous and f (0)≥ 0. Then, u is positive
in the interior of the domain and monotone in the e2-direction. Moreover,

∂u
∂y

(x,y)> 0 ∀(x,y) ∈ D.

The monotonicity of solutions in half-spaces is an important issue that arises naturally in
many applications such as blow-up analysis, a-priori estimates and Liouville-type theorems.

The study of monotonicity in the semilinear nondegenerate case is mostly based on the
moving-plane method that goes back to Alexandrov [1] and Serrin [22]. A clever use of the
moving-plane method was shown in the celebrated papers [6, 19]. We also refer the reader to the
series of papers [3, 4, 5], [14, 15] and [16].

Considering quasilinear and, more generally, fully nonlinear elliptic equations, one of the
main difficulties is the fact that Comparison Principles are not equivalent to Maximum Principles,
as in the semilinear case. Moreover, the application of the moving plane technique to problems
posed in half-spaces, is usually more delicate, since comparison results, in domains of small
measure, have to be replaced by comparison results in narrow unbounded domains such as narrow
strips. Generally, this is a demanding task.

The results in this paper are closely related to a geometric approach which goes back to [4]
and was successfully exploited in [13], in the p-Laplacian case, to the study of monotonicity of
positive (or non-negative solutions) in the two-dimensional half space. There, the use of weak
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comparison principles in narrow (unbounded) domains is avoided by means of a geometrical
argument in the spirit of [4] that allows one to use only a weak comparison principle in domains
of small measure. The main advantage of this argument is that there is no need to assume that
either the solution u, or the gradient |∇u| are bounded, a usual hypothesis in the literature.

In this paper, in order to prove Theorem 1, we will bring the geometric ideas in [4, 13] to the
context of uniformly elliptic fully nonlinear problems under the conditions (F1)− (F4), and we
will provide the necessary tools. Recall that, the notion of viscosity solution, is the natural notion
of solution in this context, and adapting the devices in [4, 13] to the viscosity setting carries a
number of technical complications.

Monotonicity results for non-negative solutions of fully nonlinear uniformly elliptic operators
are known, see [10, 21] under the assumption that u or |∇u| are bounded, that we are able to
remove in dimension two. We point out that, already in the case of F(∇u,D2u)≡ ∆u, there exist
unbounded monotone solutions u whose gradient |∇u| is also unbounded (think for example to
u(x,y) = exy). These solutions satisfy the hypothesis of our monotonicity result. This motivates
our analysis.

We think that the geometric ideas in the sequel can be adapted to many other situations and
operators; however, it seems impossible to attack the higher-dimensional case with these argu-
ments. In a recent paper [17], the authors prove a monotonicity result for positive weak solutions
to ∆pu+ f (u) = 0 in n-dimensional half spaces. We believe that the techniques developed in [17]
might also be useful in the fully nonlinear case, but this would in any case require u or |∇u| be
bounded.

The rest of the paper is organized as follows: in Section 2 we give some preliminaries re-
garding fully nonlinear operators, the notion of viscosity solution and the Maximum Principle
for fully nonlinear operators, and in Section 3 we prove Theorem 1.

2. Preliminaries

In this Section, we provide some preliminaries on fully nonlinear equations, and some results
that will be needed in the sequel.

2.1. Notion of Viscosity solution

Let us recall here the definition of viscosity solution, which will be used in the sequel.

Definition 2. A function u ∈ C (Ω) is a viscosity subsolution of (1) if for all ϕ ∈ C 2 and x̂ ∈ Ω

such that u−ϕ attains a local maximum at x̂, we have that

F
(
∇ϕ(x̂),D2

ϕ(x̂)
)
≤ f (u(x̂)).

Analogously, u ∈ C (Ω) is a viscosity supersolution of (1) if for all ϕ ∈ C 2 and x̂ ∈ Ω such that
u−ϕ attains a local minimum in x̂, we have that

F
(
∇ϕ(x̂),D2

ϕ(x̂)
)
≥ f (u(x̂)).

Finally, u ∈ C (Ω) is a viscosity solution of (1) in Ω if it is both a viscosity subsolution and
supersolution.
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Remark 3. Viscosity solutions to the above problem are of class C1,α , that is, u ∈C1,α(K ∩D)
for any compact set K ⊂ R2 (see [8]), the proof being based on the Aleksandrov-Bakelman-
Pucci estimate which is available in our problem by hypothesis (F1) and (F3), see for instance
[9].

Since we are dealing with elliptic equations of second order, all the relevant information
concerning the test functions ϕ ∈ C 2 in Definition 2 is codified in the first two derivatives of ϕ

at the contact point with the solution u. Hence, we can give an equivalent definition of viscosity
sub- and supersolution in terms of the upper and lower semijets (of degree 2) of u at the point x̂,
which are the sets of quadratic polynomials touching u respectively from above and below at the
contact point x̂.

Definition 4. Given u : Ω⊂ R2→ R, x̂ ∈Ω, we can define second order semijets as

J2,+
Ω

u(x̂) =
{
(p,X) ∈ R2×S2 : ϕ(x) = u(x̂)+ 〈p,(x− x̂)〉+ 1

2
〈
X(x− x̂),(x− x̂)

〉
touches u from above at x̂, ∀x ∈ Br(x̂)∩Ω with r > 0 small enough

}
,

J2,−
Ω

u(x̂) =
{
(p,X) ∈ R2×S2 : ϕ(x) = u(x̂)+ 〈p,(x− x̂)〉+ 1

2
〈
X(x− x̂),(x− x̂)

〉
touches u from below at x̂∀x ∈ Br(x̂)∩Ω with r > 0 small enough

}
,

and their closures,

J2,+
Ω u(x̂) =

{
(p,X) ∈ R2×S2 : ∃xn ∈ Br(x̂), (pn,Xn) ∈ J2,+u(xn)

such that (xn, pn,Xn)→ (x̂, p,X) when n→ ∞
}
,

J2,−
Ω u(x̂) =

{
(p,X) ∈ R2×S2 : ∃xn ∈ Br(x̂), (pn,Xn) ∈ J2,−u(xn)

such that (xn, pn,Xn)→ (x̂, p,X) when n→ ∞
}
.

Next, we rewrite Definition 2 in terms of semijets.

Definition 5. 1. We say that u ∈ C (Ω) is a viscosity subsolution of (1) in Ω if for all x̂ ∈ Ω

such that J2,+u(x̂) 6= /0 we have

F(p,X)≤ f (u(x̂)) ∀(p,X) ∈ J2,+u(x̂).

2. Analogously, a viscosity supersolution of (1) in Ω is a function u ∈ C (Ω) such that for all
x̂ ∈Ω such that J2,−u(x̂) 6= /0 we have

F(p,X)≥ f (u(x̂)) ∀(p,X) ∈ J2,−u(x̂).

3. Finally, u is a viscosity supersolution of (1) in Ω if it is both a viscosity subsolution and
supersolution.

Remark 6. In the previous definition we can also consider J2±u(x) instead of J2±u(x).

2.2. Maximum Principles
Let us recall some results (see also [7] and the references therein) concerning the ABP esti-

mate and the Maximum Principle which will be needed later.
First, we recall the basic ABP estimate, for which proof, the interested reader is referred for

instance to [9, Proposition 2.12].
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Proposition 7 (Aleksandrov-Bakelman-Pucci estimate). Consider a bounded domain Ω ⊂ Rn

and let f ∈ Ln(Ω)∩C (Ω), γ ≥ 0 and u ∈ C (Ω) a viscosity solution of

P−
θ ,Θ(D

2u)− γ |∇u| ≤ f (x) in {u > 0}.

Then, there exists a constant C = C(θ ,γ,n), only depending on the ellipticity constants and the
dimension, such that

sup
Ω

u+ ≤ sup
∂Ω

u++C ·diam(Ω) · ‖ f+‖Ln(Γ+(u+)),

where Γ+(w) denotes the upper contact set of a function w : Ω→ R, that is,

Γ
+(w) = {x ∈Ω : ∃p ∈ Rn such that w(y)≤ w(x)+ 〈p,y− x〉 for y ∈Ω}.

Then, by means of a simple argument, the same result is true for an equation with zero order
terms having positive coefficients.

Proposition 8 (Full Aleksandrov-Bakelman-Pucci estimate). Consider a bounded domain Ω ⊂
Rn and let c(x)≥ 0 in Ω, f ∈ Ln(Ω)∩C (Ω), γ ≥ 0 and u ∈ C (Ω) a viscosity solution of

P−
θ ,Θ(D

2u)− γ |∇u|+ c(x)u≤ f (x) in {u > 0}.

Then, there exists a constant C = C(θ ,γ,n), only depending on the ellipticity constants and the
dimension, such that

sup
Ω

u+ ≤ sup
∂Ω

u++C ·diam(Ω) · ‖ f+‖Ln(Γ+(u+)), (3)

where Γ+(w) denotes the upper contact set of a function w : Ω→ R, that is,

Γ
+(w) = {x ∈Ω : ∃p ∈ Rn such that w(y)≤ w(x)+ 〈p,y− x〉 for y ∈Ω}.

Proof. Clearly, in the set {u > 0} we have

P−
θ ,Θ(D

2u)− γ |∇u| ≤P−
θ ,Θ(D

2u)− γ |∇u|+ c(x)u≤ f (x).

Hence, we get (3) from Proposition 7.

Next, we present the Maximum Principle as an inmediate consequence of the ABP estimate
in Proposition 8.

Corollary 9 (Maximum Principle). Consider a bounded domain Ω ⊂ Rn, and c(x) ≥ 0 in Ω,
γ ≥ 0 and let u ∈ C (Ω) be a viscosity solution of{

P−
θ ,Θ(D

2u)− γ |∇u|+ c(x)u≤ 0 in Ω

u≤ 0 on ∂Ω.

Then, u≤ 0 in Ω.

The condition c≤ 0 in Corollary 9 is quite restrictive for our purposes. Alternatively, we will
use the following Maximum Principle which does not make any assumption on the sign of c(x)
but, instead, on the size of both the coefficients and the measure of the domain Ω.
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Proposition 10 (Maximum Principle in domains of small measure). Consider a bounded domain
Ω⊂ Rn and assume |c(x)| ≤ b in Ω and γ ≥ 0. Let u ∈ C (Ω) be a viscosity solution of{

P−
θ ,Θ(D

2u)− γ |∇u|+ c(x)u≤ 0 in Ω

u≤ 0 on ∂Ω.

Then, there exists a constant δ = δ
(
θ ,γ,n,b,diam(Ω)

)
> 0 such that, if |Ω| < δ , then u ≤ 0 in

Ω.

Proof. Writing c = c+− c−, we can put the equation in the following form

P−
θ ,Θ(D

2u)− γ |∇u|+ c+(x)u≤ c−(x)u in Ω.

We can apply the ABP estimate (3) to the above expression and get

sup
Ω

u+ ≤C(θ ,γ,n) ·diam(Ω) · ‖c−u+‖Ln(Ω)

≤C(θ ,γ,n) ·diam(Ω) ·b · |Ω|1/n · sup
Ω

u+

≤C
(
θ ,γ,n,b,diam(Ω)

)
· |Ω|1/n · sup

Ω

u+.

Then, if C
(
θ ,γ,n,b,diam(Ω)

)
· |Ω|1/n ≤ 1/2, we conclude that u≤ 0 in Ω.

Finally, we use the ABP estimate to get a Strong Maximum Principle following [18, Chapters
3 and 9]. Here, we do not make any assumption on the sign of c, but instead we suppose that
u≤ 0.

Proposition 11 (Strong Maximum Principle and Hopf Lemma). Consider a bounded domain
Ω⊂ Rn and assume that u ∈ C (Ω) is a non-positive viscosity solution of

P−
θ ,Θ(D

2u)− γ |∇u|+ c(x)u≤ 0 in Ω (4)

with c(x) ∈ L∞. Then, either u≡ 0 or u < 0 in Ω. Furthermore, in the latter case, for any z ∈ ∂Ω

such that,

a) u(z)> u(x) for all x ∈Ω and,
b) ∂Ω satisfies an interior sphere condition at z,

we have that

lim
t→0+

u(z+ tξ )−u(z)
t

< 0

for every non-tangential direction ξ pointing into Ω.

Our proof adapts [18, Section 3.2 and 9.1]. For further refinements of the Hopf Lemma, see
[2] and [20].

Proof. We can suppose without loss of generality that c≥ 0, since otherwise we can proceed by
writing

P−
θ ,Θ(D

2u)− γ |∇u|+ c+(x)u≤ c−(x)u≤ 0 in Ω.
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1. We start with the proof of the Strong Maximum Principle. Suppose to the contrary that
u is not identically 0 and u(x) = 0 for some x ∈ Ω. Then, there must exist concentric balls
Bρ(y)⊂ BR(y)⊂Ω such that u < 0 in Bρ(y) and u(x0) = 0 for some x0 ∈ BR(y).

For 0 < ρ < R, we consider A = {x ∈Ω : ρ < |x− y|< R} and define

v(x) = e
−α|x−y|2

2 − e
−αR2

2 , (5)

and
w(x) = u(x)+ ε v(x),

for x ∈ A, where α,ε > 0 are constants yet to be determined. Then,

(i) P−
θ ,Θ(D

2w)− γ |∇w|+ c(x)w ≤ 0 in A for α large enough. Let φ ∈ C 2 and x̂ ∈ A such
that w−φ has a local maximum at x̂. It is easy to see that u−Φ has a local maximum at x̂, with
Φ(x) = φ(x)−ε v(x). Since v ∈ C 2, so it is Φ, and the definition of u and the structure condition
(F3) imply

0≥P−
θ ,Θ(D

2
Φ(x̂))− γ |∇Φ(x̂)|+ c(x̂)u(x̂)

= P−
θ ,Θ

(
D2

φ(x̂)− ε D2v(x̂)
)
− γ |∇φ(x̂)− ε ∇v(x̂)|+ c(x̂)w(x̂)− ε c(x̂)v(x̂)

≥P−
θ ,Θ(D

2
φ(x̂))− γ |∇φ(x̂)|+ c(x̂)w(x̂)

+ ε P−
θ ,Θ(−D2v(x̂))− γ ε |∇v(x̂)|− ε c(x̂)v(x̂)

Consequently,

P−
θ ,Θ(D

2
φ(x̂))− γ |∇φ(x̂)|+ c(x̂)w(x̂)≤ ε P+

θ ,Θ(D
2v(x̂))+ γ ε |∇v(x̂)|+ ε c(x̂)v(x̂).

A direct computation yields,

P+
θ ,Θ(D2v(x̂)) = e

−α|x−y|2
2 P+

θ ,Θ

(
α

2(x− y)⊗ (x− y)−α I
)

≤ e
−α|x−y|2

2
(
−α

2
ρ

2
θ +α nΘ

)
,

|∇v(x̂)| ≤ α Re
−α|x−y|2

2 .

Combining the expressions above,

P−
θ ,Θ(D

2
φ(x̂))− γ |∇φ(x̂)|+ c(x̂)w(x̂)

≤ ε e
−α|x−y|2

2
(
−α

2
ρ

2
θ +α (nΘ− γ R)

)
+ ε‖c‖∞ · (1− e

−αR2
2 )≤ 0,

for α large enough.

(ii) w≤ 0 on ∂A for ε > 0 small enough. Since u < 0 on ∂Bρ(y), we can choose ε > 0 small
enough such that

u+ εv≤ 0 (6)

on ∂Bρ(y). Moreover, as v = 0 on ∂BR(y), (6) also holds in the outer boundary.

Hence, from steps (i) and (ii) and the ABP estimate in Proposition 8 we deduce w≤ 0 in the
whole of A. We have arrived at a contradiction, since 0 = u(x0)≤−ε v(x0)< 0.
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2. Next, we prove the second part of the result, the Hopf Boundary Lemma. Since Ω satisfies
an interior sphere condition at z, there exists a ball B = BR(y) ⊂ Ω with z ∈ ∂B. As before, for
0 < ρ < R, we consider A = {x ∈Ω : ρ < |x− y|< R} and define

w(x) = u(x)−u(z)+ ε v(x) for x ∈ A,

with v as in (5) , and α,ε > 0 some constants to be determined. Proceeding exactly as before,
one proves that

P−
θ ,Θ(D

2w)− γ |∇w|+ c(x)w≤ 0 in A for α large enough,

in the viscosity sense.
Moreover, w≤ 0 on ∂A for ε > 0 small enough. Since u−u(z)< 0 on ∂Bρ(y), we can choose

ε > 0 small enough such that (
u−u(z)+ εv

)
≤ 0 (7)

on ∂Bρ(y). Moreover, since v = 0 on ∂BR(y), (7) also holds in the outer boundary.
Again, the ABP estimate in Proposition 8 implies w ≤ 0 in the whole A. Hence, for every

nontangential direction ξ pointing into Ω, one has

lim
t→0+

u(z+ tξ )−u(z)
t

≤−ε
∂v
∂ξ

(z) = ε α e
−αR2

2 〈(z− y),ξ 〉< 0.

3. Proof of Theorem 1

Before starting with the proof, let us introduce some necessary notation.

Let Lx0,s,θ be the line with slope tan(θ) passing through the point (x0,s), and Vθ the vector
orthogonal to Lx0,s,θ such that 〈Vθ ,e2〉 > 0. Denote by Tx0,s,θ the triangle delimited by Lx0,s,θ ,
{y = 0} and {x = x0} (see Figure 1).

-
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Figure 1:

Define Tx0,s,θ (x) as the point symmetric to x with respect to Lx0,s,θ (see Figure 2), and

ux0,s,θ (x) = u(Tx0,s,θ (x)),

and,
wx0,s,θ = u−ux0,s,θ .
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For simplicity we will denote ux0,s,0 = us.

An important point in the proof of Theorem 1 is the fact that ux0,s,θ is still a viscosity solution
of (1), which we prove next.

Lemma 12. The function ux0,s,θ is a viscosity solution of

F
(
∇ux0,s,θ ,D

2ux0,s,θ
)
= f
(
ux0,s,θ

)
in Tx0,s,θ .

Proof. Let us consider for example the subsolution case, since the supersolution case is analo-
gous.

Take φ ∈C 2 and x̂∈Tx0,s,θ such that ux0,s,θ−φ has a local maximum at x̂. Define φx0,s,θ (x)=
φ(Tx0,s,θ (x)). It is easy to see that u−φx0,s,θ has a local maximum at ŷ = Tx0,s,θ (x̂). Then,

∇yφx0,s,θ (y) = ∇xφ(Tx0,s,θ (y))
t ·A−1

θ
BAθ

and
D2

yφx0,s,θ (y) = (A−1
θ

BAθ )
t ·D2

xφ(Tx0,s,θ (y)) ·A
−1
θ

BAθ

where

Aθ =

(
1 0
0 −1

)
and B =

(
cosθ sinθ

−sinθ cosθ

)
.

Finally, by definition of u as a viscosity solution of (1), and the invariance hypothesis (F4) we
get

F
(
∇xφ(x̂),D2

xφ(x̂)
)
≤ f
(
ux0,s,θ (x̂)

)
which is what we aimed for.

Given any x ∈R, since f is locally Lipschitz continuous and f (0)≥ 0, it is standard to see that u
satisfies an equation like (4). Then Proposition 11 implies that the solution u is actually positive
in the interior of the domain and by Hopf Lemma (Proposition 11) for every x ∈ R,

uy(x,0) =
∂u
∂y

(x,0)> 0.

9



However, uy(x,0) possibly goes to 0 if x→±∞. So, we fix x0 and h such that

∂u
∂y

(x,y)> γ > 0, ∀(x,y) ∈ Qh(x0),

where
Qh(x0) = {(x,y) : |x− x0|6 h, 0 6 y 6 2h}, (8)

as shown in Figure 3. Note that such γ > 0 exists as a consequence of the C1,α regularity of u,
see Remark 3.

-

6

x0h h

2h

Qh(x0)

∂u
∂y
≥ γ > 0

Figure 3:

Also, since u ∈C1,α , we may assume that there exists

δ1 = δ1(h,γ,x0)> 0 (9)

such that, if |θ |6 δ1 (and consequently Vθ ≈ e2), we have

∂u
∂Vθ

>
γ

2
> 0, in Qh(x0). (10)

Claim 1: Let Qh(x0) as in (8) and δ1 defined in (9) and fix θ 6= 0 with |θ | 6 δ1. Then it is
possible to find s̄ = s̄(θ) such that for any s 6 s̄ the triangle Tx0,s,θ is contained in Qh(x0) and
u < ux0,s,θ in Tx0,s,θ (with u 6 ux0,s,θ on ∂Tx0,s,θ ), see Figure 4.

To prove Claim 1, fix θ such that |θ |6 δ1 and set s̄ 6 h such that, for s≤ s̄:

• The triangle Tx0,s,θ is contained in Qh(x0) as well as the triangle obtained from Tx0,s,θ by
reflection with respect to the line Lx0,s,θ (see Figure 4). Note that this is possible by simple
geometric considerations.

10



• u 6 ux0,s,θ on ∂Tx0,s,θ . In fact, since |θ | 6 δ1 then u 6 ux0,s,θ on the line (x0,y) for 0 6
y 6 s, as a consequence of the monotonicity in the Vθ -direction, by construction, see (10).
Also u 6 ux0,s,θ if y = 0 by the Dirichlet assumption, and the fact that u is positive in the
interior of the domain. Finally u≡ ux0,s,θ on Lx0,s,θ .

-
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Figure 4:

With this construction, for 0 < s 6 s̄, we have that

wx0,s,θ = u−ux0,s,θ 6 0 on ∂Tx0,s,θ . (11)

Indeed, wx0,s,θ satisfies a differential inequality (in the viscosity sense) in the triangle Tx0,s,θ to
which the Maximum Principle in small domains (Proposition 10 via Lemma 13) applies; this is
the content of the following lemma.

Lemma 13. The difference wx0,s,θ = u−ux0,s,θ satisfies

P−
θ ,Θ

(
D2wx0,s,θ (x)

)
− γ
∣∣∇wx0,s,θ (x)

∣∣≤ cx0,s,θ (x)wx0,s,θ (x) in Tx0,s,θ , (12)

in the viscosity sense, with

cx0,s,θ (x) =


f
(
u(x)

)
− f
(
ux0,s,θ (x)

)
u−ux0,s,θ

, if ux0,s,θ (x) 6= u(x).

0, otherwise.

Remark 14. Notice that since f is Lipschitz, we have cx0,s,θ (x)∈ L∞. It is also worth emphasizing
that the difficulty of the above result is the lack of regularity of u, as the result follows obviously
from the structure condition (F3) and Lemma 12 when u is of class C 2.

Proof. The proof follows the ideas in [12]. To this end, let φ ∈ C 2 such that u−ux0,s,θ −φ has
a local maximum at some point x̂ ∈ Tx0,s,θ . As usual in the theory of viscosity solutions, let us

11



introduce for every ε > 0

Φε(x,y) = u(x)−ux0,s,θ (y)−φ(x)− |x− y|2

ε2 −|x− x̂|4.

For ε small enough, Φε attains a maximum in Tx0,s,θ ×Tx0,s,θ at some point (xε ,yε) ∈ Br(x̂)×
Br(x̂) for some r > 0. Since x̂ is a local strict maximum of

x 7→ u(x)−ux0,s,θ (x)−φ(x)−|x− x̂|4.

standard results of the theory of viscosity solutions (see [11, Proposition 3.7]) yield xε ,yε → x̂
and |xε−yε |2

ε2 → 0 as ε → 0.

In addition, defining ψ(x,y) = φ(x)+ |x−y|2
ε2 + |x− x̂|4, Theorem 3.2 in [11] implies that for

any given α > 0, there exist matrices X ,Y ∈ S2 such that

(∇xψ(xε ,yε),X) ∈ J2,+u(xε)

(−∇yψ(xε ,yε),Y ) ∈ J2,−ux0,s,θ (yε),
(13)

and

−
(

1
α
+‖A‖

)
I ≤

(
X 0
0 −Y

)
≤ A+αA2,

where A = D2ψ(xε ,yε). From this, setting α = ε2, an elementary computation yields

X−Y ≤ D2
φ(xε)+O(ε2 + |xε − x̂|2)I.

By Definition 5 of viscosity solutions and (13), we get

F
(
∇xψ(xε ,yε

)
,X)≤ f

(
u(xε)

)
and F

(
−∇yψ(xε ,yε),Y

)
≥ f
(
ux0,s,θ (yε)

)
,

and subtracting the previous inequalities we obtain

f
(
u(xε)

)
− f
(
ux0,s,θ (yε)

)
≥ F

(
∇xψ(xε ,yε),X

)
−F

(
−∇yψ(xε ,yε),Y

)
≥P−

θ ,Θ

(
X−Y

)
− γ |∇xψ(xε ,yε)+∇yψ(xε ,yε)|

≥P−
θ ,Θ

(
D2

φ(xε)
)
− γ |∇φ(xε)|+O(ε2 + |xε − x̂|2).

Letting ε → 0, we get

f
(
u(x̂)

)
− f
(
ux0,s,θ (x̂)

)
≥P−

θ ,Θ

(
D2

φ(x̂)
)
− γ |∇φ(x̂)|,

and we deduce that (12) holds in the viscosity sense.

Possibly reducing s̄, we can assume that the triangle Tx0,s,θ has sufficiently small measure in
order to exploit the Maximum Principle in small domains (Proposition 10). Then, from (11) and
(12), we get

wx0,s,θ 6 0 in Tx0,s,θ .

Also, since the case wx0,s,θ ≡ 0 is clearly impossible, by the strong maximum principle (Propo-
sition 11), we have

wx0,s,θ < 0 in Tx0,s,θ
12



and Claim 1 follows.
In the sequel we will make repeated use of a technique which is the product of the "moving

plane technique", the "rotating plane technique" and the "sliding plane technique". Let us explain
next these techniques in an axiomatic way for future use.

Given (x0,s,θ) and Tx0,s,θ as above, assume that,

wx0,s,θ 6 0 on ∂Tx0,s,θ , and, wx0,s,θ < 0 in Tx0,s,θ , (?)

and suppose that for some (s′ , θ ′) sufficiently close to (s , θ) so that, Tx0,s′,θ ′ ≈Tx0,s,θ , we have,

wx0,s′,θ ′ 6 0 on ∂Tx0,s′,θ ′ . (I)

Since wx0,s,θ < 0 in Tx0,s,θ , we can carve a compact set K ⊂ Tx0,s,θ where wx0,s,θ 6 ρ < 0. If
(s′ , θ ′) are chosen appropriately close to (s , θ), we can assume without loss of generality that
K ⊂Tx0,s′,θ ′ ,

wx0,s′,θ ′ 6
ρ

2
< 0 in K, (14)

and the Lebesgue measure of Tx0,s′,θ ′ \K is small enough for the Maximum Principle in small
domains to apply.

Therefore, since wx0,s′,θ ′ 6 0 on ∂
(
Tx0,s′,θ ′ \K

)
by (I) and (14), the Maximum Principle in

small domains (Proposition 10) yields,

wx0,s′,θ ′ 6 0 in Tx0,s′,θ ′ \K

and consequently in the whole Tx0,s′,θ ′ . Then, by the Strong Maximum Principle (see Theo-
rem 11), we get

wx0,s′,θ ′ < 0 in Tx0,s′,θ ′ .

Summarizing, the outcome of the above argument is that after small translations and rota-
tions, we can recover for Tx0,s′,θ ′ the same situation we initially had in Tx0,s,θ , that is (?). More
explicitly, we get that for (s′ , θ ′) sufficiently close to (s , θ),

wx0,s′,θ ′ 6 0 on ∂Tx0,s′,θ ′ and wx0,s′,θ ′ < 0 in Tx0,s′,θ ′ .

Let us now show that, the fact that we can make small translations and rotations of Tx0,s,θ
towards Tx0,s′,θ ′ when (s′,θ ′) ≈ (s,θ), implies that we can also make larger translations and
rotations.

More precisely, let us fix (s,θ) for which (?) holds and let (s̄, θ̄) be such that there exists a
continuous function

g : [0,1]→ R2

t 7→ (s(t),θ(t))

with g(0) = (s,θ), g(1) = (s̄, θ̄) and θ(t) 6= 0 for every t ∈ [0,1). Finally, suppose that (I) holds
for every t ∈ [0,1), that is, suppose that,

wx0,s(t),θ(t) 6 0 and not identically zero on ∂Tx0,s(t),θ(t) ∀t ∈ [0,1).

13



The above arguments imply that we can find some small t̃ > 0 such that, for 0 < t 6 t̃,

wx0,s(t),θ(t) 6 0 on ∂Tx0,s(t),θ(t) and wx0,s(t),θ(t) < 0 in Tx0,s(t),θ(t). (15)

We now let,

T ≡ {t̃ ∈ [0,1] s.t. (15) holds for any 0 6 t 6 t̃} and set t̄ = sup
t∈T

t.

Notice that we have proved that t̄ > 0. The argument concludes by showing that, actually, t̄ = 1.
To prove this, we proceed by contradiction and assume t̄ < 1. Then, by continuity

wx0,s(t̄),θ(t̄) 6 0 in Tx0,s(t̄),θ(t̄)

and, by the strong maximum principle

wx0,s(t̄),θ(t̄) < 0 in Tx0,s(t̄),θ(t̄).

As we are now in the situation described in (?) and (I), we can argue as above and show that
it is still possible to push the plane slightly further, that is, to find a sufficiently small ε > 0 so
that (15) holds for any 0 6 t 6 t̄ + ε , a contradiction with the definition of t̄, therefore implying
t̄ = 1. Summarizing, by means of this argument we get, wx0,s̄,θ̄ 6 0 on ∂Tx0,s̄,θ̄ and wx0,s̄,θ̄ < 0
in Tx0,s̄,θ̄ .

Now, we are going to apply the techniques just described axiomatically to the proof of The-
orem 1. Let x0, Qh(x0) and δ1 as in (8), (9). Define,

Σt = {(x,y) |0 < y < t}.

We aim to prove the following,

Claim 2: Given any s̃ with 0 < s̃ 6 h, we have u < us̃ in Σs̃, and also clearly u 6 us̃ on ∂Σs̃ (recall
that us̃ stands for ux0,s̃,0).

To prove this, let us first fix θ such that |θ | 6 δ1. Consequently, by Claim 1, we can find
some s = s(θ)6 s̃ such that the triangle Tx0,s,θ is contained in Qh(x0) (see Figure 4), u < ux0,s,θ
in Tx0,s,θ (and u 6 ux0,s,θ on ∂Tx0,s,θ ).

Our purpose now is to enlarge the triangle Tx0,s,θ by applying the axiomatic arguments above
to particular cases of the transformation g(t), mainly, translations and rotations. The idea is to
show that we can actually reach Σs̃ with these small perturbations of the initial triangle. In order
to be able to do so, we will have to check the hypothesis corresponding to (?), (I) and (15).

Sliding technique: We start moving the line Lx0,s,θ in the e2-direction towards the line Lx0,s̃,θ ,
keeping θ fixed and moving s→ s̃. In the notation above, we have g(t) = (s(t),θ) with s(0) = s
and s(1) = s̃, where in particular we can assume that s(t)6 s̃.

We note that for every s(t) 6 s̃ we have u 6 ux0,s(t),θ on ∂Tx0,s(t),θ . To see this, notice that
since |θ |6 δ1, then u 6 ux0,s(t),θ on the line (x0,y) for 0 6 y 6 s(t), because of the monotonicity
in the Vθ -direction, that we have by construction. Also u < ux0,s(t),θ if y = 0 by the Dirichlet
assumption, and the fact that u is positive in the interior of the domain. And finally, u≡ ux0,s(t),θ
on Lx0,s(t),θ by definition.

This shows that we have the right conditions (I) on the boundary for every s(t)6 s̃; therefore
by the technique described above, we get,
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u < ux0,s̃,θ in Tx0,s̃,θ and u 6 ux0,s̃,θ on ∂Tx0,s̃,θ .

Rotating technique: After having reached s̃, we start rotating the line Lx0,s̃,θ towards the
line {y = s̃}, keeping s̃ fixed and letting θ → 0. That is, in the notation above, we consider
g(t) = (s̃,θ(t)) with θ(0) = θ and θ(1) = 0, where in particular we can assume that θ(t) 6= 0 if
t 6= 1. It can be easily checked, exactly in the same way as in the sliding technique, that we still
have the right conditions on the boundary, namely, that (I) holds.

Note that to start from θ we need |θ |6 δ1. Therefore we can assume either that 0 < θ(t)6
δ1, or that 0 < −θ(t) 6 δ1. Consider first the case when θ is positive. By the rotating plane
technique, at the limit it follows that,

u(x,y)< us̃(x,y) = u(x,2s̃− y) in Σs̃∩{x 6 x0}.

In the second case, we start from a negative θ , whence it follows that

u(x,y)< us̃(x,y) = u(x,2s̃− y) in Σs̃∩{x > x0}.

Finally,
u(x,y)< us̃(x,y) = u(x,2s̃− y) in Σs̃

for every 0 < s̃ 6 h, proving Claim 2.

We now point out some consequences. First, note that u is strictly monotone increasing in the
e2-direction in Σh. In fact, given (x,y1) and (x,y2) in Σh (say 0 6 y1 < y2 6 h), we have proved
in Claim 2 that u(x,y1)< u y1+y2

2
(x,y1) which yields,

u(x,y1)< u(x,y2).

This immediately gives ∂u
∂y > 0 in Σh, but, actually, it is possible to show that

∂u
∂y

> 0 in Σh.

To do this, we use that for every s̃≤ h, the difference ws̃ = u−us̃ fulfills an equation of the type
of (12) in Σs̃ (see Lemma 13). Then, Hopf’s Lemma (Proposition 11) implies that,

∂u
∂y

(x, s̃) =
1
2

∂ws̃

∂y
(x, s̃)> 0 ∀s̃≤ h. (16)

Let us define,
Λ = {λ ∈ R+ : u < uλ ′ in Σλ ′ for every λ

′ < λ},

and,
λ̄ = sup

λ∈Λ

λ . (17)

From Claim 2, we know that λ̄ ≥ h > 0. As before, u 6 u
λ̄

by continuity, which implies u < u
λ̄

by the Strong Maximum Principle. Moreover, as in (16), we have,

∂u
∂y

> 0 in Σ
λ̄
. (18)
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To finish the proof of Theorem 1 we have to show

Claim 3: Actually, λ̄ = ∞.

The proof is by contradiction, so we assume that λ̄ < ∞. We shall show that we can find
ε > 0 small enough so that,

u < uλ ′ for 0 < λ
′ 6 λ̄ + ε, (19)

a contradiction with the definition of λ̄ . This would finish the proof of Theorem 1.

In the proof of Claim 3, we will need the following result, whose proof is standard following
[4, 13].

Lemma 15. Consider x0 ∈ R and λ̄ > 0 such that,

1. ∂u
∂y (x0 , y)> 0 for every y ∈ [0, λ̄ ].

2. For every λ ∈ (0, λ̄ ] we have u(x0,y)< uλ (x0,y) = u(x0 , 2λ − y) for y ∈ [0 , λ ).

Then there exists δ2 > 0 such that for any |θ |6 δ2 and for any λ ∈ (0, λ̄ +δ2], we have,

u(x0,y)< ux0,λ ,θ (x0,y) for y ∈ [0,λ ).

Remark 16. If λ̄ is given by (17) we are in the hypothesis of Lemma 15 for any x0 ∈R, since the
difference w

λ̄
= u−u

λ̄
fulfills an equation of the type (12) and we can argue as in (16) to prove

that,
∂u
∂y

(x0, λ̄ )> 0.

We are going to prove (19) with ε = δ2 given by Lemma 15. Let us fix θ with |θ |6 δ2 and λ

small enough so that Claim 1 applies. From Claim 1, we get that the triangle Tx0,λ ,θ is contained
in Qh(x0) (see Figure 4), and

u < ux0,λ ,θ in Tx0,λ ,θ with u 6 ux0,λ ,θ on ∂Tx0,λ ,θ .

Following the proof in Claim 2 we now start sliding the line Lx0,λ ,θ in the e2-direction towards
the line Lx0,λ̄+δ2,θ

, keeping θ fixed and letting λ → λ̄ + δ2. First we have to check that the
appropriate boundary conditions hold, that is to show that for every λ 6 λ̄ + δ2 we have u 6
ux0,λ ,θ on ∂Tx0,λ ,θ . In fact, since |θ | 6 δ2 then by Lemma 15 u < ux0,λ ,θ on the line (x0,y) for
0 6 y < λ . As before, u 6 ux0,λ ,θ if y = 0 by the Dirichlet assumption, and finally u = ux0,λ ,θ on
Lx0,λ ,θ . Therefore the sliding technique described above, yields,

u < ux0,λ̄+δ2,θ
in Tx0,λ̄+δ2,θ

, and u 6 ux0,λ̄+δ2,θ
on ∂Tx0,λ̄+δ2,θ

.

We would like to stress that in the application of the sliding and rotating techniques during
the proof of Claim 2, it was crucial to ensure that the vertical side of the triangle Tx0,s,θ and the
segment resulting from its reflection with respect to Lx0,s,θ were always inside Qh(x0), as this fact
was necessary in order to check the right boundary conditions (?) and (I). The role of Lemma
15 is to show that when the perturbations are small enough, the right conditions still hold even if
the vertical side of the triangle is outside Qh(x0) and we cannot rely on monotonicity anymore.

We now start rotating the line Lx0,λ̄+δ2,θ
towards the line y = λ̄ + δ2, freezing λ̄ + δ2 and

letting θ → 0 as in the rotating technique. Again, we use Lemma 15 to check that we have the
16



right boundary conditions. Exactly as in Claim 2, if we keep θ positive then at the limit θ → 0
we get u < u

λ̄+δ2
in Σ

λ̄+δ2
∩{x 6 x0}. Otherwise if θ is negative, it follows that u < u

λ̄+δ2
in

Σ
λ̄+δ2
∩{x > x0}. Finally,

u < u
λ̄+δ2

in Σ
λ̄+δ2

,

a contradiction with the definition of λ̄ . This proves Claim 3 and hence, according to (18),
concludes the proof of Theorem 1.
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