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Abstract. We study the behavior as p → ∞ of the sequel of positive weak

solutions of the concave-convex problem

(P)


−div(|∇u|p−2∇u) = λuq(p) + ur(p) in Ω

u > 0 in Ω

u = 0 on ∂Ω.

where Ω ⊂ Rn is a bounded domain, λ > 0 and the exponents q, r satisfy

lim
p→∞

q(p)

p− 1
= Q, lim

p→∞

r(p)

p− 1
= R, with 0 < Q < 1 < R.

We characterize any positive uniform limit of a sequence of weak solutions of

(P) as a viscosity solution of

min
{
|∇uΛ| −max{ΛuQΛ , u

R
Λ},−∆∞uΛ

}
= 0 in Ω.

Notice that the limit process decouples the nonlinearity. We obtain existence,
non-existence and global multiplicity of positive viscosity solutions of the limit

problem in terms of the parameter Λ.

1. Introduction

Our goal is to study the behavior as p→∞ of the sequence of positive solutions
of the concave-convex problem

(1.1)


−∆pu = λuq(p) + ur(p) in Ω

u > 0 in Ω

u = 0 on ∂Ω.

where ∆pu = div(|∇u|p−2∇u) is the p−Laplacian, Ω ⊂ Rn is a bounded domain,
λ > 0 and the exponents q, r are assumed to satisfy

(1.2) lim
p→∞

q(p)

p− 1
= Q, lim

p→∞

r(p)

p− 1
= R, with 0 < Q < 1 < R.

We refer to problem (1.1) as concave-convex in the sense that 0 < q(p) < p−1 < r(p)
for p large enough. In particular, we shall always assume p > n.

The asymptotics of problems having a power-type right-hand side, namely,

−∆pu = λuα(p) in Ω
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have been already studied in the literature in the eigenvalues case, where α(p) =
p − 1 (see [13, 19, 20]), the concave power case α(p) = q(p) (see [9]), and the case
with a convex power α(p) = r(p) (see [8]).

Hence, it seems natural to consider the combined effect of a concave and a convex
power as p→∞.

Problem (1.1) is studied in [4, 7, 15, 14]. In [7], it is proved the existence of a
threshold value λmax,p such that there exist a minimal positive solution of (1.1) for
λ < λmax,p and no positive solution exists for λ > λmax,p. It is important to point
out that this results hold with no restriction in the size of the convex exponent r
even when p < n. We provide in Section 6 a quantitative construction of the branch
of minimal positive solutions of (1.1) as well as the proof of non existence beyond
the threshold λmax,p.

In [4, 14] it is proved that there exists a second positive solution for every λ ∈
(0, λmax,p) whenever r < p∗ − 1, with p∗ the Sobolev critical exponent. Notice that
this means no restriction in the case of our interest since, since the critical exponent
is p∗ =∞ when p > n.

The paper is organized as follows. In Section 2 we provide some necessary pre-
liminaries. Then, in Section 3 we introduce the limit concave-convex problem in a

formal way. We prove that, whenever Λ = limp→∞ λ
1/p
p any positive uniform limit

uΛ = limp→∞ uλp,p is a viscosity solution of

(1.3)


min

{
|∇uΛ| −max{ΛuQΛ , u

R
Λ},−∆∞uΛ

}
= 0 in Ω,

uΛ > 0 in Ω

uΛ = 0 on ∂Ω.

Then, once the limit problem is presented, we study the existence non-existence
and multiplicity of positive solutions of the limit problem (1.3) in terms of the
parameter Λ.

More precisely, in Section 4 we prove some non-existence results. We prove that
there is no positive solution of the limit problem (1.3) for

Λ > Λ̂ := Λ1(Ω)
R−Q
R−1 = lim

p→∞
λ1/p

max,p,

for Λ1(Ω) :=
(

maxx∈Ω dist(x, ∂Ω)
)−1

.
Moreover, we also prove that every solution uΛ of (1.3) verifies wΛ ≤ uΛ, where

wΛ is the unique positive solution of the limit concave problem

(1.4)

{
min

{
|∇wΛ| − ΛwQΛ ,−∆∞wΛ

}
= 0 in Ω,

wΛ = 0 on ∂Ω.

The decoupling of the nonlinearity in (1.3) under the limit process is a key feature
for the analysis.

Next, in Section 5 we study the existence of a curve of positive minimal solutions
of problem (1.3). A remarkable fact is that, for every Λ ≤ Λ̂, the unique solution
of the limit concave problem (1.4) is also a solution of the limit concave-convex
problem (1.3). The reason is that there is a critical size for solutions under which
the convex power has no influence in problem (1.3) since

max{ΛtQ, tR} = Λ tQ ⇔ t ≤ Λ
1

R−Q .
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In fact, we prove that for every Λ ≤ Λ̂ the unique positive solution of (1.3) with

‖uΛ‖∞ ≤ Λ
1

R−Q (the critical size) is given by the solution of (1.4).
We would like to stress that this makes a significant difference with the case

p < ∞, where the concave and convex power always have a mutual influence, no
matter the size of the solutions.

Feeding back this new information on the size of solutions, we extend the non-
existence result and prove that in fact there is no positive solution of (1.3) with

Λ
1

R−Q < ‖uΛ‖∞ < Λ1(Ω)
1

R−1 .

Then, in Section 6, we turn our attention back to justify uniform convergence as
p→∞ of solutions of (1.1) to solutions of (1.3). Assuming the natural normaliza-
tion

λ1/p
p → Λ as p→∞,

we justify the uniform convergence of the sequence of minimal solutions of (1.1)
corresponding to λp to the minimal positive solution of (1.3) corresponding to Λ.
We get the necessary estimates from the construction of the minimal branch at
level p.

In Section 7, we pass to the limit as p → ∞ on subsequences of mountain pass
solutions of the problems at level p. The main feature is a global multiplicity result
in Λ for the limit problem (1.3), that is, the existence of at least two positive

viscosity solutions for all Λ ∈ (0, Λ̂).
Finally, in Section 8 we find explicit solutions whenever the domain Ω satisfy a

certain geometric condition. These solutions make apparent the results on existence
and multiplicity in previous sections.

2. Preliminaries

We recall here some facts that will be needed later. First we recall the well-known
Morrey estimates, with an explicit expression of the constants that will be crucial
in the sequel. See [8] for the proof.

Lemma 2.1. Assume n < p < ∞ and u ∈ W 1,p
0 (Ω). Then u ∈ Cγ(Ω), where

γ = 1− n
p , and the following hold:

i) L∞-estimate:

‖u‖L∞(Ω) ≤ Cp ·
(∫

Ω

|∇u|p dx
) 1
p

,

with constant

(2.1) Cp = p |B1(0)|−
1
p n
−n(p+1)

p2 (p− 1)
n(p−1)

p2 (p− n)
n
p2−1

λ1(p; Ω)
n−p
p2 .

ii) Hölder estimate:

|u(x)− u(y)|
|x− y|γ

≤ C̃p ·
(∫

Ω

|∇u|p dx
) 1
p

,

where

C̃p =
2C

|∂B1(0)|
1
p

(
p− 1

p− n

)1− 1
p

and C is a constant depending only on n.
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Remark 2.2. It can be checked that lim
p→∞

Cp = max
x∈Ω

dist(x, ∂Ω).

In the following lemma we state that weak solutions of our problem are also vis-
cosity solutions. The proof, which we omit here, follows analogously to [20, Lemma
1.8] (see also [6]).

Lemma 2.3. If u is a continuous weak solution of (1.1), then it is a viscosity
solution of the same problem, rewritten as

(2.2)

{
Fp(∇u,D2u) = λuq(p) + ur(p) in Ω
u = 0 on ∂Ω,

where

Fp(ξ,X) = −|ξ|p−2 · trace

((
Id+ (p− 2)

ξ ⊗ ξ
|ξ|2

)
X

)
.

The divergence form is more useful from the variational point of view, while
the expanded form (2.2) is preferred in the viscosity framework. In the sequel we
shall always consider the more suitable form of our problem between (1.1) and (2.2)
without any further reference.

Next, we present some background on certain auxiliary problems that will be
profusely used in the sequel.

2.1. The problem with right-hand side 1. In [21] the problem{
−∆pv = 1 in Ω

v ∈W 1,p
0 (Ω)

is studied in connection with torsional creep problems when Ω is a general bounded
domain. In the case of our interest, p > n every function in v ∈ W 1,p

0 (Ω) can be

considered continuous in Ω and 0 on the boundary in the classical sense.
However, it is interesting to mention that in general the boundary datum is not

satisfied in the classical sense, that is, given x0 ∈ ∂Ω, it is not necessarily true that
limx→x0

v(x) = 0 when 1 < p ≤ n. Nevertheless, the points where limx→x0
v(x) = 0

can be characterized by means of a version of the Wiener Criterion stated by Maz’ja
[29] in the nonlinear framework (see [16, 22, 23] and also [12, 28]).

The existence result we shall need below is the following. See [21] and [18, The-
orem 3.11] for the proof.

Proposition 2.4. Let Ω be a bounded domain and n < p <∞. Then, there exists
a unique solution v1,p ∈W 1,p

0 (Ω) ∩ C(Ω) of the auxiliary problem

(2.3)

{−∆pv1,p = 1 in Ω

v1,p = 0 on ∂Ω,

and v1,p converge uniformly as p→∞ to the unique viscosity solution to{
min{|∇v| − 1,−∆∞v} = 0 in Ω,

v = 0 on ∂Ω.

Moreover, v(x) = dist(x, ∂Ω).
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2.2. The p-eigenvalue problem. We shall also need some facts about first eigen-
values and eigenfunctions. Let us recall that the first eigenvalue λ1(p; Ω) is charac-
terized by the nonlinear Rayleigh quotient

λ1(p; Ω) = inf
φ∈W 1,p

0 (Ω)

∫
Ω
|∇φ|p dx∫

Ω
|φ|p dx

.

In [24] (see also [25]) it is proved that the first eigenvalue of the p-Laplacian
is simple (that is, that the first eigenfunction is unique up to multiplication by
constants) when Ω is a mere bounded domain. Previous results ([3, 15, 30] and the
references in [24]) require further regularity of ∂Ω. Moreover, it is also proved in
[24] that in a general bounded domain Ω only the first eigenfunction is positive
and that the first eigenvalue is isolated (there exists ε > 0 such that there are no
eigenvalues in (λ1, λ1 + ε]).

Proposition 2.5 ([24]). Let Ω be a bounded domain and n < p <∞. Then, there

exists a nontrivial positive solution φ1,p ∈W 1,p
0 (Ω) ∩ C(Ω) of{

−∆pφ1,p = λ1(p; Ω) |φ1,p|p−2φ1,p in Ω

φ1,p = 0 on ∂Ω.

Moreover, λ1(p; Ω) is simple and isolated.

The result above is also true in the range 1 < p ≤ n, but then the boundary
datum is not necessarily realized in the classical sense and must be interpreted in
the trace sense, that is, φ1,p ∈W 1,p

0 (Ω). Also in this case, the points x0 ∈ ∂Ω where
lim
x→x0

φ1,p(x) = 0 are characterized by the Wiener’s criterion mentioned above, see

[22].
In the following lemma, we recall the behavior as p→∞ of the first eigenvalue

of the p-Laplacian (see [20] for the proof).

Lemma 2.6. lim
p→∞

λ1(p,Ω)
1
p = Λ1(Ω) =

(
max
x∈Ω

dist(x, ∂Ω)
)−1

.

2.3. The concave problem. The last tool we need in the construction below is
the solution to the concave problem.

Proposition 2.7. Let Ω ⊂ Rn be a bounded domain, p > n and 0 < q < p − 1.
Then, for every λ > 0, there exists a unique uλ ∈ W 1,p

0 (Ω) ∩ C(Ω) solution of the
problem

(2.4)


−∆puλ = λuqλ, in Ω,

uλ > 0 in Ω,

uλ = 0 on ∂Ω.

Moreover, by homogeneity,

uλ(x) = λ
1

(p−1)−q u1(x),

where u1 is the solution of the problem with λ = 1.

Uniqueness of positive solutions is a known result and can be found for instance in
[1] in the variational setting (see also [10] for a proof in the viscosity framework). For
the proof of existence, one can construct a sub- and supersolution using appropriate
rescalings of φ1,p and v1,p respectively (see for instance [10]). Then, we can iterate
between this sub- and supersolution and construct the solution.
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We conclude this preliminary section collecting some facts about the concave
limit problem

(2.5)


min

{
|∇wΛ| − ΛwQΛ ,−∆∞wΛ

}
= 0 in Ω,

wΛ > 0 in Ω

wΛ = 0 on ∂Ω.

The proofs of the following results can be found in [9].

The main result is the following Comparison Principle, which turns out to be a
valuable tool in the study of the limit concave-convex problem.

Proposition 2.8. Let Ω ⊂ Rn be a bounded domain and consider a viscosity
subsolution u ∈ C(Ω) and a viscosity supersolution v ∈ C(Ω) of

(2.6) min
{
|∇w(x)| − wQ(x),−∆∞w(x)

}
= 0 in Ω.

Assume that both u, v > 0 in Ω and u ≤ v on ∂Ω. Then, u ≤ v in Ω.

The following result deals with existence of positive solutions to (2.5). The
uniqueness assertion is a consequence of the Comparison Principle.

Proposition 2.9. Let Ω ⊂ Rn be a bounded domain. Let Λ > 0 and a sequence

{λp}p such that λ
1/p
p → Λ as p → ∞. Then, the sequence {uλp,p}p>n of weak

solutions of 
−∆puλp,p = λp u

q(p)
λp,p

in Ω

uλp,p > 0 in Ω

uλp,p = 0 on ∂Ω,

converge uniformly to wΛ, the unique positive solution of the limit problem (2.5)
corresponding to Λ.

Finally, we have the following estimates for wΛ.

Proposition 2.10. Let Ω ⊂ Rn a bounded domain and 0 < Q < 1. Consider Λ > 0
and wΛ the positive solution of (2.5). Then, we have(

Λ ‖dist(·, ∂Ω)‖∞
) 1

1−Q
v(x) ≤ wΛ(x)

≤
(

Λ ‖dist(·, ∂Ω)‖∞
) 1

1−Q dist(x, ∂Ω)

‖dist(·, ∂Ω)‖∞
,

(2.7)

for every x ∈ Ω, where v(x) is the first (maximal) ∞−eigenfunction (see [20])
normalized to ‖v‖L∞ = 1. Moreover

(2.8) ‖wΛ‖L∞(Ω) =
(

Λ · ‖dist(·, ∂Ω)‖∞
) 1

1−Q
.

3. The limit problem.

In the present section, we characterize uniform limits of solutions of (1.1) as
solutions of a PDE. For the moment we shall assume the uniform convergence
which will be proved in Sections 6 and 7.
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Proposition 3.1. Assume that {λp}p verifies limp→∞ λ
1/p
p = Λ and let q(p), r(p)

and 0 < Q < 1 < R as in (1.2). Suppose that uλp,p ∈W
1,p
0 (Ω) is a weak solution of

(3.1)


−∆puλp,p = λpu

q(p)
λp,p

+ u
r(p)
λp,p

in Ω

uλp,p > 0 in Ω

uλp,p = 0 on ∂Ω,

and that uλp,p → uΛ > 0 uniformly as p → ∞. Then, uΛ is a viscosity solution of
the limit concave-convex problem

(3.2)


min

{
|∇uΛ| −max{ΛuQΛ , u

R
Λ},−∆∞uΛ

}
= 0 in Ω,

uΛ > 0 in Ω

uΛ = 0 on ∂Ω.

Proof. Let x0 ∈ Ω and φ ∈ C2(Ω) such that uΛ − φ has a strict local minimum
at x0. By hypotesis, uΛ is the uniform limit of uλp,p, so there exists a sequence
of points xp → x0 such that (uλp,p − φ)(xp) is a local minimum for each p. As
uλp,p is a continuous weak solution of (3.1), it is also a viscosity solution and so a
supersolution. Then, we get

−(p− 2)|∇φ(xp)|p−4

{
|∇φ(xp)|2

p− 2
∆φ(xp)+〈D2φ(xp)∇φ(xp),∇φ(xp)〉

}
= −∆pφ(xp) ≥ λpuq(p)λp,p

(xp) + u
r(p)
λp,p

(xp).

Rearranging terms, we obtain

−(p− 2)

 |∇φ(xp)|(
λpu

q(p)
λp,p

(xp) + u
r(p)
λp,p

(xp)
) 1
p−4


p−4{
|∇φ(xp)|2

p− 2
∆φ(xp)

+〈D2φ(xp)∇φ(xp),∇φ(xp)〉
}
≥ 1.

(3.3)

Notice that

max
{
λ

1
p−4
p u

q(p)
p−4

λp,p
(xp), u

r(p)
p−4

λp,p
(xp)

}
≤
(
λpu

q(p)
λp,p

(xp) + u
r(p)
λp,p

(xp)
) 1
p−4

≤ 2
1
p−4 max

{
λ

1
p−4
p u

q(p)
p−4

λp,p
(xp), u

r(p)
p−4

λp,p
(xp)

}
,

and hence,

lim
p→∞

(
λpu

q(p)
λp,p

(xp) + u
r(p)
λp,p

(xp)
) 1
p−4

= max{ΛuQΛ (x0), uRΛ(x0)}.

We point out that the latter quantity is positive since uΛ > 0 by hypothesis. Then,
if we suppose that

|∇φ(x0)| < max{ΛuQΛ (x0), uRΛ(x0)}
we obtain a contradiction letting p→∞ in (3.3). Thus, it must be

(3.4) |∇φ(x0)| −max{ΛuQΛ (x0), uRΛ(x0)} ≥ 0.

We also have that

(3.5) −∆∞φ(x0) = −〈D2φ(x0)∇φ(x0),∇φ(x0)〉 ≥ 0,

because we would get a contradiction with (3.3) otherwise.
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We can put together (3.4) and (3.5) writing

min
{
|∇φ(x0)| −max{ΛuQΛ (x0), uRΛ(x0)},−∆∞φ(x0)

}
≥ 0

and conclude that uΛ is a viscosity supersolution of equation (3.2).
It remains to be shown that uΛ is a viscosity subsolution of the limit equation

(3.2), i.e. we have to show that, for each x0 ∈ Ω and φ ∈ C2(Ω) such that uΛ − φ
attains a strict local maximum at x0 (note that x0 and φ are not the same than
before) we have

min
{
|∇φ(x0)| −max{ΛuQΛ (x0), uRΛ(x0)},−∆∞φ(x0)

}
≤ 0.

We can suppose that

|∇φ(x0)| > max{ΛuQΛ (x0), uRΛ(x0)},

because we are done otherwise. As we did before, the uniform convergence of uλp,p
to uΛ provides a sequence of points xp → x0 which are local maxima of uλp,p − φ.
Recalling the definition of viscosity subsolution we have

−(p− 2)

 |∇φ(xp)|(
λu

q(p)
λp,p

(xp) + u
r(p)
λp,p

(xp)
) 1
p−4


p−4{
|∇φ(xp)|2

p− 2
∆φ(xp)

+〈D2φ(xp)∇φ(xp),∇φ(xp)〉
}
≤ 1,

for each fixed p. Letting p → ∞ we obtain −∆∞φ(x0) ≤ 0 because in other case
we get a contradiction. �

4. A priori non-existence results for the limit problem

Here, we present some results on non-existence of positive viscosity solutions of
the limit concave-convex problem

(4.1)


min

{
|∇uΛ| −max{ΛuQΛ , u

R
Λ},−∆∞uΛ

}
= 0 in Ω,

uΛ > 0 in Ω,

uΛ = 0 on ∂Ω.

We have summarized the results in this section in Figure 1.

4.1. Non-existence below the curve of positive solutions of the limit con-
cave problem. We are going to prove next that there are no positive solutions of
the limit concave-convex problem (4.1) under the curve of positive solutions of the
concave limit problem

(4.2)


min

{
|∇wΛ| − ΛwQΛ ,−∆∞wΛ

}
= 0 in Ω,

wΛ > 0 in Ω,

wΛ = 0 on ∂Ω.

We have the following result.
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Figure 1. Regions of non-existence for the limit concave-convex
problem (4.1) given by Propositions 4.1 and 4.3.

Proposition 4.1. Let Ω ⊂ Rn a bounded domain and wΛ the unique positive
viscosity solution of the concave problem (4.2) for each Λ > 0. Then, any positive
viscosity solution uΛ of (4.1) satisfies uΛ ≥ wΛ. In particular,

(4.3) ‖uΛ‖L∞(Ω) ≥
(

Λ · ‖dist(·, ∂Ω)‖∞
) 1

1−Q
=
(

Λ · Λ1(Ω)−1
) 1

1−Q
.

Remark 4.2. Recall that Λ1(Ω) = ‖dist(·, ∂Ω)‖∞ is the first∞-eigenvalue (see [20]).

Proof. Consider uΛ, a nontrivial solution of (4.1). We shall prove that

(4.4) min{|∇uΛ| − ΛuQΛ ,−∆∞uΛ} ≥ 0 in Ω,

since then, given the fact that wΛ is a solution of the concave problem (4.2), we
have wΛ ≤ uΛ by comparison (Proposition 2.8). Estimate (4.3) is a consequence of
this fact and Proposition 2.10.

In order to prove (4.4), consider x0 ∈ Ω and φ ∈ C2 such that uΛ − φ has a
minimum at x0. As uΛ(x) is a solution of problem (4.1) we have

min
{
|∇φ(x0)| −max{ΛuQΛ (x0), uRΛ(x0)},−∆∞φ(x0)

}
≥ 0

It follows that −∆∞φ(x0) ≥ 0 and |∇φ(x0)| ≥ max{ΛuQΛ (x0), uRΛ(x0)}. Hence

|∇φ(x0)| − ΛuQΛ (x0) ≥ max{ΛuQΛ (x0), uRΛ(x0)} − ΛuQΛ (x0) ≥ 0.

We get

min
{
|∇φ(x0)| − ΛuQΛ (x0),−∆∞φ(x0)

}
≥ 0

and consequently (4.4) holds in the viscosity sense. �

4.2. Non-existence of positive solutions for large Λ. We show here the exis-
tence of a threshold Λ̂ beyond which problem (4.1) has no positive solutions.

Proposition 4.3. Let Ω ⊂ Rn be a bounded domain. Then, problem (4.1) has no

positive viscosity solution for Λ > Λ̂ with

(4.5) Λ̂ = Λ1(Ω)
R−Q
R−1 .
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Proof. Define µ = Λ1(Ω) + ε with ε > 0. Suppose for the sake of contradiction that

problem (4.1) has a solution uΛ for some Λ > µ
R−Q
R−1 .

First, we are going to show that this uΛ is a supersolution of the eigenvalue
problem with parameter µ. More precisely, we are going to show that

(4.6) min
{
|∇uΛ| − µuΛ,−∆∞uΛ

}
> 0 in Ω

in the viscosity sense. To this aim, let x0 ∈ Ω and φ ∈ C2 such that uΛ − φ has a
minimum in x0. Since uΛ(x) is a solution of problem (4.1) we have

min
{
|∇φ(x0)| −max{ΛuQΛ (x0), uRΛ(x0)},−∆∞φ(x0)

}
≥ 0.

We deduce that −∆∞φ(x0) ≥ 0 and |∇φ(x0)| ≥ max{ΛuQΛ (x0), uRΛ(x0)}. Hence,

|∇φ(x0)| − µuΛ(x0) ≥ max{ΛuQΛ (x0), uRΛ(x0)} − µuΛ(x0).

To deduce (4.6) it is enough to show that

min
t>0

ΦΛ(t) > µ where ΦΛ(t) = max{ΛtQ−1, tR−1}.

It is elementary to check that the function ΦΛ is convex and has a unique mini-

mum point at tmin = Λ
1

R−Q . Notice that limt→∞ ΦΛ(t) = limt→0 ΦΛ(t) = ∞, and

hence tmin is a global minimum. Then, it is easy to check that Λ > µ
R−Q
R−1 implies

ΦΛ(tmin) > µ.

Next, we notice that any first ∞-eigenfunction is a subsolution of the eigenvalue
problem with parameter µ. Specifically, let v be a first ∞−eigenfunction, that is, a
solution of

(4.7)


min

{
|∇v| − Λ1(Ω) v,−∆∞v

}
= 0 in Ω,

v > 0 in Ω

v = 0 on ∂Ω.

Then,

min
{
|∇v| − µ v,−∆∞v

}
≤ 0 in Ω.

For later purpose, we shall assume ‖v‖∞ <
(
Λµ−1

) 1
1−Q .

Now, we have to show that uΛ and v are ordered, namely, that 0 < v ≤ uΛ in Ω.
We are going to use the Comparison Principle for the concave problem (Proposition
2.8). Indeed, it is easy to see that

min
{
|∇uΛ| − ΛuQΛ ,−∆∞uΛ

}
≥ 0 in Ω,

while, using the normalization of v, one can check that

(4.8) min
{
|∇v| − Λ vQ,−∆∞v

}
≤ 0 in Ω.

To see this, let x0 ∈ Ω and φ ∈ C2 such that v − φ has a maximum at x0. Since v
is a ∞−eigenfunction, it satisfies

min {|∇φ(x0)| − Λ1(Ω) v(x0),−∆∞φ(x0)} ≤ 0 in Ω.

We can suppose −∆∞φ(x0) > 0 and |∇φ(x0)| −Λ1(Ω) v(x0) ≤ 0 since we are done
otherwise. Clearly, as Λ1(Ω) < µ, we have

|∇φ(x0)| − Λ vQ(x0) ≤
(
Λ1(Ω) ‖v‖1−Q∞ − Λ

)
v(x0)Q ≤ 0,
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by the normalization of v. Consequently

min
{
|∇φ(x0)| − Λ vQ(x0),−∆∞φ(x0)

}
≤ 0,

that is, (4.8) holds in the viscosity sense. As v = uΛ = 0 on ∂Ω, we get 0 < v ≤ uΛ

by the Comparison Principle, Proposition 2.8.

So far, we have a subsolution v and a supersolution uΛ of the eigenvalue problem

(4.9) min
{
|∇w| − µw,−∆∞w

}
= 0 in Ω

which verify 0 < v ≤ uΛ. Next we claim that it is possible to construct a solution
of (4.9) iterating between v and uΛ. Then, the argument concludes since we have
constructed a positive ∞−eigenfunction associated to µ = Λ1 + ε, a contradiction
with the fact that Λ1(Ω) is isolated (see [19, Theorem 8.1] and [20, Theorem 3.1]).

Since the argument above runs for every ε > 0, we deduce that there is no
nontrivial solution of (4.1) for Λ > Λ̂.

Finally, we conclude proving the claim. First, define w1(x), viscosity solution of{
min

{
|∇w1| − µ v,−∆∞w1

}
= 0 in Ω

w1 = 0 on ∂Ω.

To prove that such a w1 exists, notice that v is a subsolution of the problem and
that uΛ is a supersolution since, from (4.6) and v ≤ uΛ we deduce

min
{
|∇uΛ| − µ v,−∆∞uΛ

}
≥ 0.

We point out that the Comparison Principle holds for this equation, see for instance
[18, Theorem 4.18 and Remark 4.23] (see also [17]). For the mentioned Comparison
Principle, notice that every ∞-superharmonic function is Lipschitz continuous, see
[27]. Hence, we can apply the Perron method ([11, Theorem 4.1]), to get a unique
w1 such that

v ≤ w1 ≤ uΛ in Ω.

Then, we define w2, the solution of{
min

{
|∇w2| − µw1,−∆∞w2

}
= 0 in Ω

w2 = 0 on ∂Ω.

In this case, w1 is a subsolution and uΛ is a supersolution, since

min
{
|∇w1| − µ v,−∆∞w1

}
= 0 ⇒ min

{
|∇w1| − µw1,−∆∞w1

}
≤ 0,

while

min
{
|∇uΛ| − µuΛ,−∆∞uΛ

}
≥ 0 ⇒ min

{
|∇uΛ| − µw1,−∆∞uΛ

}
≥ 0.

As w1 = uΛ = 0 on ∂Ω, by comparison and the Perron method, we obtain that
there exists a unique w2 satisfying

v ≤ w1 ≤ w2 ≤ uΛ in Ω.

Iterating this procedure, we construct an increasing sequence

v ≤ w1 ≤ w2 ≤ . . . ≤ wk−1 ≤ wk ≤ uΛ

of solutions of

(4.10)

{
min

{
|∇wk| − µwk−1,−∆∞wk

}
= 0 in Ω

wk = 0 on ∂Ω.
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Notice that ‖wk‖∞ is uniformly bounded by construction. On the other hand, as
−∆∞wk ≥ 0 in Ω, we have (see [26, 27] and also [18, Section 6] for a related
construction) that

|∇wk(x)| ≤ wk(x)

dist(x, ∂Ω)
≤ uΛ(x)

dist(x, ∂Ω)
a.e. x ∈ Ω,

for all k > 1. From there, both ‖wk‖∞ and ‖∇wk‖∞ are uniformly bounded in
compact subsets of Ω. We observe that v, uΛ are barriers on ∂Ω for each wk. Hence
by the Ascoli-Arzela theorem and the monotonicity of the sequence {wk}, the whole
sequence converges uniformly in Ω to some w ∈ C(Ω) which verifies w = 0 on ∂Ω.
Then, we can take limits in the viscosity sense in (4.10) and obtain that the limit
w is a viscosity solution of (4.9), which proves the claim. �

5. Existence of a curve of minimal solutions for the limit problem

In this section we prove that problem (4.1) has a minimal positive solution for

each Λ ≤ Λ̂ such that

‖uΛ‖L∞(Ω) =
(

Λ · ‖dist(·, ∂Ω)‖∞
) 1

1−Q
.

Hence, the bounds obtained in Section 4 (Propositions 4.1 and 4.3) are sharp.

Indeed, we prove that for every Λ ∈ (0, Λ̂], the minimal positive solution of the
limit concave-convex problem coincides with the unique positive solution of the
concave problem (4.2). As we have mentioned in the introduction, the reason is
that there is a critical size of solutions (depending on Λ) under which the convex
power has no effect in the limit concave-convex problem.

From this fact we shall deduce that the minimal solution is the unique positive

solution of (4.1) with ‖uΛ‖∞ ≤ Λ
1

R−Q .
This new information on the size of solutions allows to extend the result and

prove that, actually, there is no positive solution with

Λ
1

R−Q < ‖uΛ‖∞ < Λ
1

R−1

1 .

We would like to stress the major role that the Comparison Principle for the
concave problem (Proposition 2.8) plays in the arguments in this section.

Finally, just mention that in Section 6 we shall prove that the minimal solutions
of the limit problem found in this Section are uniform limits of minimal solutions
of (1.1).

In Figure 2 we have collected all the information obtained in this section.

Proposition 5.1. Let Ω ⊂ Rn be a bounded domain and Λ ∈ (0, Λ̂]. Consider wΛ,
the unique positive solution of the concave problem (4.2). Then, if uΛ is a positive

solution of (4.1) such that ‖uΛ‖∞ ≤ Λ
1

R−Q , necessarily uΛ ≡ wΛ.

Remark 5.2. Notice that, since Λ < Λ̂ = Λ1(Ω)
R−Q
R−1 , Proposition 2.10 implies

‖wΛ‖∞ = (Λ · Λ1(Ω)−1)
1

1−Q ≤ Λ
1

R−Q .

Moreover, the homogeneity properties of the concave equation (4.2) imply that

wΛ(x) = Λ
1

1−Q · w1(x), where w1 is the unique solution of (4.2) with Λ = 1.
Consequently, the set of minimal solutions of (3.2) is a differentiable curve in Λ for

Λ < Λ̂.



LIMITS AS p→∞ OF p-LAPLACIAN CONCAVE-CONVEX PROBLEMS 13

-

6‖u‖∞

Λ̂ Λ

Λ
1

R−Q

Λ1(Ω)
1

R−1

‖uΛ‖∞ =
(
Λ · Λ1(Ω)−1

) 1
1−Q

��
��

�
��

�
��
�

��
�
��

�
��

�
��

�
��
�

�
��

�
��

��
��

�
��

��

��
�
��

�
��

�
��

�
��
�

��
�
��

�
��

�
��

��
�
��

�
��

��
�
��

��

��
�
����

t

Figure 2. Curve of minimal solutions of problem (4.1) and re-
gions of non-existence given by Propositions 4.1, 4.3, 5.1 and 5.3.

Proof. We are going to check that if ‖uΛ‖∞ ≤ Λ
1

R−Q , then

(5.1) min{|∇uΛ| − ΛuQΛ ,−∆∞uΛ} = 0 in Ω,

from which, by uniqueness (Proposition 2.8), we conclude uΛ ≡ wΛ.
First, we prove that uΛ is a subsolution of the concave problem (5.1). Consider

φ ∈ C2 such that uΛ − φ has a local maximum at x0 ∈ Ω. Then, since uΛ is a
viscosity solution of (4.1), we have that either

−∆∞φ(x0) ≤ 0,

or
|∇φ(x0)| −max{ΛuQΛ (x0), uRΛ(x0)} ≤ 0.

In the first case there is nothing to prove so we can assume that −∆∞φ(x0) > 0
and the second alternative holds. Then,

|∇φ(x0)| − ΛuQΛ (x0) ≤ max{ΛuQΛ (x0), uRΛ(x0)} − ΛuQΛ (x0).

We claim that ‖uΛ‖∞ ≤ Λ
1

R−Q implies

(5.2) max{ΛuQΛ (x), uRΛ(x)} = ΛuQΛ (x) ∀x ∈ Ω,

and consequently

min
{
|∇φ(x0)| − ΛuQΛ (x0),−∆∞φ(x0)

}
≤ 0,

which is what we aim for. To see (5.2), suppose for contradiction that there exists
z ∈ Ω such that

max{ΛuQΛ (z), uRΛ(z)} = uRΛ(z).

Then, ΛuQΛ (z) ≤ uRΛ(z) and we obtain a contradiction unless z ∈ Ω is such that

uΛ(z) = ‖uΛ‖∞ = Λ
1

R−Q . In the latter case, we have

max{ΛuQΛ (z), uRΛ(z)} = uRΛ(z) = ΛuQΛ (z),

and (5.2) follows.
Finally, arguing as in Proposition 4.1, it is easy to check that uΛ is a supersolution

of (5.1) and we conclude. �
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Proposition 5.3. Let Ω be a bounded domain and let Λ ∈ (0, Λ̂) fixed. Then, every

nontrivial solution uΛ of (4.1) with ‖uΛ‖∞ > Λ
1

R−Q , verifies

‖uΛ‖∞ ≥ Λ1(Ω)
1

R−1 .

Proof. If ‖uΛ‖∞ > Λ
1

R−Q , then

(5.3) max{ΛuQΛ (x), uRΛ(x)} ≤ max{Λ‖uΛ‖Q∞, ‖uΛ‖R∞} = ‖uΛ‖R∞.

Then, uΛ is a viscosity subsolution of

(5.4)

{
min

{
|∇v(x)| − ‖uΛ‖R∞,−∆∞v(x)

}
= 0 in Ω

v = 0 on ∂Ω.

Since

C(x) = ‖uΛ‖R∞ · dist(x, ∂Ω)

is the unique solution of (5.4) (see for instance [17, 18]), we have, by comparison,
that

uΛ(x) ≤ C(x) = ‖uΛ‖R∞ · dist(x, ∂Ω) ∀x ∈ Ω,

from which we deduce ‖uΛ‖∞ ≥ Λ1(Ω)
1

R−1 . �

6. Limits of positive minimal solutions as p→∞

In this section we show uniform convergence as p → ∞ of minimal solutions of
(1.1) to minimal solution of the limit problem (3.2). Notice that we have already
proved existence of minimal solutions to (3.2) in the previous section.

To this aim, we provide the explicit construction of the branch of minimal positive
solutions of (1.1) as well as the proof of non-existence beyond the threshold λmax,p.

Despite this construction is known from [7], we track down the precise depen-
dence on p of the parameters involved, necessary to provide estimates of λmax,p

in terms of p, q, r, n from which the asymptotic behavior of the threshold can be
deduced. Also, we put some effort in proving the results for mere bounded domains.

Let Ω ⊂ Rn a bounded domain and λ > 0. We can assume without loss of
generality that 0 < q < p− 1 < r in the concave-convex problem (1.1).

Next, we shall show the existence of a threshold λmax,p such that no positive so-
lution of (1.1) exists for λ > λmax,p and then we shall construct a branch of positive
minimal solutions of (1.1) for λ < λmax,p. Finally, we shall use this construction to
pass to the limit as p→∞.

6.1. Non-existence of positive solutions for large λ. We show here that there

exists a value λ̂p > 0 such that no positive weak solution of (1.1) exists for λ > λ̂p.

This λ̂p is not necessarily sharp; as we shall see, λ̂p ≥ λmax,p, where λmax,p is the

threshold value. However, λ̂p has an explicit expression in terms of p.

Proposition 6.1. Let Ω ⊂ Rn be a bounded domain and n < p < ∞. Then,

problem (1.1) has no positive solution in W 1,p
0 (Ω) whenever λ > λ̂p, where

(6.1) λ̂p = λ1(p; Ω)
r−q

r−(p−1)
(
r − (p− 1)

)(((p− 1)− q
)(p−1)−q

(r − q)r−q

) 1
r−(p−1)

.
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Proof. Let µ = λ1(p; Ω) + ε with ε > 0. Suppose for the sake of contradiction that

problem (1.1) has a positive solution uλ ∈W 1,p
0 (Ω) for some

λ > µ
r−q

r−(p−1) (r − (p− 1))

(
((p− 1)− q)(p−1)−q

(r − q)r−q

) 1
r−(p−1)

.

We are going to show that then

(6.2) −∆puλ = λuqλ + urλ > µup−1
λ in Ω,

in the weak sense. In fact, in order to have the former inequality, it is enough to
see that

min
t>0

Φλ(t) > µ where Φλ(t) = λ tq−(p−1) + tr−(p−1).

It is elementary to check that

d

dt
Φλ(t) = 0 ⇔ tλ =

(
λ
(
(p− 1)− q

)(
r − (p− 1)

) ) 1
r−q

,

which is a minimum. As Φλ(t)→∞ when t→ 0 and t→∞, it is a global minimum.
Then,

min
t>0

Φλ(t) = Φλ(tλ) =
λ
r−(p−1)
r−q (r − q)

((p− 1)− q)
(p−1)−q
r−q (r − (p− 1))

r−(p−1)
r−q

> µ

because of our election of λ.
Next, we notice that any first eigenfunction is a subsolution of the eigenvalue

problem with parameter µ. Specifically, let φ1,p be a first eigenfunction, that is, a
solution of 

−∆pφ1,p = λ1(p; Ω) |φ1,p|p−2φ1,p in Ω,

φ1,p > 0 in Ω

φ1,p = 0 on ∂Ω.

Then, obviously,

−∆pφ1,p < µφp−1
1,p in Ω.

For later purpose, we shall assume ‖φ1,p‖∞ <
(
λµ−1

) 1
(p−1)−q .

Now, we have to show that uΛ and φ1,p are ordered, namely, that 0 < φ1,p ≤ uΛ

in Ω. We are going to make use of the Comparison Principle for the concave problem
(see [1, 10]). Indeed,

−∆puλ = λuqλ + urλ ≥ λu
q
λ in Ω,

while, using the normalization of φ1,p, one can check that

−∆pφ1,p ≤ λ1(p; Ω) ‖φ1,p‖(p−1)−q
∞ φ1,p < λφq1,p in Ω.

Then, by comparison, φ1,p ≤ uλ.
Finally, we can apply an iteration method (see [7]) and obtain v such that 0 <

φ1,p ≤ v ≤ uλ, a positive eigenfunction associated to µ, which is impossible since
λ1(p,Ω) is isolated (see Proposition 2.5).

Since the foregoing argument runs for every ε > 0, we conclude that no positive

solution of (1.1) exists for λ > λ̂. �
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6.2. Construction of the branch of minimal positive solutions of the
concave-convex problem. Now, we sketch the construction of a minimal pos-
itive solution for every λ ∈ (0, λmax,p) where λmax,p will be properly defined below.
The construction is divided into several partial results

Proposition 6.2 (Existence of positive solutions for small λ). Let Ω ⊂ Rn be a
bounded domain and p > n. Then, problem (1.1) has at least one positive solution

u ∈W 1,p
0 (Ω) ∩ C(Ω) for each λ ∈ (0, λ0,p] with

(6.3) λ0,p =
(
‖v1,p‖1−p∞

) r−q
r−(p−1)

(
r − (p− 1)

)(((p− 1)− q
)(p−1)−q

(r − q)r−q

) 1
r−(p−1)

,

where v1,p ∈W 1,p
0 (Ω) ∩ C(Ω) is the solution of (2.3).

For the proof, we construct a sub- and supersolution and apply an iteration
method. First, we construct the supersolution.

Lemma 6.3. Let Ω be a bounded domain, p > n and λ0,p in (6.3). Take v1,p ∈
W 1,p

0 (Ω) ∩ C(Ω), the solution of (2.3). Then,

uλ(x) = Tp(λ) · v1,p(x)

is a weak supersolution of (1.1) for every λ ∈ (0, λ0,p], where

Tp(λ) = ‖v1,p‖−1
∞

(
(p− 1)− q
r − (p− 1)

) 1
r−q

λ
1
r−q .

The proof follows by homogeneity with an argument somehow similar to the
proof of (6.2) in the proof of Proposition 6.1. See [7, 10] for the details.

Next, we construct the subsolution.

Lemma 6.4. Let Ω be a bounded domain and p > n. Then, for every λ > 0, the
function uλ = wλ ∈ W 1,p

0 (Ω), solution of (2.4) is a weak subsolution of (1.1).
Moreover, uλ ≤ uλ in Ω.

For the proof, notice that, uqλ > 0 obviously implies −∆puλ = λuqλ < λuqλ + urλ
in Ω. The second part follows by comparison for the concave problem (see [1, 10]).

Once we have constructed a weak sub- and supersolution uλ and uλ which are
ordered on the boundary, we finish the proof of Proposition 6.2 by means of an
iteration method as in [7].

From Propositions 6.1 and 6.2, we have the following result.

Proposition 6.5. Let Ω ⊂ Rn be a bounded domain and p > n. There exists
λmax,p ∈ R+ with 0 < λmax,p < ∞ such that (1.1) has a weak positive solution for
every λ ∈ (0, λmax,p) and no positive weak solution for λ > λmax,p. Moreover,

λ0,p ≤ λmax,p ≤ λ̂p,

where λ̂p and λ0,p are given by (6.1) and (6.3) respectively.

Proof. Define

λmax,p = sup
{
λ ∈ R+ : (1.1) has a positive solution

}
.
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Proposition 6.2 implies λmax,p > 0, while Proposition 6.1 implies λmax,p < ∞.
Indeed, we can take λM close to λmax,p, and uM such that

−∆puM = λM uqM + urM in Ω,

uM > 0 in Ω,

uM = 0 on ∂Ω.

Fixed 0 < λ < λM , let u the unique positive solution of the concave problem

(6.4)


−∆pu = λuq in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

Obviously, uM is a weak supersolution of (6.4) and, by comparison u ≤ uM . Since,

−∆pu = λuq < λuq + ur,

and

−∆puM = λM uqM + urM > λuqM + urM ,

we obtain the existence of uλ > 0, solution of (1.1), by iteration. �

We have the following consequence which yields the asymptotic behavior of
λmax,p as p→∞.

Corollary 6.6. Consider the concave-convex problem (1.1) and assume that the
exponents q = q(p) and r = r(p) satisfy condition (1.2). Then,

lim
p→∞

λ1/p
max,p= lim

p→∞
λ

1/p
0,p = lim

p→∞
λ̂1/p
p = Λ̂ = Λ1(Ω)

R−Q
R−1 .

The result follows from the explicit expressions for λ0,p and λ̂p, Proposition 2.4,
and Lemma 2.6.

6.3. The curve of minimal solutions obtained as a limit of minimal solu-
tions with p <∞. Our aim in this subsection is to show that the curve of minimal
positive solutions obtained in Section 5 for the limit problem (1.3) can be attained
as a limit when p→∞ of minimal positive solutions of (1.1).

Theorem 6.7. Fix Λ ∈ (0, Λ̂), let {λp}p be a sequence such that limp→∞ λ
1/p
p = Λ.

Consider {uλp,p}p, the corresponding sequence of minimal positive solutions of

(6.5)


−∆puλp,p = λp u

q(p)
λp,p

+ u
r(p)
λp,p

in Ω

uλp,p > 0 in Ω

uλp,p = 0 on ∂Ω.

Then,

uλp,p → wΛ uniformly as p→∞,
with wΛ(x) the unique positive solution of the limit concave problem (4.2) and
minimal positive solution of problem (4.1).

Before proving Theorem 6.7, we present some consequences of the Morrey esti-
mates (Lemma 2.1) that will be needed in the proof.
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Lemma 6.8. Fix p > n. Then, for every m ∈ (n, p), there exists a constant C
independent of p such that every solution uλp,p of (6.5) satisfies

(6.6)
|uλp,p(x)− uλp,p(y)|
|x− y|1− n

m
≤ C max

{
λ

1
p ‖uλp,p‖

q+1
p
∞ , ‖uλp,p‖

r+1
p
∞

}
∀x, y ∈ Ω.

Proof. Multiplying (6.5) by uλp,p and integrating by parts, we have

(6.7)

∫
Ω

|∇uλp,p|p dx = λ

∫
Ω

|uλp,p|q+1 dx+

∫
Ω

|uλp,p|r+1 dx.

As p > m, combining (6.7), the Hölder inequality and the Morrey estimate (whose
constant can be chosen independent of p) we get

|uλp,p(x)− uλp,p(y)|
|x− y|1− n

m
≤ C

(∫
Ω

∣∣∇uλp,p∣∣m dx)1/m

≤ C |Ω|
1
m−

1
p

(∫
Ω

∣∣∇uλp,p∣∣p dx)1/p

= C |Ω|
1
m−

1
p

(
λ

∫
Ω

|uλp,p|q+1 dx+

∫
Ω

|uλp,p|r+1 dx

)1/p

≤ C|Ω| 1
m

(
λ‖uλp,p‖q+1

∞ + ‖uλp,p‖r+1
∞

)1/p

≤ C max
{
λ

1
p ‖uλp,p‖

q+1
p
∞ , ‖uλp,p‖

r+1
p
∞

}
,

where C > 0 is independent of m and p. �

In the proof of Theorem 6.7 we shall make use of Lemma 6.8 and the construction
of the branch of minimal positive solutions in the previous subsections.

Proof of Theorem 6.7. Let λ0,p as in (6.3). Since λ
1/p
0,p → Λ̂ > Λ as p → ∞ (see

Corollary 6.6), there exists p0 large enough to ensure that λ
1/p
0,p > Λ for all p ≥ p0.

Then, we know by Proposition 6.2 that uλp,p is constructed iterating between

uλp,p(x) = wλp,p(x),

the positive solution to the concave problem (2.4) with parameter λp, and

uλp,p(x) =

(
(p− 1)− q
r − (p− 1)

) 1
r−q

λ
1
r−q
p

v1,p(x)

‖v1,p‖∞
.

Proposition 2.9 implies uλp,p = wλp,p → wΛ uniformly as p → ∞. On the other

hand, from Proposition 2.4 we have that v1,p → dist(x, ∂Ω), and consequently

uλp,p → Λ
1

R−Q
dist(x, ∂Ω)

‖dist(·, ∂Ω)‖∞
uniformly as p→∞.

We deduce that we can find a constant C independent of p such that,

‖uλp,p‖∞ ≤ ‖uλp,p‖∞ ≤ C.
Then, from Lemma 6.8 and Ascoli-Arzela Theorem, we get that there exists a

subsequence p′ and a limit function u(x) such that uλp′ ,p′ → u, uniformly as p→∞.
Notice that, taking limits in

uλp′ ,p′ ≤ uλp′ ,p′ ≤ uλp′ ,p′

we arrive at

0 < wΛ ≤ u ≤ Λ
1

R−Q
dist(x, ∂Ω)

‖dist(·, ∂Ω)‖∞
.

Since u > 0, Proposition 3.1 imply that u is a solution of the concave-convex limit
problem (4.1).
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Finally, since ‖u‖∞ ≤ Λ
1

R−Q , Proposition 5.1 implies u = wΛ. Notice that,
since the limit is unique, not only a subsequence but the whole sequence uλp,p
converge. �

7. Limits of Mountain Pass solutions as p→∞. Multiplicity of
solutions for the limit problem

In this section, we provide the proof of existence of a second positive weak
solution to problem (1.1). Then, we use this construction to prove existence of a
second positive viscosity solution to the limit problem (1.3).

Throughout this section we shall always assume without loss of generality that
0 < q < p− 1 < r.

We introduce the functional associated to problem (1.1),

Jλ(u) =
1

p

∫
Ω

|∇u|p dx− λ

q + 1

∫
Ω

uq+1
+ dx− 1

r + 1

∫
Ω

ur+1
+ dx.

Then, Jλ : W 1,p
0 (Ω)→ R is well defined and has the Mountain-Pass geometry. This

is easily seen since Jλ(0) = 0 and for any fixed φ ∈W 1,p
0 (Ω) and t > 0 we have that

Jλ(tφ) =
A

p
tp − λB

q + 1
tq+1 − C

r + 1
tr+1

with

A =

∫
Ω

|∇φ|p dx, B =

∫
Ω

|φ|q+1 dx, C =

∫
Ω

|φ|r+1 dx.

As r > p − 1, we have that for λ small enough, Jλ(tφ) < 0 for t sufficiently small,
then Jλ(tφ) > 0, and finally Jλ(tφ) < 0 for every t large enough.

For convenience in the sequel, consider a first eigenfunction of the p-Laplacian
φ1,p ∈W 1,p

0 (Ω) and t large so that Jλ(tφ1,p) < 0. Then, we can define

(7.1) Γ =
{
γ ∈ C

(
[0, 1],W 1,p

0 (Ω)
)

: γ(0) = 0, γ(1) = tφ1,p

}
and the level of mountain pass

(7.2) cp = inf
γ∈Γ

sup
s∈[0,1]

Jλ(γ(s)).

Since in the case p > n the concave-convex problem (1.1) is subcritical for every
r, we can apply the results in [14] and get that for every fixed p there exist at
least two positive weak solutions for λ < λmax,p, one positive weak solution for
λ = λmax,p and no positive weak solution for λ > λmax,p. When λ < λmax,p one
solution corresponds to a negative local minimum of Jλ and the second one, at least
for λ small enough, corresponds to a positive mountain pass level of Jλ. Moreover,
it is also proved in [14] that the local minimizer coincides with the minimal solution
obtained by the sub- and supersolution method in Section 6.

In this section we provide a quantitative version of this multiplicity result and
prove the existence of a second positive solution to problem (1.1) by means of the
Ambrosetti-Rabinowitz Mountain Pass Theorem (see [2]) up to a certain, possibly
non-optimal, value of λ that can be estimated in terms of p, q, r and n. This limi-
tation in λ is due to the fact that we need explicit estimates of the energy levels in
terms of p; however, we shall see that our results are asymptotically sharp.
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This results allow to pass to the limit as p → ∞ and get a second positive
viscosity solution of the limit problem (3.2) for every Λ ∈ (0, Λ̂), a global multiplicity
result. In the sequel we will denote,

(7.3) µ1,p = (2 |Ω|Cpp )
q−r

r−(p−1)

(
q + 1

r + 1

)
and

µ2,p = µ1,p

(
r + 1

p

) r−q
r−(p−1)

=
(
2 |Ω|Cpp

) q−r
r−(p−1)

(
(q + 1) (r + 1)

(p−1)−q
r−(p−1)

p
r−q

r−(p−1)

)
,

(7.4)

where Cp is given by (2.1).

Remark 7.1. Notice that both µ
1/p
1,p and µ

1/p
2,p converge to Λ̂ = Λ

R−Q
R−1

1 as p→∞.

Theorem 7.2. Whenever λ ∈ [0, µ2,p), for µ2,p given by (7.4), there exists u ∈
W 1,p

0 (Ω) such that

Jλ(u) = cp and J ′λ(u) = 0,

where cp is the level of mountain pass given by (7.2).

In the proof of Theorem 7.2 we shall need the following calculus fact.

Lemma 7.3. Let 0 < q < p− 1 < r and constants λ, α, β > 0. Define,

µ1 =

(
q + 1

r + 1

)
α−1β

q−(p−1)
r−(p−1)

and

µ2 = µ1

(
r + 1

p

) r−q
r−(p−1)

=

(
(q + 1) (r + 1)

(p−1)−q
r−(p−1)

p
r−q

r−(p−1)

)
α−1β

q−(p−1)
r−(p−1) .

Then:

i) If λ ∈ [0, µ1)

sup
t>0

min

{
1

p
tp − λα

q + 1
tq+1,

1

p
tp − β

r + 1
tr+1

}
=

(
1

p
− 1

r + 1

)
β

−p
r−(p−1) > 0.

ii) If λ ∈ [µ1, µ2)

sup
t>0

min

{
1

p
tp − λα

q + 1
tq+1,

1

p
tp − β

r + 1
tr+1

}

=

(
λα

β

) p
r−q
(
r + 1

q + 1

) p
r−q

1

p
−
(

λα

q + 1

) r−(p−1)
r−q

(
β

r + 1

) (p−1)−q
r−q

 > 0.

iii) If λ ≥ µ2

sup
t>0

min

{
1

p
tp − λα

q + 1
tq+1,

1

p
tp − β

r + 1
tr+1

}
= 0.
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Proof of Theorem 7.2. We only need to check that Jλ satisfies the geometry of the
Mountain Pass theorem and that it satisfies the Palais-Smale condition. Then the
result follows from the Ambrosetti-Rabinowitz Mountain Pass theorem (see [2]). As
p > n, the Morrey estimate (see Lemma 2.1) implies

Jλ(u) ≥ Φλ

(
‖u‖W 1,p

0 (Ω)

)
for

Φλ(t) = min

{
1

p
tp −

2λ|Ω|Cq+1
p

q + 1
tq+1,

1

p
tp −

2|Ω|Cr+1
p

r + 1
tr+1

}
.

Lemma 7.3 with α = 2 |Ω|Cq+1
p and β = 2 |Ω|Cr+1

p implies that

max
t>0

Φλ(t) > 0 if λ < µ2,p,

with µ2,p given by (7.4). Hence Jλ has the geometry of the Mountain Pass theorem.
The proof of the fact that Jλ satisfies the Palais-Smale condition is standard;

an estimate similar to the proof of Proposition 7.10, Morrey’s estimates and the
continuity of (−∆p)

−1 give the necessary compactness. See for instance [30] and
the references therein for details. �

Next, we provide estimates of the level of mountain pass (7.2).

Proposition 7.4. For every fixed p > n, the level of mountain pass (7.2) satisfies,

cp ≤
(
r − (p− 1)

p (r + 1)

)
|Ω|λ1(p; Ω)

r+1
r−(p−1) .

Remark 7.5. Notice that this result holds independently of λ ≥ 0.

Proof. Consider the following radial path in W 1,p
0 (Ω)

γ : [0, 1]→W 1,p
0

s 7→ sv

for v an appropriate rescaling of the first eigenfunction as in the definition of Γ in
(7.1). Clearly, γ ∈ Γ and by definition of cp, we have that

cp = inf
γ∈Γ

sup
s∈[0,1]

Jλ(γ(s)) ≤ sup
s>0

Jλ(sv) = sup
s>0

{
A

p
sp − λB

q + 1
sq+1 − C

r + 1
sr+1

}
for

A = λ1(p; Ω)

∫
Ω

|v|p dx, B =

∫
Ω

|v|q+1 dx, C =

∫
Ω

|v|r+1 dx.

We can estimate

A

p
sp − λB

q + 1
sq+1 − C

r + 1
sr+1 ≤ A

p
sp −max

{
λB

q + 1
sq+1,

C

r + 1
sr+1

}
= min

{
A

p
sp − λB

q + 1
sq+1,

A

p
sp − C

r + 1
sr+1

}
.

Hence, we can apply Lemma 7.3 with α = B/A and β = C/A and deduce that

cp ≤
(

1

p
− 1

r + 1

)
A

r+1
r−(p−1)C

−p
r−(p−1) .
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Notice that this bound holds for every λ > 0. Then, as a consequence of the Hölder
inequality, we have that

A ≤ λ1(p; Ω) |Ω|
r−(p−1)
r+1 C

p
r+1 ,

and hence,

cp ≤
(

1

p
− 1

r + 1

)
λ1(p; Ω)

r+1
r−(p−1) |Ω|. �

Proposition 7.6. For every fixed p > n, the level of mountain pass (7.2) satisfies,

cp ≥
(
r − (p− 1)

p (r + 1)

)(
2|Ω|Cr+1

p

) −p
r−(p−1) > 0

whenever 0 ≤ λ ≤ µ1,p, for µ1,p given by (7.3), and

cp ≥ λ
p
r−q

(
r + 1

q + 1

) p
r−q

 1

pCpp
− 2|Ω|(r + 1)

(p−1)−q
r−q

(
λ

q + 1

) r−(p−1)
r−q

 > 0

whenever µ1,p < λ < µ2,p, for µ2,p given by (7.4).

Proof. As p > n, the Morrey estimate (see Lemma 2.1) implies

Jλ(u) ≥ Φλ

(
‖u‖W 1,p

0 (Ω)

)
for

Φλ(t) = min

{
1

p
tp −

2λ|Ω|Cq+1
p

q + 1
tq+1,

1

p
tp −

2|Ω|Cr+1
p

r + 1
tr+1

}
.

Moreover, we know from Lemma 7.3 that supt>0 Φλ(t) > 0 whenever λ < µ2,p and

Φλ

(
‖γ(1)‖W 1,p

0 (Ω)

)
≤ Jλ(γ(1)) < 0

by definition of Γ. Consequently,

cp = inf
γ∈Γ

sup
s∈[0,1]

Jλ(γ(s)) ≥ sup
t>0

Φλ (t) .

Then, Lemma 7.3 with α = 2 |Ω|Cq+1
p and β = 2 |Ω|Cr+1

p implies the result. �

From Propositions 7.4 and 7.6 we get the following consequence.

Corollary 7.7. Whenever 0 ≤ λ < µ1,p, the level of mountain pass (7.2) satisfies,

lim
p→∞

c1/pp = Λ1(Ω)
R
R−1 .

Proposition 7.8. The positive solution u ∈ W 1,p
0 (Ω) obtained in Theorem 7.2

satisifies the following estimates,

(7.5) ‖u‖∞ ≥
(
cp |Ω|−1 (q + 1)(r + 1)

r − q

) 1
r+1

,

and,

‖∇u‖Lp(Ω) ≥ C−1
p

(
cp |Ω|−1 (q + 1)(r + 1)

r − q

) 1
r+1

,

where cp is the level of mountain pass in (7.2) and Cp is given by (2.1).
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Proof. The second inequality follows easily from the first one using Morrey’s in-
equality, Lemma 2.1. For the proof of the first inequality, let u be the positive
solution obtained in Theorem 7.2. We have that,

cp = Jλ(u)− 1

q + 1
〈J ′λ(u), u〉

implies,

cp +

(
1

q + 1
− 1

p

)∫
Ω

|∇u|p dx =

(
1

q + 1
− 1

r + 1

)∫
Ω

ur+1 dx

Then, Morrey’s inequality implies,

cp +

(
1

q + 1
− 1

p

)
C−pp ‖u‖p∞ ≤

(
1

q + 1
− 1

r + 1

)
|Ω| ‖u‖r+1

∞ .

Using the following elementary inequality for non-negative numbers (see for instance
[5, Section 14.7])

a
1
α b

1
β ≤ a

α
+
b

β
∀β > 1,

1

α
+

1

β
= 1,

we get

(αcp)
1
α

(
β

(
1

q + 1
− 1

p

)
C−pp ‖u‖p∞

) 1
β

≤
(

1

q + 1
− 1

r + 1

)
|Ω| ‖u‖r+1

∞ .

Using that α = β/(β − 1) we get that

‖u‖r+1− pβ
∞ ≥ |Ω|−1

(
1

q + 1
− 1

r + 1

)−1(
βcp
β − 1

) β−1
β
(
β

(
1

q + 1
− 1

p

)
C−pp

) 1
β

As this estimate holds for every β > 1, we can let β →∞ and get the estimate

‖u‖r+1
∞ ≥ cp |Ω|−1

(
1

q + 1
− 1

r + 1

)−1

. �

Remark 7.9. In virtue of Corollary 7.7 we have that the right-hand side of (7.5)

converges as p→∞ to Λ1(Ω)
1

R−1 .

Proposition 7.10. The positive solution u ∈ W 1,p
0 (Ω) obtained in Theorem 7.2

satisifies

(7.6) ‖∇u‖Lp(Ω) ≤
[

2 p (r + 1)

r − (p− 1)

(
cp +

(p− 1)− q
p

A
p

(p−1)−q

)] 1
p

where cp is the level of mountain pass given by (7.2),

A = 2
q+1
p λ|Ω|Cq+1

p

(
(r − q) ((r + 1)(q + 1))

q−(p−1)
p

(r − (p− 1))
q+1
p

)
and Cp is given by (2.1). Moreover,

(7.7) ‖u‖∞ ≤ Cp
[

2 p (r + 1)

r − (p− 1)

(
cp +

(p− 1)− q
p

A
p

(p−1)−q

)] 1
p

.
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Proof. We only prove the first inequality as the second one follows from the first
as a consequence of Morrey’s estimates. Let u be the positive solution obtained in
Theorem 7.2. From,

cp = Jλ(u)− 1

r + 1
〈J ′λ(u), u〉

we get that,(
1

p
− 1

r + 1

)∫
Ω

|∇u|p dx = cp + λ

(
1

q + 1
− 1

r + 1

)∫
Ω

uq+1 dx

≤ cp + λ |Ω|Cq+1
p

(
1

q + 1
− 1

r + 1

)(∫
Ω

|∇u|p dx
) q+1

p

.

From the weighted Young’s inequality with exponents p
(p−1)−q and p

q+1 , we get(
1

p
− 1

r + 1
− ε

p
q+1

(
q + 1

p

))∫
Ω

|∇u|p dx

≤ cp +

(
(p− 1)− q

p

)(
λ

ε
|Ω|Cq+1

p

(
1

q + 1
− 1

r + 1

)) p
(p−1)−q

.

Finally, choosing

ε =

(
r − (p− 1)

2(q + 1)(r + 1)

) q+1
p

we obtain (7.6). �

Remark 7.11. As a consequence of Corollary 7.7, the right-hand side of (7.7) con-

verges as p→∞ to Λ1(Ω)
1

R−1 whenever Λ < Λ̂.

From the previous results and Morrey’s estimates (Lemma 2.1), we get the fol-
lowing result.

Theorem 7.12.

(1) lim
p→∞

µ
1/p
1,p = lim

p→∞
µ

1/p
2,p = Λ̂ = Λ1(Ω)

R−Q
R−1 .

(2) Fix Λ ∈ [0, Λ̂) and a sequence {λp}p such that lim
p→∞

λ
1/p
p = Λ. Then, there

exists p0 for which

0 < λp < µ1,p for every p ≥ p0.

(3) Fix Λ ∈ [0, Λ̂) and let {λp}p be a sequence such that lim
p→∞

λ
1/p
p = Λ. For

p ≥ p0, consider {uλp,p}p, the associated sequence of mountain pass positive
solutions of 

−∆puλp,p = λp u
q(p)
λp,p

+ u
r(p)
λp,p

in Ω

uλp,p > 0 in Ω

uλp,p = 0 on ∂Ω.

Then, up to a subsequence,

uλp,p → uΛ uniformly as p→∞,
with uΛ(x) a viscosity solution to (1.3) with

‖uΛ‖∞ = Λ1(Ω)
1

R−1 .
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-

6

rr‖u‖∞

Λ̂ Λ

(
Λ · Λ1(Ω)−1

) 1
1−Q

Λ1(Ω)
1

R−1

Figure 3. Diagram of solutions of problem (4.1).

Remark 7.13. Notice that the corresponding minimal solution for Λ ∈ [0, Λ̂), wΛ

verifies

‖wΛ‖∞ = (Λ · Λ1(Ω)−1)
1

1−Q < Λ1(Ω)
1

R−1 = ‖uΛ‖∞.
Hence, problem (1.3) has at least two positive viscosity solutions for every Λ ∈
(0, Λ̂), at least one for Λ = 0, Λ̂ and no solution for Λ > Λ̂, see Figure 3.

8. Multiplicity of solutions for the limit problem in special domains

To state the results in this section we need to introduce some notation. We define
the ridge set of Ω,

R = {x ∈ Ω : dist(x, ∂Ω) is not differentiable at x}
= {x ∈ Ω : ∃x1, x2 ∈ ∂Ω, x1 6= x2, s.t. |x− x1| = |x− x2| = dist(x, ∂Ω)}

and its subset M, the set of maximal distance to the boundary,

M =
{
x ∈ Ω : dist(x, ∂Ω) = ‖dist(·, ∂Ω)‖∞

}
.

In the case of Ω a general bounded domain, we have proved in Proposition 5.1
the existence of a curve of minimal solutions for the limit problem (1.3), as well as
several non-existence results in Propositions 4.1, 4.3 and 5.3 (see Figure 2).

Then, in Section 7 we have proved the existence of a second positive solution to
the limit problem (1.3) as a limit of mountain pass solutions.

In this section we are going to show that in bounded domains satisfying the
geometric conditionM≡ R it is possible to find a curve of explicit positive solutions
corresponding to the solutions already found in Sections 6 and 7. Some examples
of domains satisfying the geometric condition are the ball, the annulus and the
stadium (convex hull of two balls of the same radius). A square or an ellipse do not
verify the condition.

Theorem 8.1. Suppose that Ω is a bounded domain such that M ≡ R and let

Λ > 0, 0 < Q < 1 < R and Λ̂ = Λ1(Ω)
R−Q
R−1 as before. Consider the concave-convex
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problem,

(8.1)


min

{
|∇uΛ(x)| −max{ΛuQΛ (x), uRΛ(x)},−∆∞uΛ(x)

}
= 0 in Ω,

uΛ > 0 in Ω

uΛ = 0 on ∂Ω.

and solutions of the form

(8.2) u(x) = a · dist(x, ∂Ω), a > 0.

Then, problem (8.1),

i) Has exactly two viscosity solutions of the form (8.2) for each Λ ∈ (0, Λ̂),

with a1(Λ) =
(
Λ Λ1(Ω)−Q

) 1
1−Q , and a2(Λ) = Λ1(Ω)

R
R−1 .

ii) Has exactly one viscosity solution of the form (8.2) for Λ = 0 and Λ = Λ̂,

both for a = Λ1(Ω)
R
R−1 .

iii) Has no positive viscosity solution if Λ > Λ̂.

Proof. First of all, we are going to check that

−∆∞u(x) = 0 in Ω \ R

in the viscosity sense. Let φ ∈ C2 and x0 ∈ Ω\R such that u−φ has a local maximum
at x0. We can assume u(x0) = φ(x0) and ∇φ(x0) 6= 0. A Taylor expansion, and the
fact that φ touches u from above at x0 yield

−∆∞φ(x0)

|∇φ(x0)|2
+ o(1) ≤ 1

ε2

(
2u(x0)− max

y∈Bε(x0)
u(y)− min

y∈Bε(x0)
u(y)

)
as ε→ 0. From (8.2) we have that

max
y∈Bε(x0)

u(y) = u(x0) + aε, min
y∈Bε(x0)

u(y) = u(x0)− aε

and we deduce that u is ∞-subharmonic in Ω \ R. The proof that it is also ∞-
superharmonic is analogous.

Hence, we need to make sure that

|∇u(x)| −max
{

ΛuQ(x), uR(x)
}
≥ 0 in Ω \ R

in the viscosity sense. Indeed, plugging (8.2) into the latter expression (recall that
x /∈ R so the derivatives are classical), we find that

|∇u(x)| −max
{

ΛuQ(x), uR(x)
}

= a−max
{

Λ aQdist(x, ∂Ω)Q, aRdist(x, ∂Ω)R
}
.

Since we can choose points x /∈ R ≡M arbitrarily close toM, we find the following
necessary condition for a,

(8.3) a−max
{

Λ aQ‖dist(·, ∂Ω)‖Q∞, aR‖dist(·, ∂Ω)‖R∞
}
≥ 0.

Now, we turn our attention to the ridge set R. First, observe that cones as
in (8.2) are always supersolutions of (8.1) in the ridge set, since they cannot be
touched from below with C2 functions at those points.

Hence, we only have to consider the subsolution case. So, let x0 ∈ R and φ ∈ C2

such that u− φ has a local maximum point at x0. We aim to prove that

(8.4) min
{
|∇φ(x0)| −max{ΛuQ(x0), uR(x0)},−∆∞φ(x0)

}
≤ 0.
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Figure 4. When Λ < Λ̂ the equation ΦΛ(t) = 1 has exactly two

solutions t1, t2, a unique solution if Λ = Λ̂ and no solution if Λ > Λ̂.

It is well known (see for instance [18, Lemma 6.10]) that u in (8.2) satisfies

min
{
|∇u(x)| − a,−∆∞u(x)

}
= 0.

Thus, by definition of viscosity subsolution we have that either |∇φ(x0)| ≤ a or
−∆∞φ(x0) ≤ 0. In the latter case, (8.4) holds and there is nothing to prove. Thus,
we can suppose in the sequel that −∆∞φ(x0) > 0 and |∇φ(x0)| ≤ a.

Then, since x0 ∈ R ≡M, we have u(x0) = aΛ1(Ω)−1 and

|∇φ(x0)| −max{ΛuQ(x0), uR(x0)} ≤ a−max{Λ aQΛ1(Ω)−Q, aRΛ1(Ω)−R}.

Recalling (8.3), we discover that the only possibility is

(8.5) a−max{Λ aQΛ1(Ω)−Q, aRΛ1(Ω)−R} = 0.

The rest of the proof is devoted to study the number of positive solutions of this
equation.

We rewrite (8.5) as ΦΛ(a) = 1 where ΦΛ : R+ → R+ is given by

ΦΛ(a) = max{Λ Λ−Q1 aQ−1,Λ−R1 aR−1}.

It is elementary to check that the function ΦΛ is positive, convex and has a minimum

point at amin = Λ1 Λ
1

R−Q (where the function is not differentiable). Notice that
lima→∞ΦΛ(a) = lima→0 ΦΛ(a) = ∞, so the minimum is a global minimum (see
Figure 4). Such a minimum value is given by

min
a>0

ΦΛ(a) = Φ(amin) = Λ−1
1 Λ

R−1
R−Q .

Given the geometry of ΦΛ, the equation ΦΛ(a) = 1 will not have solutions if

Φ(amin) = Λ−1
1 Λ

R−1
R−Q > 1 ⇔ Λ > Λ̂,

which is coherent with Proposition 4.3, where statement (iii) is proved. If Λ = Λ̂,

we have Φ(amin) = 1 and the equation has a single solution a = Λ
R
R−1

1 . In the case

0 < Λ ≤ Λ̂ the equation ΦΛ(a) = 1 will have two different solutions, namely,

a1 =
(
Λ · Λ1(Ω)−Q

) 1
1−Q , a2 = Λ1(Ω)

R
R−1 .
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Finally, if Λ = 0, it is easy to obtain the existence of a single solution which coincides

with a2 = Λ1(Ω)
R
R−1 . �
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Universidad Complutense de Madrid 10 (1997), pp. 1-9.
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