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ZERO ORDER PERTURBATIONS TO FULLY NONLINEAR

EQUATIONS: COMPARISON, EXISTENCE AND UNIQUENESS

FERNANDO CHARRO AND IRENEO PERAL

Abstract. We study existence of solutions to
8

>

<

>

:

F (∇u, D2u) = f(λ, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where F is elliptic and homogeneous of degree m, and either f(λ, u) = λuq or
f(λ, u) = λuq + ur , for 0 < q < m < r, and λ > 0. Furthermore, in the first
case we obtain that the solution is unique as a consequence of a comparison
principle up to the boundary. Several examples, including uniformly elliptic
operators and the infinity laplacian are considered.

1. Introduction

We study elliptic problems of the type

(1.1)











F (∇u,D2u) = f(λ, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

under suitable hypotheses of ellipticity and structure on F . In general we will con-
sider a function F : R

n × Sn → R, verifying:

(F1) Degenerate Ellipticity: For every p ∈ R
n, F (p,X) ≤ F (p, Y ) whenever

Y ≤ X , with X,Y ∈ Sn.
(F2) H omogeneity of degreem: F (tp, tX) = tm ·F (p,X) for all t > 0. We further

assume F (0, 0) = 0.

Our main concern is with the existence of nontrivial solutions (in the viscosity
sense) for right hand sides

f1(λ, u) = λuq and f2(λ, u) = λuq + ur,

for 0 < q < m < r, with m the degree of homogeneity of F .
Our main result, Theorem 2.1, is a comparison result up to the boundary for

problems with a right hand side satisfying

(1.2)
f(t)

tq
> 0 is non-increasing for all t > 0 and some 0 < q < m,

which can be interpreted as a viscosity counterpart for fully nonlinear equations
of the comparison result by Brezis-Oswald in the variational setting (see [9] and
also [8]). Notice that f1 verifies (1.2). In particular the comparison result up to the
boundary yields uniqueness of positive viscosity solutions of (1.1) if f fulfills (1.2).
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Since f
1
m

1 is a concave power, we will refer to this problem as a concave problem.
To avoid any ambiguity, it is worth to emphasize that we are not assuming any
concavity property on F .

Similarly, the case with f2 will be referred to as a concave-convex problem. The
main result in this case shows that there exists Λ > 0 such that (1.1) has at least
one nontrivial solution for λ ∈ (0,Λ) and does not have any nontrivial viscosity
solution for λ > Λ.

The uniqueness of solutions in the concave case has been studied in some partic-
ular cases, such as the p-laplacian in the variational framework (see for instance [1]
and the references therein) and, in the viscosity framework, fully nonlinear equations
arising as a limit of p-laplacian type equations (see [14]) and k-hessian equations
(see [20]). Our main goal is to show that this is a general fact for equations given
by a homogeneous F . For the proof of existence in both cases, with f1 and f2, we
follow the elementary ideas in [7].

The paper is organized as follows. In Section 2, the main comparison result
(Theorem 2.1) is established. As an application, if F satisfies (F1) and (F2) above
and f is under hypothesis (1.2), we obtain uniqueness of solutions for problem (1.1).

In Section 3, we prove the existence of solutions for both f1 and f2 when F is
uniformly elliptic, which implies m = 1. In the case with f1, our result is included in
Theorem 6 in [6]. However, we provide an alternative proof based on the comparison
result in Theorem 2.1 and the simple construction in [7].

Again by using the monotonicity argument in [7] we are able to prove the ex-
istence for a concave-convex right hand side f2. We can find a related existence
result for Pucci’s operators in [10], where it is considered a right hand side of the
type f(u) = λu + g(λ, u) with g continuous and g(λ, s) = o(|s|) as s → 0, and
bifurcation (from the eigenvalues) techniques are used. However, in our case the
solutions branch off from (0, 0) since the concave part is not differentiable at 0. In
the p-Laplacian case this kind of behavior was studied in [2].

Finally, in Section 4, we extend the simple techniques in Section 3 to some non-
uniformly elliptic problems which have degree of homogeneity greater than one
such as the infinity laplacian (with both normalizations), a context in which these
results are new, and Monge-Ampere equations, for which we obtain some extension
of known results. See for instance [20] where different methods are used. Other
examples considered range from the linear problem with variable coefficients to the
p-laplacian, or the equation

min{|∇u| − λuq,−∆∞u} = 0,

already considered in [14].

2. Some comparison results

The following comparison principle is the main result of this section.

Theorem 2.1. Let Ω ⊂ R
n be a bounded domain and consider a viscosity subsolu-

tion u and a supersolution v of

(2.1) F (∇w,D2w) = f(w) in Ω,

where F : R
n × Sn → R satisfies (F1), (F2) for some m, and f(·) satisfy

(2.2)
f(t)

tq
> 0 is non-increasing for all t > 0 and some 0 < q < m.

Suppose that both, u and v are strictly positive in Ω, continuous up to the boundary
and satisfy u ≤ v on ∂Ω. Then, u ≤ v in Ω.



ZERO ORDER PERTURBATIONS TO FULLY NONLINEAR EQUATIONS 3

As a consequence, we have the following uniqueness result for the Dirichlet prob-
lem.

Corollary 2.2. The problem

(2.3)











F (∇u,D2u) = f(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

with F verifying (F1) and (F2) for some m, and f verifying (2.2), has at most one
positive viscosity solution.

Notice that our equation, written in the form G(w,∇w,D2w) = 0 with

G : R × R
n × Sn −→ R

(r, p,X) −→ F (p,X) − f(r),

is not proper (in the sense of [16]) since f may fail to be non-increasing in r, and
it is consequently out of the scope of the general theory in [16].

Let us point out that a logarithmic change of variables w̃ = log(w), can be used
to transform the equation into

F
(

∇w̃,D2w̃ + ∇w̃ ⊗∇w̃
)

= e−m w̃ · f
(

ew̃
)

in Ω,

which is proper, either under the hypothesis

f(t)

tq
is strictly decreasing ∀t > 0 and some 0 < q < m,

or
f(t)

tm
is strictly decreasing ∀t > 0,

the precise assumption in [9].
Then it is possible to show comparison using standard arguments (see [16], [21],

and [23]). However, strict positivity of the supersolution is needed in the whole Ω in
order to carry out the proof. Hence the above argument is not sufficient to conclude
uniqueness of nontrivial solutions of (2.3).

Thus, we instead follow the change of variables and subsequent ideas in [14] to
prove comparison up to the boundary even under zero boundary data.

Lemma 2.3. Let w > 0 be a supersolution (subsolution) of problem (2.1) in Ω and
consider some q < m for which (2.2) holds. Then,

w̃(x) =
1

1 − q
m

· w1− q
m (x)

is a viscosity supersolution (subsolution) of

(2.4) F
(

∇w̃,D2w̃ +
q

m− q

∇w̃ ⊗∇w̃

w̃

)

=

f

(

[

(

1 − q
m

)

w̃(x)
]

1

1−
q
m

)

[

(

1 − q
m

)

w̃(x)
]

q

1−
q
m

,

in every Ω∗ such that Ω∗ ⊂ Ω.

Proof. Let us denote q̃ = q/m for simplicity. Consider φ̃ ∈ C2(Ω), a function touch-

ing w̃(x) from below at x0 ∈ Ω and define φ(x) =
[

(1− q̃) φ̃(x)
]

1
1−q̃

, which touches

w(x) from below at x0. Notice that φ(x) is C2 in a neighborhood of x0 since w > 0
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in Ω implies φ̃(x) > 0 near x0. We can compute the derivatives of φ(x) in terms of

those of φ̃(x)

∇φ(x0) =
[

(1 − q̃) φ̃(x0)
]

q̃
1−q̃

∇φ̃(x0),

D2φ(x0) =
[

(1 − q̃) φ̃(x0)
]

q̃
1−q̃
(

D2φ̃(x0) +
q̃

1 − q̃

∇φ̃(x0) ⊗∇φ̃(x0)

φ̃(x0)

)

.

As w is a viscosity solution of (2.1), we have that

f
(

[

(1 − q̃)w̃(x0)
]

1
1−q̃

)

= f
(

w(x0)
)

≤ F
(

∇φ(x0), D
2φ(x0)

)

=
[

(1 − q̃) φ̃(x0)
]

q̃m
1−q̃ · F

(

∇φ̃(x0), D
2φ̃(x0) +

q̃

1 − q̃

∇φ̃(x0) ⊗∇φ̃(x0)

φ̃(x0)

)

,

by homogeneity. Since w̃(x0) = φ̃(x0), we conclude that ũ is a viscosity supersolu-
tion of (2.4). The subsolution case is analogous. �

The function giving rise to equation (2.4), namely,

G̃ : R
+ × R

n × Sn −→ R

(r, p,X) −→ F

(

p,X +
q

m− q

p⊗ p

r

)

−

f

(

[

(

1 − q
m

)

r
]

1
1−

q
m

)

[

(

1 − q
m

)

r
]

q

1−
q
m

,

is both degenerate elliptic and proper. In the following lemma, we show that it is
possible to construct strict supersolutions starting from any positive supersolution.

Lemma 2.4. Let ṽ(x) > 0 be a viscosity supersolution of (2.4) in Ω∗ such that
Ω∗ ⊂ Ω. Then, for any ǫ > 0,

(2.5) ṽǫ(x) = (1 + ǫ) ·
(

ṽ(x) + ǫ
)

,

is a strict supersolution of the same equation; indeed,

(2.6) F
(

∇ṽǫ, D
2ṽǫ +

q

m− q

∇ṽǫ ⊗∇ṽǫ

ṽǫ

)

≥ (1 + ǫ)m ·
f
([

(

1 − q
m

)

ṽǫ(x)
]

1

1−
q
m

)

[

(

1 − q
m

)

ṽǫ(x)
]

q

1−
q
m

.

Moreover, ṽǫ → v uniformly in Ω∗ as ǫ→ 0.

Proof. Let φ ∈ C2 be a function touching ṽǫ(x) from below in some x0 ∈ Ω∗. We
define

Φ(x) =
1

1 + ǫ
φ(x) − ǫ,

which clearly touches ṽ(x) from below in x0. We can compute the derivatives of
Φ(x) in terms of those of φ(x), this is

(2.7) ∇Φ(x0) = (1 + ǫ)−1 ∇φ(x0) and D2Φ(x0) = (1 + ǫ)−1D2φ(x0).

Since ṽ(x) is a viscosity supersolution of (2.4) in Ω∗, we deduce

f
([

(

1 − q
m

)

ṽ(x0)
]

1
1−

q
m

)

[

(

1 − q
m

)

ṽ(x0)
]

q

1−
q
m

≤ F
(

∇Φ(x0), D
2Φ(x0) +

q

m− q

∇Φ(x0) ⊗∇Φ(x0)

ṽ(x0)

)

=
1

(1 + ǫ)m
F
(

∇φ(x0), D
2φ(x0) +

q

m− q

∇φ(x0) ⊗∇φ(x0)
(

ṽǫ(x0) − ǫ(1 + ǫ)
)

)

.
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Notice that our hypothesis (2.2) implies

f
([

(

1 − q
m

)

ṽ(x0)
]

1
1−

q
m

)

[

(

1 − q
m

)

ṽ(x0)
]

q

1−
q
m

≥
f
([

(

1 − q
m

)

ṽǫ(x0)
]

1
1−

q
m

)

[

(

1 − q
m

)

ṽǫ(x0)
]

q

1−
q
m

.

Since

D2φ(x0) +
q

m− q

∇φ(x0) ⊗∇φ(x0)
(

ṽǫ(x0) − ǫ(1 + ǫ)
) ≥ D2φ(x0) +

q

m− q

∇φ(x0) ⊗∇φ(x0)

ṽǫ(x0)

in the matrix sense, we get (2.6) by degenerate ellipticity. For the second statement,
notice that

‖ṽǫ − v‖L∞(Ω∗) ≤ ǫ ‖ṽ‖L∞(Ω) + ǫ (1 + ǫ). �

Proof of Theorem 2.1. Since u− v ∈ C(Ω) and Ω is compact, u− v attains a maxi-
mum at Ω. In order to arrive at a contradiction, we suppose that maxΩ(u− v) > 0.
Consider

(2.8) ũ(x) =
u(x)1−

q
m

1 − q
m

and ṽ(x) =
v(x)1−

q
m

1 − q
m

,

and define

(2.9) ṽǫ(x) = (1 + ǫ) ·
(

ṽ(x) + ǫ
)

.

Notice that, since (u− v)|∂Ω ≤ 0, we have

ũ− ṽǫ = ũ− (1 + ǫ) ṽ − (1 + ǫ) ǫ < 0 on ∂Ω.

Furthermore, by uniform convergence, we have maxΩ(ũ−ṽǫ) > 0 for ǫ small enough,

and hence, we can fix ǫ > 0 and suppose that there exists Ω∗ with Ω∗ ⊂ Ω containing
all the maximum points of ũ − ṽǫ. We have proved in Lemmas 2.3 and 2.4 that ũ
and ṽǫ are respectively a subsolution and a strict supersolution of (2.4) in Ω∗.

Now, for each τ > 0, let (xτ , yτ ) be a maximum point of ũ(x)− ṽǫ(y)−
τ
2 |x− y|2

in Ω × Ω. By the compactness of Ω, we can suppose that xτ → x̂ as τ → ∞ for
some x̂ ∈ Ω (notice that also yτ → x̂). Proposition 3.7 in [16] implies that x̂ is a
maximum point of ũ − ṽǫ and, consequently, it is an interior point of Ω∗. We also
have

lim
τ→∞

(

ũ(xτ ) − ṽǫ(yτ ) −
τ

2
|xτ − yτ |

2
)

= ũ(x̂) − ṽǫ(x̂) > 0,

and then, for τ large enough, both xτ and yτ are interior points of Ω∗ and

(2.10) ũ(xτ ) − ṽǫ(yτ ) −
τ

2
|xτ − yτ |

2 > 0.

Applying the Maximum Principle for semicontinuous functions (see for instance,
[15] and [16]), there exist two symmetric matrices Xτ , Yτ such that

(

τ(xτ − yτ ), Xτ

)

∈ J
2,+
ũ(xτ ), and

(

τ(xτ − yτ ), Yτ

)

∈ J
2,−

ṽǫ(yτ ),

and

(2.11) 〈Xτξ, ξ〉 − 〈Yτη, η〉 ≤ 3τ |ξ − η|2 ∀ξ, η ∈ R
n.

Where, following [16],

J2,+w(x̂) =
{

(p,X) ∈ R
n×Sn : φ(x) = w(x̂) + 〈p, (x− x̂)〉

+
1

2

〈

X(x− x̂), (x − x̂)
〉

touches w from above in x̂
}

,

J2,−w(x̂) =
{

(p,X) ∈ R
n×Sn : ψ(x) = w(x̂) + 〈p, (x− x̂)〉

+
1

2

〈

X(x− x̂), (x − x̂)
〉

touches w from below in x̂
}

,
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and their closures,

J
2,+
w(x̂) =

{

(p,X) ∈ R
n × Sn : ∃xn ∈ Br(x̂), (pn, Xn) ∈ J2,+w(xn)

s.t. (xn, pn, Xn) → (x̂, p,X) as n→ ∞
}

,

J
2,−

w(x̂) =
{

(p,X) ∈ R
n × Sn : ∃xn ∈ Br(x̂), (pn, Xn) ∈ J2,−w(xn)

s.t. (xn, pn, Xn) → (x̂, p,X) as n→ ∞
}

.

By definition of viscosity sub- and supersolution (see [16]), we have

F

(

τ(xτ − yτ ), Xτ +
q

m− q

τ2(xτ − yτ ) ⊗ (xτ − yτ )

ũ(xτ )

)

≤
f
([

(

1 − q
m

)

ũ(xτ )
]

1
1−

q
m

)

[

(

1 − q
m

)

ũ(xτ )
]

q

1−
q
m

,

(2.12)

and

F

(

τ(xτ − yτ ), Yτ +
q

m− q

τ2(xτ − yτ ) ⊗ (xτ − yτ )

ṽǫ(yτ )

)

≥ (1 + ǫ)m ·
f
([

(

1 − q
m

)

ṽǫ(yτ )
]

1
1−

q
m

)

[

(

1 − q
m

)

ṽǫ(yτ )
]

q

1−
q
m

.

(2.13)

Since ṽǫ(yτ ) < ũ(xτ ) and Xτ ≤ Yτ , from (2.10) and (2.11) respectively, we have

Xτ +
q

m− q

τ2(xτ − yτ ) ⊗ (xτ − yτ )

ũ(xτ )
≤ Yτ +

q

m− q

τ2(xτ − yτ ) ⊗ (xτ − yτ )

ṽǫ(yτ )

in the sense of matrices. Subtracting (2.12) from (2.13), by hypothesis (2.2) and
degenerate ellipticity, we have

0 <
[

(1 + ǫ)m − 1
]

·
f
([

(

1 − q
m

)

ṽǫ(yτ )
]

1
1−

q
m

)

[

(

1 − q
m

)

ṽǫ(yτ )
]

q

1−
q
m

≤ (1 + ǫ)m ·
f
([

(

1 − q
m

)

ṽǫ(yτ )
]

1
1−

q
m

)

[

(

1 − q
m

)

ṽǫ(yτ )
]

q

1−
q
m

−
f
([

(

1 − q
m

)

ũ(xτ )
]

1
1−

q
m

)

[

(

1 − q
m

)

ũ(xτ )
]

q

1−
q
m

≤ F

(

τ(xτ − yτ ), Yτ +
q

m− q

τ2(xτ − yτ ) ⊗ (xτ − yτ )

ṽǫ(yτ )

)

− F

(

τ(xτ − yτ ), Xτ +
q

m− q

τ2(xτ − yτ ) ⊗ (xτ − yτ )

ũ(xτ )

)

≤ 0,

a contradiction. �

We also provide the following simple result, which turns out to be very useful
when proving existence of solutions.

Theorem 2.5. Let Ω ⊂ R
n be a bounded domain and consider f ∈ C(Ω) with f > 0

in Ω, and F : R
n ×Sn → R satisfying (F1) and (F2) for some m. Let u, v ∈ C(Ω),

respectively a viscosity sub- and supersolution of

F (∇w,D2w) = f(x) in Ω.

Assume u ≤ v on ∂Ω, then u ≤ v in Ω.
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Proof. Without loss of generality, we can assume v ≥ 0 in Ω, since adding a constant
to both u and v does not affect the problem. Now, let vǫ(x) = (1 + ǫ) v(x). By
homogeneity, vǫ is a strict supersolution, indeed,

(2.14) F (∇vǫ, D
2vǫ) ≥ (1 + ǫ)m f(x) > f(x) and u− vǫ ≤ 0 on ∂Ω.

Now, we argue by contradiction. Suppose that there exists x0 ∈ Ω such that

(u− vǫ)(x0) = max
Ω

(u− vǫ) > 0.

Then, (2.14) implies x0 /∈ ∂Ω. As in the proof of Theorem 2.1, one finds xτ , yτ → x0

and symmetric matrices Xτ , Yτ such that
(

τ(xτ − yτ ), Xτ

)

∈ J
2,+
u(xτ ) and

(

τ(xτ − yτ ), Yτ

)

∈ J
2,−

vǫ(yτ ),

with Xτ ≤ Yτ . Then, by definition of viscosity sub- and supersolution, we have

F
(

τ(xτ − yτ ), Xτ

)

≤ f(xτ ),

and

F
(

τ(xτ − yτ ), Yτ

)

≥ (1 + ǫ)mf(yτ ).

Then, by degenerate ellipticity, we have

(1 + ǫ)mf(yτ ) − f(xτ ) ≤ F
(

τ(xτ − yτ ), Yτ

)

− F
(

τ(xτ − yτ ), Xτ

)

≤ 0.

Letting τ → ∞, we have, by continuity,

0 <
(

(1 + ǫ)m − 1
)

f(x0) ≤ 0,

a contradiction. Thus, u ≤ vǫ in Ω, and, letting ǫ→ 0, we get u ≤ v in Ω. �

3. Existence of solutions to uniformly elliptic equations

For simplicity, let us assume that Ω is a smooth domain. In some results we will
indicate a relaxation of such regularity hypothesis without looking for the optimal
hypotheses.

Assume that F : R
n ×Sn → R satisfies (F2) for m = 1 and upgrade (F1) to the

following uniform ellipticity condition:

(F1′) There exist constants 0 < θ ≤ Θ such that for all X,Y ∈ Sn with Y ≥ 0,

−Θ trace(Y ) ≤ F (p,X + Y ) − F (p,X) ≤ −θ trace(Y )

for every p ∈ R
n.

Notice that the uniform ellipticity forces m = 1.
We further require the following structure condition:

(F3) There exists γ > 0 such that, for all X,Y ∈ Sn, and p, q ∈ R
n,

P−
θ,Θ(X − Y ) − γ |p− q| ≤ F (p,X) − F (q, Y ) ≤ P+

θ,Θ(X − Y ) + γ |p− q|,

where P±
θ,Θ are the extremal Pucci’s operators defined as

P+
θ,Θ(M) = −θ

∑

λi>0

λi(M) − Θ
∑

λi<0

λi(M),

P−
θ,Θ(M) = −Θ

∑

λi>0

λi(M) − θ
∑

λi<0

λi(M),

with λi(M), i = 1, . . . n, the eigenvalues of M . Indeed,

P−
θ,Θ(M) = inf

A∈Aθ,Θ

{−trace (AM)} , P+
θ,Θ(M) = sup

A∈Aθ,Θ

{−trace (AM)}

for

Aθ,Θ =
{

A ∈ Sn : θ|ξ|2 ≤ 〈Aξ, ξ〉 ≤ Θ|ξ|2 ∀ξ ∈ R
n
}

.
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We will quote several results from [11] along this work. Notice that in [11], Pucci’s
operators are defined with a different sign convention. Both definitions are related
through the following expressions

M−(M, θ,Θ) = −P+
θ,Θ(M), M+(M, θ,Θ) = −P−

θ,Θ(M),

where M±(M, θ,Θ) is the notation used in [11].

Remark 3.1. As it is pointed out in [13], the structure condition (F3) when p = q
is nothing but uniform ellipticity.

We state the existence and uniqueness of nontrivial solutions for every λ > 0 of










F (∇u,D2u) = λuq in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where 0 < q < 1.
Then, we consider 0 < q < 1 < r and the problem











F (∇u,D2u) = λuq + ur in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

We prove the existence of a value Λ > 0 such that there exists a nontrivial solution
for λ ∈ (0,Λ), and any nontrivial solution otherwise.

The mentioned results rely on a monotone iteration method and the analysis of
simpler auxiliary problems for which showing the existence of solutions is easier. We
point out that our results can be extended to m-homogeneous degenerate elliptic
equations, merely satisfying (F1) and (F2). We will give examples of this issue in
the next section.

3.1. Existence of solutions for the problem with a concave power. Assume
that F : R

n ×Sn → R satisfies the above hypotheses. We are interested in studying
the existence of nontrivial solutions to

(3.1)











F (∇uλ, D
2uλ) = λuq

λ in Ω,

uλ > 0 in Ω,

uλ = 0 on ∂Ω,

where 0 < q < 1 and λ > 0. The following is our main result in this section.

Theorem 3.2. Let Ω ⊂ R
n be a bounded smooth domain, F : R

n×Sn → R satisfies
(F1′), (F2) for m = 1 and (F3) with 0 < q < 1. Then, there exists a unique solution
to (3.1) for every λ > 0 given by

(3.2) uλ(x) = λ
1

1−q u1(x),

where u1 is the solution with λ = 1.

Notice that (3.2) is a smooth curve of solutions with respect to λ. By homogene-
ity, it is enough to prove the result for λ = 1, namely,

(3.3)











F (∇u1, D
2u1) = uq

1 in Ω,

u1 > 0 in Ω,

u1 = 0 on ∂Ω.
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In order to obtain positive sub and supersolutions to problem (3.3), we introduce
the following auxiliary problems,

(3.4)











F (∇v,D2v) = 1 in Ω,

v > 0 in Ω,

v = 0 on ∂Ω,











F (∇w,D2w) = d(x) in Ω,

w > 0 in Ω,

w = 0 on ∂Ω,

where d(x) is the normalized distance to the boundary, namely,

d(x) =
dist(x, ∂Ω)

‖dist(·, ∂Ω)‖∞
.

Our construction rely on the following fact.

Proposition 3.3. Both auxiliary problems in (3.4) have a unique viscosity solution.

Proof. We show the existence of w, since the proof for v is similar. First, notice that
0 is a subsolution to our problem. Next, we are going to construct a supersolution
following Proposition 3.2 in [17]. Let U be the unique viscosity solution to

{

P−
θ,Θ(D2U) − γ |∇U | = 1 in Ω,

U = 0 on ∂Ω.

We point out that here it is enough to have an exterior cone condition on Ω. The
structure condition (F3) implies

F (∇U,D2U) ≥ P−
θ,Θ(D2U) − γ |∇U | = 1 ≥ d(x)

in the viscosity sense. Hence 0 ≤ w ≤ U by comparison, (Theorem 2.5) and, we can
invoke the Perron method (see for instance, Theorem 4.1 in [16]) to get that there
exists a unique w such that

{

F (∇w,D2w) = d(x) in Ω,

w = 0 on ∂Ω.

For the strict positivity of w, notice that w ≥ 0 by construction and w 6= 0 (we get
a contradiction with the equation otherwise). Since

P+
θ,Θ(D2w) + γ |∇w| ≥ F (∇w,D2w) = d(x) > 0

in the viscosity sense, the weak Harnack inequality (an adaptation of Theorem 4.8
in [11] using the ABP estimate in Proposition 2.12 in [13]) implies w > 0 in Ω. �

Next, we use v, w, the solutions to the auxiliary problems, to construct a subso-
lution and a supersolution to (3.3).

Lemma 3.4. u(x) = ‖v‖
q

1−q
∞ · v(x) is a viscosity supersolution of (3.3).

Proof. We denote T = ‖v‖
q

1−q
∞ for brevity. By homogeneity and the definition of v,

we have

F (∇u,D2u) = T · F (∇v,D2v) = T,

in the viscosity sense while, by definition of T , we have uq ≤ T q‖v‖q
∞ = T . �

Now, we are going to construct a subsolution to (3.3).

Lemma 3.5. There exists δ > 0 small enough, such that

u(x) = t · w(x)

is a viscosity subsolution of (3.3) for every t ∈
(

0, δ
)

.
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Proof. By definition, we have

F (∇u,D2u) = t · F (∇w,D2w) = t d(x).

Indeed, t d(x) ≤ uq(x) since this is equivalent to t1−q d(x) ≤ wq(x), which holds
for all t < δ small enough by the Hopf boundary lemma (Proposition A.1 in the
Appendix below). �

At this stage, the comparison principle (Theorem 2.1), and Lemmas 3.4 and 3.5
allow us to invoke the Perron method (Theorem 4.1 in [16]), which completes the
proof of Theorem 3.2.

Remark 3.6. Theorem 3.2 remains true for domains for which Hopf’s Lemma holds
and it is possible to construct a barrier in each point of the boundary in problems
(3.4) (for instance if Ω satisfies both an interior sphere and an uniform exterior
cone condition).

3.2. Study of a concave-convex problem. Consider F : R
n ×Sn → R as in the

previous section, namely, satisfying (F1′), (F2) and the structure condition (F3).
Now, our goal is to study the existence and non-existence of viscosity solutions of
the problem,

(3.5)











F (∇u,D2u) = λuq + ur in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where 0 < q < 1 < r and λ > 0.

3.2.1. Existence of solutions for small λ. The present section is devoted to the
proof of the following result, which extends the arguments in [7] to the viscosity
framework.

Theorem 3.7. Consider a smooth bounded domain Ω ⊂ R
n and let F : R

n×Sn →
R satisfy (F1′), (F2) with m = 1, and (F3). Then, there exists a constant λ0 > 0
such that, for every λ ∈ (0, λ0], problem (3.5) has at least one nontrivial viscosity
solution.

Since the scaling property (3.2) is not available for problem (3.5), let us consider
for every λ > 0 the following variant of the auxiliary problems in Section 3

(3.6)











F (∇vλ, D
2vλ) = λ in Ω,

vλ > 0 in Ω,

vλ = 0 on ∂Ω,











F (∇wλ, D
2wλ) = λd(x) in Ω,

wλ > 0 in Ω,

wλ = 0 on ∂Ω,

where d(x) is the normalized distance to the boundary, namely,

d(x) =
dist(x, ∂Ω)

‖dist(·, ∂Ω)‖∞
.

Notice that, by homogeneity,

(3.7) vλ(x) = λ · v1(x),

where v1 is the solution to (3.4). A similar relation holds for wλ. Then, Proposition
3.3 gives existence of a unique viscosity solution to both auxiliary problems in (3.6).

Now, we are able to construct a supersolution to (3.5).
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Lemma 3.8. There exists λ0 > 0 such that ∀λ ∈ (0, λ0] we can find a constant
T (λ) such that

uλ(x) = T (λ) · vλ(x)

is a viscosity supersolution of (3.5). In fact,

(3.8) λ0 = (r − 1)

(

(1 − q)1−q

[

‖v1‖∞(r − q)
]r−q

)
1

r−1

,

and

T (λ) =
1

‖v1‖∞

(

1 − q

r − 1

)
1

r−q

λ
q−r+1
(r−q) .

Proof. On the one hand, by homogeneity and the definition of vλ, we have

F (∇uλ, D
2uλ) = T (λ)F (∇vλ, D

2vλ) = T (λ)λ.

On the other hand, using (3.7), one has

λ
(

uλ

)q
+
(

uλ

)r
≤ λ1+qT (λ)q‖v1‖

q
∞ + λrT (λ)r‖v1‖

r
∞.

Thus, we will be done whenever

(3.9) λ1+qT (λ)q‖v1‖
q
∞ + λrT (λ)r‖v1‖

r
∞ ≤ T (λ)λ.

To prove (3.9) is equivalent to demonstrate that

Φλ(T ) ≤ 1, with Φλ(T ) = cqλqT q−1 + crλr−1T r−1,

where c = ‖v1‖∞ for brevity. Indeed, we are going to show that, for λ small enough,
the minimum of Φλ is smaller than 1. It is easy to check that

d

dT
Φλ(T ) = 0 ⇔ T (λ) =

1

c

(

1 − q

r − 1

)
1

r−q

λ
q−r+1
(r−q) ,

which, indeed, is a minimum of Φλ. Since we want

Φλ(T (λ)) = c λ
r−1
r−q

(

r − q

r − 1

)(

1 − q

r − 1

)
q−1
r−q

≤ 1,

we get, after a simple calculation, that

λ ≤ λ0,

where λ0 is given by (3.8). �

Now, we are going to construct a subsolution of (3.5).

Lemma 3.9. Let 0 < q < 1 < r. Then, for every λ > 0, there exists δ(λ) > 0 small
enough such that

uλ(x) = t wλ(x)

is a viscosity subsolution of (3.5) for every t ∈
(

0, δ(λ)
)

.

Proof. By definition, we have

F (∇uλ, D
2uλ) = t · F (∇wλ, D

2wλ) = t λ d(x)

where

d(x) =
dist(x, ∂Ω)

‖dist(·, ∂Ω)‖∞
.

If it is true that
t λ d(x) ≤ λuq

λ + ur
λ,

we are done. This is equivalent to

t1−q d(x) ≤ wq
λ +

1

λ
tr−qwr

λ.
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Hopf’s lemma (Proposition A.1) implies that, fixed λ > 0, we can find δ(λ) small
enough such that the above is true for all t < δ. �

Finally, we have the following ordering result.

Lemma 3.10. For all λ ∈ (0, λ0], and uλ, uλ as in Lemmas 3.8 and 3.9, there is
a small enough t as in Lemma 3.9 such that

uλ ≤ uλ in Ω.

Proof. On the boundary uλ = uλ = 0, while

F (∇uλ, D
2uλ) = t λ d(x) ≤ T (λ)λ ≤ F (∇uλ, D

2uλ) in Ω,

by definition of uλ, uλ. Then, Theorem 2.5 gives the desired result. �

Now, we can finish the proof of the main Theorem.

Proof of Theorem 3.7. Let λ0 be given by Lemma 3.8, and fix λ ∈ (0, λ0]. Applying
Lemmas 3.8, 3.9, and 3.10, we get that there exist constants T (λ) and t ∈

(

0, δ(λ)
)

such that uλ(x) = T (λ) vλ(x) and uλ(x) = t · wλ(x) are, respectively, a viscosity
super- and subsolution and moreover uλ ≤ uλ in Ω. For simplicity, we will drop the
λ and write u and u hereafter. Now, define w1(x), the solution to

{

F (∇w1, D
2w1) = λuq + ur in Ω,

w1 = 0 on ∂Ω,

in the viscosity sense. For brevity, all the equations and inequalities in the sequel
will stand in the viscosity sense without any further reference. Hence, by definition,

F (∇u,D2u) ≥ λuq + ur and F (∇w1, D
2w1) = λuq + ur,

with w1 = u = 0 on ∂Ω. Theorem 2.5 implies w1 ≤ u in Ω. Moreover, since u ≤ u,
we get

F (∇u,D2u) ≤ λuq + ur ≤ λuq + ur and F (∇w1, D
2w1) = λuq + ur,

with u = w1 = 0 on ∂Ω. Hence, by comparison (Theorem 2.5), we get u ≤ w1 in Ω
and, combining both estimates,

u ≤ w1 ≤ u in Ω.

Next, define w2 as the solution to
{

F (∇w2, D
2w2) = λwq

1 + wr
1 in Ω,

w2 = 0 on ∂Ω.

Then one has

F (∇w2, D
2w2) = λwq

1 + wr
1 ≤ λuq + ur and F (∇w1, D

2w1) = λuq + ur,

where w2 = w1 = 0 on ∂Ω. By comparison (Theorem 2.5), w2 ≤ w1 in Ω. On the
other hand, u ≤ w1 implies

F (∇u,D2u) ≤ λuq + ur ≤ λwq
1 + wr

1 and F (∇w2, D
2w2) = λwq

1 + wr
1 ,

and u = w2 = 0 on ∂Ω. Hence, u ≤ w2 in Ω and then

u ≤ w2 ≤ w1 ≤ u in Ω.

We can iterate the above procedure and construct a sequence {wk}k≥1 of solu-
tions to

(3.10)

{

F (∇wk, D
2wk) = λwq

k−1 + wr
k−1 in Ω,

wk = 0 on ∂Ω.
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such that
u ≤ . . . ≤ wk ≤ wk−1 ≤ . . . ≤ w2 ≤ w1 ≤ u in Ω.

In particular, for every x ∈ Ω, the sequence {wk(x)}k≥1 is bounded and nonincreas-
ing and hence convergent. We denote u(x) this pointwise limit of the wk.

By the structure condition (F3) and the definition of wk on the boundary, we
have

{

P+
θ,Θ(D2wk) + γ |∇wk| ≥ λwq

k−1 + wr
k−1,

wk = 0 on ∂Ω,

and
{

P−
θ,Θ(D2wk) − γ |∇wk| ≤ λwq

k−1 + wr
k−1,

wk = 0 on ∂Ω.

By construction,

‖λwq
k−1 + wr

k−1‖Ln(Ω) ≤ ‖λuq + ur‖Ln(Ω), ∀k ≥ 1.

Thus, we can adapt Proposition 4.14 and Remark 6 in [11] using the ABP es-
timate in [13] and then, deduce that there exists a modulus of continuity ρ∗ inde-
pendent of k such that

|wk(x) − wk(y)| ≤ ρ∗(|x− y|), ∀x, y ∈ Ω.

Hence, the sequence {wk} is uniformly bounded and equicontinuous and, as a con-
sequence of the Arzela-Ascoli compactness criterion, there exists a subsequence wkj

such that wkj
converges uniformly to u in Ω. Since the sequence is monotone, not

only the subsequence but the whole sequence {wk} converges to u.
Finally, it is easy to prove that the uniform limit u is a viscosity solution of (3.1).

First of all, notice that,

u(x) = lim
k→∞

wk(x) = 0, ∀x ∈ ∂Ω.

Then, consider φ ∈ C2 and x0 ∈ Ω such that u − φ has a strict local maximum at
x0, this is,

(u− φ)(x) < (u− φ)(x0),

for all x 6= x0 in a neighborhood of x0. By uniform convergence, we deduce that
wk − φ has a local maximum at some xk, this is,

(wk − φ)(x) ≤ (wk − φ)(xk),

for all x 6= xk near xk. In addition, xk → x0 as k → ∞.
Since vk is a viscosity solution of (3.10), we have

F
(

∇φ(xk), D2φ(xk)
)

≤ λwq
k−1(xk) + wr

k−1(xk).

Taking limits as k → ∞, we get

F
(

∇φ(x0), D
2φ(x0)

)

≤ λuq(x0) + ur(x0).

The supersolution case is analogous. �

3.2.2. Non existence for large λ. Under the hypotheses of this section, (F1′), (F2)
and (F3), Theorem 8 in [6] holds. Hence, we know that there exists a principal
eigenvalue λ1 for F defined as

λ1 = sup{λ | ∃v > 0 in Ω s.t. F (∇v,D2v) ≥ λv}.

in the sense that λ1 <∞ and there exists a nontrivial solution (eigenfunction) to

(3.11)











F (∇v,D2v) = λ v in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.
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Moreover, by definition of λ1, we know that for every λ > λ1, problem (3.11) does
not have strictly positive solutions.

Other references for the existence of eigenvalues in the fully nonlinear setting are
[30], [10] and the references therein. On the other hand, in [21] the existence of a
principal eigenvalue for the 1-homogeneous ∞-laplacian is studied. Notice that the
1-homogeneous ∞-laplacian is outside of the scope of the results in [6].

The existence of such principal eigenvalue and eigenfuntion is needed in the proof
of the following result.

Theorem 3.11. For λ large enough, problem (3.5) has no solution in the viscosity
sense.

Proof. Fix µ > λ1 and consider

λ0 = µ
r−q
r−1 (r − 1)

(

(1 − q)1−q

(r − q)r−q

)
1

r−1

.

In order to reach a contradiction, suppose that there exists λ > λ0 such that the
problem

(3.12)











F (∇uλ, D
2uλ) = λuq

λ + ur
λ in Ω,

uλ > 0 in Ω,

uλ = 0 on ∂Ω,

has a solution uλ. Then, we have

(3.13) F (∇uλ, D
2uλ) = λuq

λ + ur
λ > µuλ in Ω,

in the viscosity sense. In fact, it is enough to demonstrate that

min
t∈R+

Φλ(t) > µ where Φλ(t) = λ tq−1 + tr−1.

It is easy to check that

d

dt
Φλ(t) = 0 ⇔ tλ =

(

λ(1 − q)

(r − 1)

)
1

r−q

,

which, indeed, is a minimum. Since Φλ(t) → ∞ both as t → 0 and t → ∞, it is a
global minimum. Then,

Φλ(tλ) = λ
r−1
r−q

(r − q) (1 − q)
q−1
r−q

(r − 1)
r−1
r−q

> µ

by our election of λ. On the other hand, define ψ = δϕ1, where ϕ1 is a solution of
(3.11). Hopf’s Lemma (Proposition A.1) implies that there exists δ > 0 such that
ψ ≤ uλ. Then,

(3.14) F (∇ψ,D2ψ) = λ1 ψ < µuλ in Ω,

by definition of µ.
By construction, we have 0 < ψ ≤ uλ, where ψ and uλ satisfy (3.13) and (3.14).

Hence, we can apply the iteration method as in the proof of existence to get v,
satisfying ψ ≤ v ≤ u, a viscosity solution of

F (∇v,D2v) = µv.

Hence, v is a positive solution of (3.11), which is a contradiction with the definition
of λ1. �

Corollary 3.12. There exists Λ ∈ R
+ with 0 < Λ < ∞ such that (3.5) has a

positive viscosity solution for every λ ∈ (0,Λ).
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Proof. Let us define

Λ = sup
{

λ ∈ R
+ : problem (3.5) has a solution

}

.

Theorem 3.7 implies Λ > 0, while Theorem 3.11 gives Λ < ∞. Inded, there exists
λM near Λ and uM , such that











F (∇uM , D2uM ) = λM uq
M + ur

M in Ω,

uM > 0 in Ω,

uM = 0 on ∂Ω.

Fix 0 < µ < λM and take λm such that 0 < λm < µ. We have proved that there
exists a unique um solution to

(3.15)











F (∇um, D
2um) = λm uq

m in Ω,

um > 0 in Ω,

um = 0 on ∂Ω.

Obviously, uM is a supersolution of (3.15) and Theorem 2.1 implies um ≤ uM .
Since,

F (∇um, D
2um) = λm uq

m < µuq
m + ur

m,

and

F (∇uM , D2uM ) = λM uq
M + ur

M > µuq
M + ur

M ,

we can apply the iteration method described in the proof of Theorem 3.7 to get the
existence of a solution uµ > 0. �

4. Examples and further results

In this section, we show several operators for which Theorem 3.2 still applies even
though the hypotheses of Section 3 do not hold. We emphasize that the fundamen-
tal ingredients of the method are the Harnack inequality and the Hopf boundary
Lemma; such properties are still available in the examples considered below.

4.1. The linear problem with variable coefficients. Consider the linear prob-
lem

(4.1)











−trace
(

A(x)D2uλ

)

+ 〈b(x),∇uλ〉 = λuq
λ in Ω,

uλ > 0 in Ω,

uλ = 0 on ∂Ω,

with λ > 0 and 0 < q < 1. We assume that A(x) is a symmetric and uniformly
elliptic matrix, i.e., there exist constants 0 < θ < Θ such that

θ|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ Θ|ξ|2 ∀ξ ∈ R
n,

and that the coefficients A(x), b(x) are, say, Lipschitz continuous. Then, it is possible
to adapt the arguments in the proof of Theorem 2.1. Notice that the hypotheses
are not optimal (see for instance Section 5.A in [16]); with this example, we intend
to illustrate the technical difficulties arising in the proof of comparison, since the
argument remains essentially the same. These technical difficulties are handled using
the regularity of the coefficients.

Theorem 4.1. Let 0 < q < 1, λ = 1 and Ω ⊂ R
n be a bounded domain. Con-

sider u, v ∈ C(Ω) a viscosity sub- and supersolution of (4.1) with the coefficients
A(x), b(x) under the hypotheses above. Finally, suppose that both, u and v are
strictly positive in Ω, that one of them is in Cα(Ω) for α > 1/2, and u ≤ v on
∂Ω. Then, u ≤ v in Ω.

The proof is an adaptation of that of Theorem 2.1.
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Proof. We argue by contradiction. As u − v ∈ C(Ω) and Ω is compact, u − v
attains a maximum at Ω. In order to arrive at a contradiction, let us suppose that
maxΩ(u− v) > 0. Consider the functions ũ and ṽǫ as in the proof of Theorem 2.1.
Arguing as before, we can fix ǫ > 0 small enough and suppose that there exists Ω∗

with Ω∗ ⊂ Ω which contains all the maximum points of ũ− ṽǫ and

−trace
(

A(x)D2ũ
)

−
q

1 − q

〈A(x)∇ũ,∇ũ〉

ũ
+ 〈b(x),∇ũ〉 ≤ 1 in Ω∗,

and

−trace
(

A(x)D2ṽǫ

)

−
q

1 − q

〈A(x)∇ṽǫ,∇ṽǫ〉

ṽǫ
+ 〈b(x),∇ṽǫ〉 ≥ (1 + ǫ) > 1 in Ω∗,

in the viscosity sense. Consider w(x, y) = ũ(x) − ṽǫ(y) −
τ
2 |x − y|2 for each τ >

0, land let (xτ , yτ ) be a maximum point of w in Ω × Ω. The arguments in the
proof of Theorem 2.1 show that, for τ large enough, xτ , yτ ∈ Ω∗ and ũ(xτ ) >
ṽǫ(yτ ). Moreover, the Maximum Principle for semicontinuous functions implies the
existence of two symmetric matrices Xτ , Yτ such that

(

τ(xτ − yτ ), Xτ

)

∈ J
2,+
ũ(xτ ) and

(

τ(xτ − yτ ), Yτ

)

∈ J
2,−

ṽǫ(yτ ),

and

(4.2) −3τ

(

I 0
0 I

)

≤

(

Xτ 0
0 −Yτ

)

≤ 3τ

(

I −I
−I I

)

.

Hence, we have

−trace (A(xτ )Xτ ) −
q

1 − q

τ2〈A(xτ )(xτ − yτ ), (xτ − yτ )〉

ũ(xτ )

+ τ〈b(xτ ), (xτ − yτ )〉 ≤ 1,

and

−trace (A(yτ )Yτ ) −
q

1 − q

τ2〈A(yτ )(xτ − yτ ), (xτ − yτ )〉

ṽǫ(yτ )

+ τ〈b(yτ ), (xτ − yτ )〉 ≥ 1 + ǫ,

and, subtracting the first equation from the second one, we have

0 < ǫ ≤− trace (A(yτ )Yτ −A(xτ )Xτ ) −
q

1 − q

{

τ2〈A(yτ )(xτ − yτ ), (xτ − yτ )〉

ṽǫ(yτ )

+
τ2〈A(xτ )(xτ − yτ ), (xτ − yτ )〉

ũ(xτ )

}

− τ〈b(xτ ) − b(yτ ), (xτ − yτ )〉

≤ − trace
(

A(yτ )Yτ −A(xτ )Xτ

)

+
q

1 − q

τ2
〈(

A(xτ ) −A(yτ )
)

(xτ − yτ ), (xτ − yτ )
〉

ũ(xτ )

− τ
〈

b(xτ ) − b(yτ ), (xτ − yτ )
〉

,

since ṽǫ(yτ ) ≤ ũ(xτ ). Now, we estimate each term in the right hand side of the above
expression separately. We follow Example 3.6 in [16]. For the first term, multiply
the right part of (4.2) by the nonnegative, symmetric matrix

(

A(xτ )1/2A(xτ )1/2 A(yτ )1/2A(xτ )1/2

A(xτ )1/2A(yτ )1/2 A(yτ )1/2A(yτ )1/2

)

,

where A(x)1/2 is well defined since A(x) is uniformly elliptic. Taking traces we
arrive at

−trace (A(yτ )Yτ −A(xτ )Xτ ) ≤ 3τ · trace
[

(

A(yτ )1/2 −A(xτ )1/2
)2
]

.
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As the matrix A(x) is Lipschitz continuous and uniformly bounded away from 0,
A(x)1/2 is Lipschitz as well. Then,

−trace (A(yτ )Yτ −A(xτ )Xτ ) ≤ C τ |xτ − yτ |
2.

Next, for the second and third terms, we use that A(·), b(·) are Lipschitz, indeed

τ2 〈(A(xτ ) −A(yτ )) (xτ − yτ ), (xτ − yτ )〉 ≤ C τ2|xτ − yτ |
3,

and

−τ
〈

b(xτ ) − b(yτ ), xτ − yτ

〉

≤ c τ |xτ − yτ |
2.

Collecting all the estimates above, we get

(4.3) 0 < ǫ ≤ C ·
(

τ |xτ − yτ |
2 + τ2 |xτ − yτ |

3
)

.

It remains to show that the right hand side of (4.3) tends to 0 as τ → ∞. We follow
the observations in Section 5.A in [16]. By definition of xτ , yτ , we have

ũ(x) − ṽǫ(y) −
τ

2
|x− y|2 ≤ ũ(xτ ) − ṽǫ(yτ ) −

τ

2
|xτ − yτ |

2,

for all (x, y) near (xτ , yτ ). Since either u or v are Holder continuous, say u ∈ Cα(Ω∗),
we have that ũ ∈ Cα(Ω∗) as well and then, setting x = y = yτ , we get

τ

2
|xτ − yτ |

2 ≤ ũ(xτ ) − ũ(yτ ) ≤ C |xτ − yτ |
α.

Hence

τ |xτ − yτ |
σ → 0 as τ → 0 ∀σ > 2 − α.

Hence, since α > 1/2, the right hand side of (4.3) tends to 0 as τ → ∞, which is a
contradiction. �

Remark 4.2. Notice the fundamental role that (4.2) plays in the final estimate of
the above proof.

For the existence, notice that the operator is uniformly elliptic and hence both
the Harnack inequality and the Hopf Lemma in Section 3 are still available. Hence,
Theorem 3.2 applies in this context. Moreover once a viscosity solution is found,
by elliptic regularity, it is C2,α.

4.2. The p-laplacian, p <∞. The p-laplacian operator is given by

∆pu = div
(

|∇u|p−2∇u
)

= trace

(

(

Id+ (p− 2)
∇u⊗∇u

|∇u|2

)

D2u

)

· |∇u|p−2.

The divergence-form is useful for variational problems, while the expanded ver-
sion, is preferred in the viscosity setting. It is immediate to check that it verifies
hypotheses (F1) and (F2), it is degenerate elliptic and homogeneous of degree p−1.

Take 0 < q < p− 1 < r and λ > 0, and consider the problems

(4.4)











−∆puλ = λuq
λ, in Ω,

uλ > 0 in Ω,

uλ = 0 on ∂Ω,

and

(4.5)











−∆puλ = λuq
λ + ur

λ in Ω,

uλ > 0 in Ω,

uλ = 0 on ∂Ω.

It is well-known that continuous variational weak solutions to this kind of prob-
lems are viscosity solutions, see [5] and [23].
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The following already known result (see [1] and [7] and the references therein)
can be achieved following the ideas in Section 3 as a consequence of Theorem 2.1,
the Harnack inequality and the Hopf boundary lemma.

Theorem 4.3. Let Ω ⊂ R
n be a smooth bounded domain, 0 < q < p− 1 < r, and

λ > 0. Then,

(1) There exists a unique solution to (4.4) for every λ > 0 satisfying

uλ(x) = λ
1

p−q−1 u1(x),

where u1 is the solution with λ = 1.
(2) Suppose in addition that Ω satisfies an interior sphere condition. Then ex-

ists 0 < Λ <∞ such that there is at least one positive viscosity solution of
(4.5) for every λ < Λ, and no nontrivial solution for λ > Λ.

In this case the subsolution can be taken as a positive eigenfunction conveniently
scaled. For variational eigenvalues of the p-laplacian see for instance [18] and [28].

4.3. The 3-homogeneous infinity-laplacian. Consider the infinity laplacian op-
erator,

∆∞u = 〈D2u∇u,∇u〉 =

n
∑

i,j=1

uxi,xj
uxi

uxj
.

Clearly, it is homogeneous of degree 3 and degenerate elliptic and hence, not in the
framework of Theorem 3.2. Nevertheless, the methods in Section 3 can be adapted
to produce the following result.

Theorem 4.4. Let Ω ⊂ R
n be a smooth bounded domain, 0 < q < 3 < r and

λ > 0. Then,

(1) There exists a unique viscosity solution of

(4.6)











−∆∞uλ = λuq
λ in Ω,

uλ > 0 in Ω,

uλ = 0 on ∂Ω.

Indeed, uλ(x) = λ
1

3−q u1(x), where u1 is the solution for λ = 1.
(2) There exists at least one solution of

(4.7)











−∆∞uλ = λuq
λ + ur

λ in Ω,

uλ > 0 in Ω,

uλ = 0 on ∂Ω,

for λ small enough.

The uniqueness assertion in the first part of Theorem 4.4 is a consequence of
Theorem 2.1.

For the existence part, we follow the construction in Section 3. We start studying
the auxiliary problems.

Proposition 4.5. The auxiliary problem

(4.8)











−∆∞vλ = λ in Ω,

vλ > 0 in Ω,

vλ = 0 on ∂Ω,

has a unique viscosity solution for every λ.
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Proof. As 0 is a subsolution, we only have to construct a suitable supersolution and
apply Perron’s method. Consider x0 /∈ Ω and let

Φ(x) = α−
β

2
|x− x0|

2, with β ≥

(

λ

dist(x0,Ω)2

)1/3

and α ≥
βC2

2
,

where C = max
x∈Ω

|x− x0|. By direct computation,

−∆∞Φ(x) = β3 |x− x0|
2 ≥ λ,

in Ω, while w ≤ Φ on ∂Ω, since

Φ(x) = α−
β

2
|x− x0|

2 ≥ 0,

by construction. In remains to construct barriers in order to force Φ to have the
correct boundary value. Following [16] and [21], for every z ∈ ∂Ω, we define

Ψz(x) = D |x− z|1/2, x ∈ Ω

where

D3 ≥ 16λdiam(Ω)5/2.

A straightforward computation shows

−∆∞Ψz(x) =
D3

16
|x− z|−5/2 ≥ λ,

therefore vλ(x) = 0 on ∂Ω.
Furthermore, 0 ≤ vλ ≤ Φ by comparison, (Theorem 2.5). Since vλ 6= 0 (we get

a contradiction with the equation otherwise), the Harnack inequality (see [26], [25]
and [4]) implies vλ > 0. �

Corollary 4.6. The problem

(4.9)











−∆∞wλ = λd(x) in Ω

wλ > 0 in Ω

wλ = 0 on ∂Ω,

where d(x) is the normalized distance to the boundary, namely,

d(x) =
dist(x, ∂Ω)

‖dist(·, ∂Ω)‖∞
,

has a viscosity solution.

Proof. It is sufficient to consider vλ as a supersolution and proceed as in the previous
proposition. �

Now, we can construct a supersolution of the concave problem (4.6) as in Lemma
3.4. For the construction of the subsolution we argue as in Lemma 3.5 using the Hopf
Lemma in [4]. Then, the Comparison Principle (Theorem 2.1) yields existence (and
uniqueness) of solutions to (4.6) via the Perron method for λ = 1. By homogeneity,
we extend the result for every λ. In the concave-convex case, problem (4.7), we
follow Lemmas 3.8 and 3.9. Hence, we construct a sub- and supersolution uλ, uλ

from vλ, wλ in (4.8) for λ < λ0, the latter given by (3.8). Following the iteration
procedure in Subsection 3.2 we get a sequence

uλ ≤ . . . ≤ wk ≤ wk−1 ≤ . . . ≤ w2 ≤ w1 ≤ uλ in Ω,

where
{

−∆∞wk = λwq
k−1 + wr

k−1 in Ω,

wk = 0 on ∂Ω.
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for k ≥ 1 (by convention w0 = uλ). Notice that, since −∆∞wk > 0 in Ω, we have
(see [25] and [26]) that

|∇wk(x)| ≤
wk(x)

dist(x, ∂Ω)
≤

uλ(x)

dist(x, ∂Ω)
a.e. x ∈ Ω,

for every k > 1. Hence, both ‖wk‖∞ and ‖∇wk‖∞ are uniformly bounded on
compact subsets of Ω. Since wk = 0 for all k, by the Ascoli-Arzela compactness
criterion and the monotonicity of the {wk}, the whole sequence converges uniformly
in Ω to some uλ ∈ C(Ω) which is a solution of (4.7) in the viscosity sense. We have
now finished the proof of Theorem 4.4.

4.4. The 1-homogeneous infinity-laplacian. In the previous section we have
considered the (classical) infinity laplacian with degree of homogeneity 1. Other
definition can be considered, namely,

∆̃∞u =

〈

D2u
∇u

|∇u|
,
∇u

|∇u|

〉

.

This operator naturally arises in many equations obtained as a limit of p-laplacian
type equations; it is easy to adapt the arguments in [23] and [14] to get an example
of this issue. Furthermore, when studying evolution equations governed by the
infinity laplacian (see [22] and the references therein), it is natural to consider
the 1-homogeneous infinity laplacian rather than its 3-homogeneous version since
then, the homogeneity of the parabolic part matches that of the infinity laplacian.
Finally, the Poisson problem for this infinity laplacian has been recently studied in
[29] using Tug-of-War games, and in [21], an eigenvalue-type equation is studied.
Our aim here is to study the existence and uniqueness of solutions to

(4.10)











−∆̃∞uλ = λuq
λ in Ω,

uλ > 0 in Ω,

uλ = 0 on ∂Ω,

and

(4.11)











−∆̃∞uλ = λuq
λ + ur

λ in Ω,

uλ > 0 in Ω,

uλ = 0 on ∂Ω,

with λ > 0 and 0 < q < 1 < r. It would be necessary to make precise the definition
of viscosity solution (respectively sub- and supersolution) in this context, since
the operator is singular when ∇u = 0. Our definition follows the one in [21] for
the eigenvalue problem. First, given a matrix A ∈ Sn, we denote its largest and
smallest eigenvalues by M(A) and m(A), respectively, this is,

M(A) = max
|ξ|=1

〈Aξ, ξ〉, m(A) = min
|ξ|=1

〈Aξ, ξ〉.

Then, we have the following definition.

Definition 4.7. Let Ω ⊂ R
n be a bounded domain. An upper semicontinuous

function v : Ω → R is a viscosity subsolution of (4.10) in Ω if, whenever x̂ ∈ Ω and
φ ∈ C2 are such that (v − φ)(x) < (v − φ)(x̂) = 0 for all x 6= x̂ in a neighborhood
of x̂, then

{

−∆̃∞φ(x̂) ≤ λφq(x̂), if ∇φ(x̂) 6= 0,

−M(D2φ(x̂)) ≤ λφq(x̂), if ∇φ(x̂) = 0.
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A lower semicontinuous function w : Ω → R is a viscosity supersolution of (4.10)
in Ω if, whenever x̂ ∈ Ω and φ ∈ C2 are such that (w − φ)(x) > (w − φ)(x̂) = 0 for
all x 6= x̂ in a neighborhood of x̂, then

{

−∆̃∞φ(x̂) ≥ λφq(x̂), if ∇φ(x̂) 6= 0,

−m(D2φ(x̂)) ≥ λφq(x̂), if ∇φ(x̂) = 0.

Finally, a continuous function u : Ω → R is a viscosity solution of (4.10) in Ω if it
is both a viscosity subsolution and viscosity supersolution.

Notice that this definition is slightly different to the one in [29]; however, it is
easy to see that both definitions are equivalent.

If u satisfies −∆̃∞u ≥ 0 in Ω in the viscosity sense, then −∆∞u ≥ 0 in Ω as
well. Hence the Harnack inequality and Hopf Lemma used in the previous section
(see [4], [25] and [26]) also apply to the operator ∆̃∞. Then, the results in [29] and
the Harnack inequality imply the existence of a unique solution to the auxiliary
problem

(4.12)











−∆̃∞v = λ in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.

According to the results in [21], there exists a solution for the eigenvalue problem










−∆̃∞w = λ1 w in Ω,

w > 0 in Ω,

w = 0 on ∂Ω,

with ‖w‖∞ = 1 for general Ω. Then we can use as a subsolution t w, t small,
and then avoid the use of the Hopf boundary lemma. Moreover, the existence of a
first eigenvalue allows us to prove the non existence of solutions for large λ in the
concave-convex case. Following the ideas in Section 3 and completing the details as
in the case of the 3-homogeneous infinity laplacian, we get the following result.

Theorem 4.8. Let Ω ⊂ R
n be a bounded domain, 0 < q < 1 < r and λ > 0. Then,

(1) There exists a unique positive viscosity solution of (4.10) for every λ > 0.
In fact,

uλ(x) = λ
1

1−q u1(x),

where u1 is the solution for λ = 1.
(2) If Ω satisfies an interior sphere condition, then there exists 0 < Λ < ∞

such that there is at least one positive viscosity solution of (4.11) for every
λ < Λ and no nontrivial solution for λ > Λ.

4.5. Monge-Ampere equations. The above theory also applies to equations of
the Monge-Ampere type. It is well known (see for example [11] and [16]) that the
Monge-Ampere operator

F : Sn → R

M → det(M),

is elliptic only for positive definite matrices. Hence, it is natural to look for strictly
convex solutions. Let Ω ⊂ R

n be a bounded, smooth, strictly convex set, 0 < q <
n < r and λ > 0. Our model concave problem reads

(4.13)











det(D2u) = λ |u|q in Ω,

u convex in Ω,

u = 0 on ∂Ω,
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and, in the concave-convex case,

(4.14)











det(D2u) = λ |u|q + |u|r in Ω,

u convex in Ω,

u = 0 on ∂Ω.

Notice that ∂Ω is the zero level set of the strictly convex function u and hence it is
natural to assume that Ω is strictly convex. Since det(·) is increasing in the set of
positive definite-matrices, the equation should be written in the form

− det(D2u) + λ |u|q = 0 in Ω

in order to follow the same convention as in the rest of the paper. As we are looking
for negative solutions, we have to adapt the arguments in Theorem 2.1 which in
this context reads as follows.

Theorem 4.9. Let Ω ⊂ R
n be a bounded strictly convex domain and consider a

viscosity subsolution u and a supersolution v of

(4.15) − det(D2w) + λ |w|q = 0 in Ω,

where 0 < q < n. Suppose that both, u and v are strictly negative in Ω, continuous
up to the boundary and satisfy u ≤ v on ∂Ω. Then, u ≤ v in Ω.

For the proof, as before, we can take λ = 1 by homogeneity. Replace (2.8) by

ũ(x) =
−1

1 − q
n

(

− u(x)
)1− q

n and ṽ(x) =
−1

1 − q
n

(

− v(x)
)1− q

n ,

and (2.9) by

ṽǫ(x) = (1 − ǫ) ·
(

ṽ(x) + ǫ
)

.

Then, since ũ ≤ ṽ on ∂Ω, we have

ũ− ṽǫ = ũ− (1 − ǫ) ṽ − (1 − ǫ)ǫ < 0 on ∂Ω.

Then, following the arguments in the proof of Theorem 2.1, we can suppose that
there exists Ω∗ such that Ω∗ ⊂ Ω contains all the maximum points of ũ − ṽǫ for ǫ
small enough. Then, ũ, ṽǫ satisfy

− det

(

D2ũ+
q

n− q

∇ũ⊗∇ũ

ũ

)

+ 1 ≤ 0 in Ω∗

and

− det

(

D2ṽǫ +
q

n− q

∇ṽǫ ⊗∇ṽǫ

ṽǫ

)

+ (1 − ǫ)n ≥ 0 in Ω∗,

and we can complete the proof as in Theorem 2.1.

The Comparison Principle in Theorem 2.5 can also be adapted to the present
setting in a similar way.

For the existence of solutions of (4.13) and (4.14), we have the following result.

Theorem 4.10. Let Ω ⊂ R
n be a bounded, strictly convex, smooth domain, and

consider 0 < q < n < r and λ > 0. Then,

(1) There exists a unique solution to (4.13) for every λ > 0 satisfying

uλ(x) = λ
1

n−q u1(x),

where u1 is the solution with λ = 1.
(2) There exists 0 < Λ < ∞ such that there is at least one positive viscosity

solution of (4.14) for every λ < Λ, and no nontrivial solution for λ > Λ.



ZERO ORDER PERTURBATIONS TO FULLY NONLINEAR EQUATIONS 23

The above result was already known, see [20] for example where the Leray-
Schauder degree is used. Our proof is different and constructive.

For the proof of both statements, we adapt the monotone iteration scheme in
Section 3. Hence, fix ǫ ∈ (0, 1) and consider the auxiliary problem











det(D2vλ) = λ in Ω,

vλ convex in Ω,

vλ = −ǫ on ∂Ω.

Since λ > 0, it is known (see [12]) that there exists a unique strictly convex solution
vλ ∈ C∞(Ω). Indeed, vλ < 0 in Ω by strict convexity. Furthermore, consider the
Monge-Ampere eigenvalue problem











det(D2ψ1) = λ1(−ψ1)
n in Ω,

ψ1 convex in Ω,

ψ1 = 0 on ∂Ω.

In [27], it is shown that there exists ψ1 ∈ C1,1(Ω)∩C∞(Ω) such that ψ1 < 0 in Ω and
that λ1 > 0 is isolated. Then, we can construct a subsolution and a supersolution
of (4.13) (with λ = 1).

Lemma 4.11. Let T = ‖v‖
q

n−q
∞ and t ≤ λ

−1
n−q

1 . Then

u(x) = T v(x) and u(x) = t ψ1(x)

are, respectively, classical sub- and supersolution of (4.13) with λ = 1.

The proof is similar to that of Lemmas 3.4 and 3.5 but, since now we are looking
for negative solutions, the details are slightly different. In a similar fashion to Lem-
mas 3.8 and 3.9 we get strictly convex, classical subsolutions and supersolutions.

Lemma 4.12. There exists λ0 > 0 such that for all λ ∈ (0, λ0], we can find
constants T (λ), t > 0 such that

uλ(x) = T (λ) vλ(x) and uλ(x) = t ψ1(x),

are respectively a classical sub- and supersolution of (4.14). Indeed, t is chosen such
that uλ ≤ uλ in Ω for all λ ∈ (0, λ0).

Then, consider w1, the solution of










det(D2w1) = λ |uλ|
q + |uλ|

r in Ω

w1 convex in Ω

w1 = −T (λ) · ǫ2 on ∂Ω.

Theorem 1.1 in [12] imply that exists a unique w1 ∈ C∞(Ω) and it is strictly convex.
By comparison,

uλ ≤ w1 ≤ uλ in Ω.

Then, consider










det(D2w2) = λ |w1|
q + |w1|

r in Ω,

w2 convex in Ω,

w2 = −T (λ) · ǫ3 on ∂Ω.

Again, Theorem 1.1 in [12] implies the existence of a unique w2 ∈ C∞(Ω), which is
strictly convex. Then, by comparison,

uλ ≤ w1 ≤ w2 ≤ uλ in Ω.
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We can iterate this procedure. In general, we get










det(D2wk) = λ |wk−1|
q + |wk−1|

r in Ω,

wk convex in Ω,

wk = −T (λ) · ǫk+1 on ∂Ω.

Each wk is unique, strictly convex, and C∞(Ω). Furthermore,

uλ ≤ w1 ≤ w2 ≤ . . . ≤ wk−1 ≤ wk ≤ . . . uλ in Ω.

Since every wk ∈ C∞(Ω), it is a weak solution in the sense of [32], and the Holder
estimate in [32, Theorem 4.1] gives the necessary relative compactness. Hence, the
Ascoli-Arzela compactness criterion and the monotonicity of the sequence, gives
uniform convergence of the whole sequence to some u ∈ C(Ω). Then, for every
compact subset Ω∗ of Ω, we can pass to the limit in the viscosity sense and get

det(D2u) = λ |u|q + |u|r in Ω∗.

Furthermore, u is convex (is an uniform limit of strictly convex functions) and
verifies u = 0 on ∂Ω by construction.

4.6. The equation min{|∇u|−λuq,−∆∞u} = 0. We finally consider the equation

(4.16)











min{|∇uλ| − λuq
λ,−∆∞uλ} = 0 on Ω,

uλ > 0 on ∂Ω,

uλ = 0 on ∂Ω,

for λ > 0 and 0 < q < 1. The existence and uniqueness of positive solutions to
(4.16) for every λ > 0 has already been studied in [14]. In fact, it is proven that
there exists a smooth curve of solutions given by

uλ(x) = λ
1

1−q u1(x),

where u1 is the solution to (4.16) with λ = 1.
Clearly, (4.16) does not fit the general shape considered in this work, namely

(3.1). However, both the comparison principle in [14] and our Theorem 2.1 (for
m=1) are particular cases of the following slightly more general result.

Theorem 4.13. Let Ω ⊂ R
n be a bounded domain and F : R×R

n × Sn → R such
that

(1) F (t s, t ξ, tX) = t · F (s, ξ,X) for every t > 0, and F (0, 0, 0) = 0.
(2) F (s, ξ,X) ≤ F (s, ξ, Y ) whenever Y ≤ X.
(3) For fixed ξ ∈ R

n and X ∈ Sn, F (·, ξ,X) is strictly decreasing.

Let u, v ∈ C(Ω) be a viscosity subsolution and a viscosity supersolution to

(4.17) F
(

f(w),∇w,D2w
)

= 0 in Ω,

where f(·) satisfies hypothesis (2.2) with m = 1. Assume that u, v are strictly
positive in Ω and u ≤ v on ∂Ω. Then, u ≤ v in Ω.

Let us point out that we are not under the scope of [16] since we are not assuming
the properness of F .

The proof is an adaptation of the one to Theorem 2.1. In this context, Lemma
2.3 reads as follows.

Lemma 4.14. Let w > 0 be a supersolution (subsolution) of problem (4.17) in Ω
and q as in (2.2). Then,

w̃(x) =
1

1 − q
· w1−q(x)
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is a viscosity supersolution (subsolution) of

(4.18) F









f

(

[

(

1 − q
)

w̃(x)
]

1
1−q

)

[

(

1 − q
)

w̃(x)
]

q
1−q

,∇w̃,D2w̃ +
q

1 − q

∇w̃ ⊗∇w̃

w̃









= 0,

in every Ω∗ such that Ω∗ ⊂ Ω.

The rest of the proof of Theorem 3.2 applies almost unchanged.

Appendix A. Hopf’s Lemma for uniformly elliptic equations

We recall the Hopf boundary lemma, used in the proof of the analogous to Lemma
3.5. For further refinements, see [24] (see also [3] and [31]).

Proposition A.1 (Hopf’s Lemma). Let Ω be a bounded domain and u a viscosity
solution of

F (∇u,D2u) ≤ 0 in Ω,

where F satisfies (F1′), (F2), and (F3). In addition, let x0 ∈ ∂Ω satisfy

i) u(x0) > u(x) for all x ∈ Ω.
ii) ∂Ω satisfies an interior sphere condition at x0.

Then, for every nontangential direction ξ pointing into Ω,

lim
t→0+

u(x0 + tξ) − u(x0)

t
< 0.

Proof. Our proof follows [19, Section 3.2]. Since Ω satisfies an interior sphere con-
dition at x0, there exists a ball B = BR(y) ⊂ Ω with x0 ∈ ∂B. For 0 < ρ < R, we
consider A = {x ∈ Ω : ρ < |x− y| < R} and define

v(x) = e
−α|x−y|2

2 − e
−αR2

2 ,

and

w(x) = u(x) − u(x0) + ǫ v(x),

for x ∈ A, where α, ǫ > 0 are constants yet to be determined. Then,
1. P−

θ,Θ(D2w) − γ |∇w| ≤ 0 in A for α large enough. Let φ ∈ C2 and x̂ ∈ A
such that w − φ has a local maximum at x̂. It is easy to see that u − Φ has a
local maximum at x̂, with Φ(x) = φ(x) − ǫ v(x). Since v ∈ C2, so it is Φ, and the
definition of u and the structure condition (F3) imply

0 ≥ F (∇Φ(x̂), D2Φ(x̂)) = F
(

∇φ(x̂) − ǫ∇v(x̂), D2φ(x̂) − ǫD2v(x̂)
)

≥ F (∇φ(x̂), D2φ(x̂)) + P−
θ,Θ(−ǫD2v(x̂)) − γ ǫ |∇v(x̂)|

≥ F (0, 0) + P−
θ,Θ(D2φ(x̂)) − γ |∇φ(x̂)| − ǫP+

θ,Θ(D2v(x̂)) − γ ǫ |∇v(x̂)|.

By direct computation,

P+
θ,Θ(D2v(x̂)) = e

−α|x−y|2

2 P+
θ,Θ

(

α2(x− y) ⊗ (x− y) − α I
)

≤ e
−α|x−y|2

2

(

− α2ρ2θ + αnΘ
)

,

|∇v(x̂)| ≤ αR e
−α|x−y|2

2 .

Combining the expressions above,

P−
θ,Θ(D2φ(x̂)) − γ |∇φ(x̂)| ≤ ǫ e

−α|x−y|2

2

(

− α2ρ2θ + α (nΘ − γ R)
)

≤ 0,

for α large enough.
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2. w ≤ 0 on ∂A for ǫ > 0 small enough. Since u − u(x0) < 0 on ∂Bρ(y), we can
choose ǫ > 0 small enough such that

(A.1)
(

u− u(x0) + ǫv
)

≤ 0

on ∂Bρ(y). Moreover, since v = 0 on ∂BR(y), (A.1) also holds in the outer boundary.
Hence, the ABP estimate, (see for instance [13, Proposition 2.12]) implies w ≤ 0 in
the whole A. Hence, for every nontangential direction ξ pointing into Ω, one has

lim
t→0+

u(x0 + tξ) − u(x0)

t
≤ −ǫ

∂v

∂ξ
(x0) = ǫ α e

−αR2

2 〈(x0 − y), ξ〉 < 0. �
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[17] M.G. Crandall, M. Kocan, P.L. Lions, A. Świech; Existence results for boundary problems for

uniformly elliptic and parabolic fully nonlinear equations, Electron. J. Differential Equations
1999, No. 24, 22 pp. (electronic).

[18] J. Garcia Azorero, I. Peral; Existence and nonuniqueness for the p-laplacian: Nonlinear eigen-

values, Comm. Partial Differential Equations, vol 12, no. 12 (1987) pp.1389-1430.
[19] D. Gilbarg, N. S. Trudinger; Elliptic Partial Differential Equations of Second Order, Springer-

Verlag, New York (1983).
[20] J. Jacobsen; Global bifurcation problems associated with k-hessian operators, Ph.D. thesis,

University of Utah, 1999.
[21] P. Juutinen; Principal eigenvalue of a badly degenerate operator, J. Differential Equations

236 (2007), no. 2, 532–550.
[22] P. Juutinen, B. Kawohl; On the evolution governed by the infinity Laplacian, Math. Ann.

335 (2006), no. 4, pp. 819–851.



ZERO ORDER PERTURBATIONS TO FULLY NONLINEAR EQUATIONS 27

[23] P. Juutinen, P. Lindqvist and J. Manfredi, The ∞-eigenvalue problem, Arch. Ration. Mech.
Anal. 148 (1999), no. 2, pp. 89-105.

[24] B. Kawohl, N. Kutev; Strong Maximum Principle for Semicontinuous Viscosity Solutions of

Nonlinear Partial Differential Equations, Arch. Math. 70 (1998), pp. 470-478.
[25] P. Lindqvist, J. Manfredi; The Harnack inequality for ∞-harmonic functions, Elec. J. Diff.

Eqs. 5 (1995), pp. 1-5.
[26] P. Lindqvist, J. Manfredi; Note on ∞-superharmonic functions, Revista Matemática de la
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