Game Theory and the Infinity Laplacian

1. Let $p \ge 2$ and consider the **normalized** *p*-Laplacian operator

$$\Delta_p^N v = |\nabla v|^{2-p} \operatorname{div} \left(|\nabla v|^{p-2} \nabla v \right) = \Delta v + (p-2) \Delta_{\infty} v,$$

where $\Delta_{\infty} v = |\nabla v|^{-2} \sum_{i,j} v_{x_i x_j} v_{x_i} v_{x_j}$ is the normalized infinity Laplacian.

(i) Find $\alpha, \beta \in [0, 1]$ with $\alpha + \beta = 1$ such that for every $u \in \mathcal{C}^2(\Omega)$ such that

$$-\Delta_p^N u = 0 \qquad \text{in } \Omega \subset \mathbb{R}^n$$

(where Ω is a smooth domain) the following asymptotic mean value formula holds

$$u(x) = \frac{\alpha}{2} \left(\sup_{y \in \overline{B}_{\epsilon}(x)} u(y) + \inf_{y \in \overline{B}_{\epsilon}(x)} u(y) \right) + \beta \int_{B_{\epsilon}(x)} u(y) \, dy + o(\epsilon^2), \quad \text{as } \epsilon \to 0.$$

You can assume $\nabla u \neq 0$ in Ω for simplicity.

(ii) Describe a game with the following dynamic programming principle

$$\begin{cases} u(x) = \frac{\alpha}{2} \left(\sup_{y \in \overline{B}_{\epsilon}(x)} u(y) + \inf_{y \in \overline{B}_{\epsilon}(x)} u(y) \right) + \beta \oint_{B_{\epsilon}(x)} u(y) \, dy & \text{in } \Omega \\ u(x) = F(x) & \text{on } \partial\Omega \end{cases}$$

with $\alpha, \beta \in [0, 1], \alpha + \beta = 1$.

2. Two players play **random Tug-of-War** with step ϵ on a domain $\Omega \subset \mathbb{R}^n$ without running payoff but with terminal payoff function $F : \partial \Omega \to \mathbb{R}$. Suppose they follow all the usual rules, except that they use a **biased (unfair) coin** with a probability $p \in (0, 1)$ of Player I winning the coin toss at each turn.

- (i) Find the Dynamic Programming Principle for this ϵ -game.
- (ii) Is there any choice of the probability p in terms of ϵ for which a PDE of the type

$$-\Delta_{\infty}u + \beta \left|\nabla u\right| = 0, \qquad \beta \in \mathbb{R}$$

emerges in the limit as $\epsilon \to 0$? You can assume $u \in \mathcal{C}^2$ and $\nabla u \neq 0$ in Ω for simplicity.

3. A function $u \in \mathcal{C}(\Omega)$ is infinity harmonic if an only if

$$-\Delta_{\infty} u = 0 \quad \text{in } \Omega \subset \mathbb{R}^n \tag{1}$$

in the viscosity sense. It can be checked that if for every $x \in \Omega$ we have

$$u(x) = \frac{1}{2} \left(\max_{y \in B_{\epsilon}(x)} u(y) + \min_{y \in B_{\epsilon}(x)} u(y) \right) + o(\epsilon^2) \quad \text{as } \epsilon \to 0,$$
(2)

then u is infinity harmonic (in the viscosity sense).

Prove that the converse does not hold, that is, find an infinity harmonic function $u \in \mathcal{C}(\Omega)$ that violates the asymptotic mean value property (2).

Hint: Notice that u cannot be of class $C^2(\Omega)$, since a classical solution of (1) must satisfy (2). What explicit examples of "truly viscosity" infinity harmonic functions do you know from the literature?

Remark: A function $u \in \mathcal{C}(\Omega)$ is infinity harmonic in the viscosity sense if and only if it satisfies the asymptotic mean value property (2) in the viscosity sense.

4. Let $1 < q < \infty$ and $x \in \mathbb{R}^n$. Then, we define its ℓ^q -norm as $|x|_q = \left(\sum_{i=1}^n |x_i|^q\right)^{1/q}$, with q = 2 the usual Euclidean case. Two players play **random Tug-of-War** on a domain $\Omega \subset \mathbb{R}^n$ without running payoff but with terminal payoff function $F : \partial\Omega \to \mathbb{R}$. Suppose they follow all the usual rules, except that instead of choosing the next game position from an Euclidean ball of radius ϵ , they pick the new game position from an ℓ^q -ball of radius ϵ , namely,

$$x_{k+1} \in B_{\epsilon}^{\ell^{q}}(x_{k}) = \{ x \in \mathbb{R}^{n} : |x - x_{k}|_{q} \le \epsilon \}, \qquad 1 < q < \infty.$$

- (i) Find the Dynamic Programming Principle that the ϵ -value u_{ϵ} satisfies.
- (ii) For $u_{\epsilon} \in \mathcal{C}^2$ and x_0 such that $\nabla u_{\epsilon}(x_0) \neq 0$. Show that the points $x_{\max}^{\epsilon}, x_{\min}^{\epsilon} \in \overline{B_{\epsilon}^{\ell q}}$ such that

$$u_{\epsilon}(x_{\max}^{\epsilon}) = \max_{y \in \overline{B_{\epsilon}^{\ell q}}} u_{\epsilon}(y), \qquad u_{\epsilon}(x_{\min}^{\epsilon}) = \min_{y \in \overline{B_{\epsilon}^{\ell q}}} u_{\epsilon}(y)$$

are given by

$$x_{\max}^{\epsilon} = x_0 + \epsilon \left[J \big(\nabla u_{\epsilon}(x_0) \big) + o(1) \right], \qquad x_{\min}^{\epsilon} = x_0 - \epsilon \left[J \big(\nabla u_{\epsilon}(x_0) \big) + o(1) \right],$$

as $\epsilon \to 0$, where

$$J(y) = |y|_{q^*}^{-q^*/q} (|y_1|^{q^*-2}y_1, \dots, |y_n|^{q^*-2}y_n), \quad \text{for } y \neq 0.$$

Hint: Note that by Hölder's inequality, for every $1 < q < \infty$,

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i \le \left(\sum_{i=1}^{n} |x_i|^q\right)^{1/q} \cdot \left(\sum_{i=1}^{n} |y_i|^{q^*}\right)^{1/q^*} \quad \text{for } \frac{1}{q} + \frac{1}{q^*} = 1$$

On the other hand, $\hat{x} = J(y)$ verifies $|\hat{x}|_q = 1$ and $\langle \hat{x}, y \rangle = |y|_{q^*}$.

(iii) Let u be the uniform limit of the u_{ϵ} as $\epsilon \to 0$. Show that at points of twice differentiability of u where $\nabla u \neq 0$, we have

$$-\left\langle D^2 u J(\nabla u), J(\nabla u) \right\rangle = 0. \tag{3}$$

Remark: Equation (3) is the analogous in the case of a general ℓ^q -norm of the equation $-\Delta_{\infty} u = 0$ in the Euclidean case, and has applications to **absolutely minimizing** Lipschitz extensions with general norms.

Optimization Equations, Transport, and Monge-Ampère

5. Find the optimal transport map for the quadratic cost $c(x, y) = |x - y|^2$ between $\mu = f(x) dx$ and $\nu = g(y) dy$ in two dimensions, where $f(x) = \frac{1}{\pi} \mathbb{1}_{B_{(0,1)}(x)}$ and $g(y) = \frac{1}{8\pi} (4 - |y|^2)$.

Hint: Since both densities are radially symmetric the transport map has to be radial and the problem is reduced to an optimal transport problem in one dimension.

6. Let $R : \mathbb{R}^n \to \mathbb{R}^n$ be given by R(x) = -x. Characterize the probability measures μ such that R is an optimal transport map between μ and $\nu = R_{\#}\mu = \mu \circ R^{-1}$ for the quadratic cost.

Hint: By cyclical monotonicity of optimal maps, in the quadratic case you know that $\langle R(x) - R(y), x - y \rangle \ge 0$ for all x, y in the support of μ (in general you have $\sum_i c(x_i, R(x_i)) \le \sum_i c(x_i, R(x_{i+1}))$, here you take two points in the sum and c as the quadratic cost).

7. Let $\Omega \subset \mathbb{R}^n$ and \mathcal{M} be the space of $n \times n$ real matrices. For $F : \Omega \times \mathcal{M} \to \mathbb{R}$ of class \mathcal{C}^1 , the equation

$$F(x, D^2u(x)) = 0 \qquad \text{in } \Omega, \tag{4}$$

is uniformly elliptic with ellipticity constants $0 < \theta \leq \Theta$ if and only if

$$\theta|\xi|^2 \le F_{ij}(x,M)\,\xi_i\xi_j \le \Theta|\xi|^2 \qquad \forall x \in \Omega, \ \forall M \in \mathcal{M} \text{ symmetric and } \forall \xi \in \mathbb{R}^n,$$
(5)

where $F_{ij}(x, A) = \partial_{a_{ij}} F(x, A)$. In particular, consider the following Monge-Ampère equation

$$\det\left(D^2 u(x)\right) = f(x), \qquad \text{in } \Omega. \tag{6}$$

(i) For $F(x, M) = \det(M) - f(x)$, show that

$$(F_{ij}(x,M))_{1 \le i,j \le n} = \operatorname{cof}(M)$$

where cof(M) is the matrix of cofactors of M. Then find a symmetric matrix $M \in \mathcal{M}$ that violates (5).

Hint: When computing F_{ij} you can use Laplace's formula and write the determinant as an expansion across row i or column j, i.e.

$$\det(M) = \sum_{j=1}^{n} m_{ij} \, (\operatorname{cof}(M))_{ij} = \sum_{i=1}^{n} m_{ij} \, (\operatorname{cof}(M))_{ij}$$

where $M = (m_{ij})_{1 \le i,j \le n}$ and cof(M) is the matrix of cofactors of M.

(ii) However, equation (6) is uniformly elliptic if $D^2 u$ is in an appropriately restricted space of matrices. Show that if we only consider solutions of (6) that satisfy

$$0 < D^2 u(x) \le C \operatorname{Id} \quad \text{and} \quad 0 < \mu \le f(x) \quad \forall x \in \Omega,$$
(7)

for some positive constants C, μ , then equation (6) is uniformly elliptic in the class of solutions that satisfy (7).

Hint: Keep in mind that the determinant of a matrix is the product of its eigenvalues. Also, the following formula for the inverse of a nonsingular matrix M can be useful:

$$M^{-1} = \frac{1}{\det(M)} \left(\operatorname{cof}(M) \right)^t,$$

where t denotes the transpose of a matrix.

8. Use optimal transport to prove the following form of the isoperimetric inequality with sharp constant: For $M \subset \mathbb{R}^n$

$$\operatorname{Vol}(M) = \operatorname{Vol}(B_1) \quad \Rightarrow \quad \mathcal{H}^{n-1}(\partial M) \ge \mathcal{H}^{n-1}(\partial B_1)$$

where \mathcal{H}^{n-1} is the (n-1)-dimensional Hausdorff measure.

Complete the following sketch of the proof.

Proof.

(i) Take $f = \mathbb{1}_M$ and $g = \mathbb{1}_{B_1}$. Brenier's theorem then gives a volume-preserving map $G = \nabla u$ between M and B_1 such that

$$\int_{M} \phi(\nabla u(x)) f(x) dx = \int_{B_1} \phi(y) g(y) dy.$$

In particular,

$$1 = \det^{1/n}(D^2u(x)) \qquad \text{a.e. } x \in M.$$

(ii) The arithmetic-geometric mean inequality yields

$$\operatorname{Vol}(M) \leq \frac{1}{n} \int_{M} \Delta u \, dx.$$

(iii) Integrating by parts (divergence theorem) we have

$$\operatorname{Vol}(B_1) = \operatorname{Vol}(M) \le \frac{1}{n} \int_{\partial M} 1 \, d\mathcal{H}^{n-1} = \frac{1}{n} \mathcal{H}^{n-1}(\partial M).$$

(iv) In the special case $M = B_1$, Brenier's map coincides with the identity map so equalities hold throughout the previous argument, yielding the optimal constant.