MATHEMATICAL MODELING WITH PDEs (MAMME) 2016-17

Game Theory and the Infinity Laplacian

1. Let p > 2 and consider the normalized p-Laplacian operator
ANy = [Vo> P div (|[Vo[P?Vo) = Av+ (p — 2) A,

where Ayv = [Vu[ 72 37, Vs,0s,0,, is the normalized infinity Laplacian.

(i) Find a, 8 € [0,1] with a + 3 = 1 such that for every u € C*(Q2) such that
—A;V u=20 in Q C R"
(where © is a smooth domain) the following asymptotic mean value formula holds

u(:c):g( sup u(y) + mf u )—l—ﬁ][ y)dy + o(e?), ase— 0.

2 \yeB.(x) yeBe(
You can assume Vu # 0 in € for simplicity.

(ii) Describe a game with the following dynamic programming principle

u<x>=—( sup ufy)+ inf U(y))+6 ul)dy O
B(x)

yEB(x) yeBe(z)
with o, 5 € [0,1], a+ 5 = 1.

2. Two players play random Tug-of-War with step € on a domain 2 C R" without running
payoff but with terminal payoff function F' : 9 — R. Suppose they follow all the usual
rules, except that they use a biased (unfair) coin with a probability p € (0, 1) of Player I
winning the coin toss at each turn.

(i) Find the Dynamic Programming Principle for this e-game.
(ii) Is there any choice of the probability p in terms of € for which a PDE of the type
—Asu+ f|Vu| =0, g eR

emerges in the limit as € — 0? You can assume u € C? and Vu # 0 in Q for simplicity.

3. A function u € C(Q2) is infinity harmonic if an only if

—Agu=0 inQCR" (1)



in the viscosity sense. It can be checked that if for every x € €2 we have

u(z) = L ( max u(y)+ min u(y)) + o(€?) as € — 0, (2)
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then u is infinity harmonic (in the viscosity sense).

Prove that the converse does not hold, that is, find an infinity harmonic function u € C(2)
that violates the asymptotic mean value property (2).

Hint: Notice that u cannot be of class C?(2), since a classical solution of (1) must satisfy
(2). What explicit examples of “truly viscosity” infinity harmonic functions do you know
from the literature?

Remark: A function u € C(2) is infinity harmonic in the viscosity sense if and only if it
satisfies the asymptotic mean value property (2) in the viscosity sense.

4. Let 1 < ¢ < 0o and z € R". Then, we define its ¢-norm as |z|, = (X1, |xi\q)1/q,
with ¢ = 2 the usual Euclidean case. Two players play random Tug-of-War on a domain
2 C R™ without running payoff but with terminal payoff function F' : 92 — R. Suppose
they follow all the usual rules, except that instead of choosing the next game position from
an Euclidean ball of radius €, they pick the new game position from an ¢9-ball of radius e,
namely,

Trpe1 € BY( {xERn' \x—azk|q§e}, 1 <q< .

(i) Find the Dynamic Programming Principle that the e-value u, satisfies.

(ii) For u. € C* and x, such that Vu,(xo) # 0. Show that the points z<,, , 25, € B such
that
Ue(Tpax) = MAX U(y),  Ue(Ppyyy) = min uc(y)
yeBe! yeB!

are given by
T = o+ € [J(Vue(a:o)) + 0(1)] , X = To — € [J(Vug(.ro)) + 0(1)] ,
as € — 0, where

J(y) = |y,

q -2

(7

Hint: Note that by Holder’s inequality, for every 1 < ¢ < oo,

1/q n 1/¢*
szyz < (Z |$z!q) : (Z |y q*> for é—i- e =1
i=1

*
=1 q

Py el ), for y # 0.

On the other hand, & = J(y) verifies ||, = 1 and (Z,y) = |y,




(iii) Let u be the uniform limit of the u, as € — 0. Show that at points of twice differen-
tiability of u where Vu # 0, we have

—(D*u J(Vu), J(Vu)) = 0. (3)

Remark: Equation (3) is the analogous in the case of a general ¢9-norm of the equation
—Asu = 0 in the Euclidean case, and has applications to absolutely minimizing
Lipschitz extensions with general norms.

Optimization Equations, Transport, and Monge-Ampeére
5. Find the optimal transport map for the quadratic cost c(z,y) = |v — y|*> between p =
f(z)dr and v = g(y) dy in two dimensions, where f(z) = %ILB(()’I)(I) and g(y) = &=(4— [y]*).

Hint: Since both densities are radially symmetric the transport map has to be radial and
the problem is reduced to an optimal transport problem in one dimension.

6. Let R: R™ — R"™ be given by R(z) = —z. Characterize the probability measures p such
that R is an optimal transport map between p and v = Ryp = po R for the quadratic
cost.

Hint: By cyclical monotonicity of optimal maps, in the quadratic case you know that
(R(x)—R(y), z—y) > 0 for all z,y in the support of i (in general you have . c(z;, R(z;)) <
> c(xi, R(zi41)), here you take two points in the sum and c as the quadratic cost).

7. Let © C R™ and M be the space of n x n real matrices. For F': Q x M — R of class C!,
the equation
F(z, D*u(z)) =0 in €, (4)

is uniformly elliptic with ellipticity constants 0 < # < © if and only if
01€° < Fij(z, M) &€ < Of¢)? Vo € Q, VM € M symmetric and V¢ € R", (5)
where Fyj(z, A) = O, F (7, A). In particular, consider the following Monge-Ampere equation
det (D*u(z)) = f(x), in . (6)

(i) For F(xz, M) = det(M) — f(z), show that

(Fy(z, M)) = cof(M)

1<ij<n

where cof(M) is the matrix of cofactors of M. Then find a symmetric matrix M € M
that violates (5).

Hint: When computing F;; you can use Laplace’s formula and write the determinant
as an expansion across row ¢ or column j, i.e.

det(M) = Zmij (cof(M));; = Z mij (cof(M)),;,
=1 i=1
where M = (m;;)1<; j<n and cof(M) is the matrix of cofactors of M.
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(ii) However, equation (6) is uniformly elliptic if D?u is in an appropriately restricted space
of matrices. Show that if we only consider solutions of (6) that satisfy

0< D*u(z) <CId and 0<pu< f(x) Vaeq, (7)

for some positive constants C, i1, then equation (6) is uniformly elliptic in the class of
solutions that satisfy (7).

Hint: Keep in mind that the determinant of a matrix is the product of its eigenvalues.
Also, the following formula for the inverse of a nonsingular matrix M can be useful:

1
M=
det(M)

(COf(M))t,

where t denotes the transpose of a matrix.

8. Use optimal transport to prove the following form of the isoperimetric inequality with
sharp constant: For M C R"

Vol(M) =Vol(B,) = H" ' (OM)>H"(0B)

where H"! is the (n — 1)-dimensional Hausdorff measure.

Complete the following sketch of the proof.

Proof.

(i) Take f = 1), and g = 1p,. Brenier’s theorem then gives a volume-preserving map
G = Vu between M and B; such that

/M o(Vu@) f(w)iz = [ o(w)atu)dy

In particular,
1 = det'/™(D%u(x)) a.e. v € M.

(ii) The arithmetic-geometric mean inequality yields

Vol(M) < l/ Au dz.
nJm

(iii) Integrating by parts (divergence theorem) we have

Vol(B;) = Vol(M) < ! / 1dH" ' = lf;w“b—l(aM).
oM n

n

(iv) In the special case M = By, Brenier’s map coincides with the identity map so equalities
hold throughout the previous argument, yielding the optimal constant. O



