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a b s t r a c t 

The theory of communication through coherence (CTC) proposes that brain oscillations re- 

flect changes in the excitability of neurons, and therefore the successful communication 

between two oscillating neural populations depends not only on the strength of the signal 

emitted but also on the relative phases between them. More precisely, effective commu- 

nication occurs when the emitting and receiving populations are properly phase locked 

so the inputs sent by the emitting population arrive at the phases of maximal excitabil- 

ity of the receiving population. To study this setting, we consider a population rate model 

consisting of excitatory and inhibitory cells modelling the receiving population, and we 

perturb it with a time-dependent periodic function modelling the input from the emit- 

ting population. We consider the stroboscopic map for this system and compute numer- 

ically the fixed and periodic points of this map and their bifurcations as the amplitude 

and the frequency of the perturbation are varied. From the bifurcation diagram, we iden- 

tify the phase-locked states as well as different regions of bistability. We explore carefully 

the dynamics of particular phase-locking regimes emphasizing its implications for the CTC 

theory. In particular, we study how the input gain depends on the timing between the in- 

put and the inhibitory action of the receiving population. Our results show that naturally 

an optimal phase locking for CTC emerges, and provide a mechanism by which the receiv- 

ing population can implement selective communication. Moreover, the presence of bistable 

regions, suggests a mechanism by which different communication regimes between brain 

areas can be established without changing the structure of the network. 

© 2019 Elsevier B.V. All rights reserved. 

 

 

 

 

1. Introduction 

Neural oscillations are ubiquitous in the brain. Since they were first observed in 1929 by Hans Berger [1] , they have been

profusely studied to unveil their link with brain function. Nowadays, they are classified in the following bands: delta (1–

4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–70 Hz). Although some of these frequency bands

have been associated to specific tasks or behaviours, their functional role is still not completely understood [2] . 

Fast brain oscillations in the gamma frequency band have been hypothesized to occur in local neural networks composed

by excitatory pyramidal neurons and inhibitory interneurons (E-I networks) [3,4] . There is an increasing number of studies
List of abbreviations: CTC, Communication Through Coherence; E-I, Excitatory-Inhibitory. 
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Fig. 1. The picture illustrates different excitability properties along a cycle generated by the interaction between excitation (red) and inhibition (blue). Once 

the inhibition decays, the network is sensitive to external inputs. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

which link oscillations in the gamma band frequencies with cognitive processes and communication between brain areas

[5–7] . In this context, the Communication Through Coherence (CTC) Theory [8] conjectures that oscillations can account for

a flexible mechanism of communication between neural populations. More precisely, oscillations generated across the inter-

action of excitatory and inhibitory cells cause that the excitability of the excitatory population is not the same for all the

phases of the cycle due to the inhibitory action [9,10] . Indeed, when the excitatory population receives an external input at

the phase in which the inhibition is not present, the excitatory cells can respond effectively, thus promoting communication,

while if the inhibition is present, the input might be ignored, thus preventing communication (see Fig. 1 ). Therefore, accord-

ing to the CTC theory, two neuronal populations with underlying oscillatory activity communicate much effectively when

they are coherent, that is, they are properly phase locked so that the output sent by the pre-synaptic (emitting) population

reaches the post-synaptic (receiving) population in its peaks of excitability. 

Different predictions following the CTC theory have been experimentally tested [11] . On one hand, different studies link

the phase of the inhibitory receiving population with the modulation of the input gain [12] . On the other hand, different

studies support that selective communication, that is, the ability of the post-synaptic group to respond to a given input and

ignore the others, is implemented through selective coherence [13,14] . 

Furthermore, besides the experimental studies, the CTC framework has also been studied by means of computational

models, which focus on the link between gamma oscillations and stimulus selection [15–17] . Conclusions agree with the CTC

hypothesis that the phase relationship which is established between a rhythmic input and the post-synaptic group turns to

be optimal for the CTC scheme [18] . Most of these computational studies are based on E-I networks of spiking neurons.

Nevertheless, mean field approaches are also useful to complement these results and to gain insight into the mechanisms

underlying the CTC hypotheses. Indeed, they allow for a more manageable analytical treatment, while keeping the essential

processes involved [19] . 

In this work we propose a theoretical approach to the CTC theory by means of a phenomenological description of the

population activity in terms of the mean firing rate. More precisely, in order to deepen in the mechanism underlying phase-

locking in a neuronal cycle having different excitability phases, we will consider the effect of an external periodic input onto

a network model consisting of a single population of excitatory neurons and a single population of inhibitory neurons (E-I

network). For such setting we consider the simplest canonical model describing the mean firing rates of an E-I network:

The Wilson–Cowan equations [20] . The parameters of this model will be chosen so that the system shows oscillations [21] .

In particular, we focus on oscillations of the Wilson–Cowan model arising from a Hopf bifurcation -we also provide a pre-

liminary exploration of the case close to a Saddle-Node on an Invariant Circle (SNIC) bifurcation. The goal is to study the

different phase-locking patterns that emerge between the oscillatory E-I network and the external periodic input for dif-

ferent input parameters. We remark that our setting explores the dynamics emerging from unidirectional communication.

Indeed, some studies have conjectured that a given brain area has neurons receiving inputs and different neurons sending

outputs [22] . Nevertheless, we point out that schemes based on bidirectional communication have also been proposed to

play a role in the context of CTC theory [23,24] . 

To determine and compute the phase-locked states, we consider the stroboscopic map for this system and compute

numerically its fixed and periodic points and their bifurcations, as the amplitude and the frequency of the perturbation

are varied. The techniques that we use to do the bifurcation analysis have no restriction neither on the amplitude nor

on the frequency of the perturbation, or how close the limit cycle of the Wilson–Cowan equations is from a bifurcation.

From the bifurcation diagram, we can identify the phase-locked states as well as different regions of bistability between

different invariant objects. We explore carefully the dynamics on these invariant objects and we discuss the implications

of these results for the CTC theory, paying attention to the phase-locking and amplitude of the response of the oscillatory

neuronal population to the external input. Notably, our results provide a mechanism by which the receiving population can

implement selective communication, as well as a mechanism by which different communication regimes between areas can

be established (communication can be turned on and off) without changing the connectivity of the network. 

The structure of the paper is as follows. In Section 2 , we introduce the mathematical model by which we explore the

theoretical basis of CTC. Section 3 contains the mathematical analysis of the model. More precisely, in Section 3.1 , we intro-

duce the stroboscopic map and compute the bifurcation diagram of its fixed points as the frequency and the amplitude of

the perturbation are varied. In Section 3.2 we provide a complete dynamical analysis of the different phase-locking regions

including the bistability regions identified in the bifurcation diagram. In Section 4 we discuss the implications for CTC theory
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of the different dynamical scenarios found in Section 3.2 and we finish with a discussion in Section 5 . The Appendix A con-

tains details of the numerical algorithms used to compute the bifurcation diagram, Appendix B contains a preliminary ex-

ploration of the Wilson–Cowan equations in the oscillatory regime close to a SNIC bifurcation and Appendix C includes an

exploratory result for non-sinusoidal type of inputs. 

2. Mathematical setting for CTC 

In this Section we present the theoretical setting based on a canonical population firing rate model that implements

mathematically the CTC framework. We consider the classical Wilson–Cowan model, which describes the behaviour of a

coupled network of excitatory and inhibitory neurons [20] , and we perturb it with a time-periodic function p ( t ) which

models the input from an external oscillating source. The perturbed Wilson–Cowan equations have the form 

˙ r e = −r e + S e (c 1 r e − c 2 r i + P + Ap(t)) , 

˙ r i = −r i + S i (c 3 r e − c 4 r i + Q ) , (1)

where the variables r e and r i are the firing rate activity of the excitatory and inhibitory populations, respectively, and 

S k (x ) = 

1 

1 + e −a k (x −θk ) 
, for k = e, i, (2)

is the input-output function. 

As we will use the Wilson–Cowan equations to model the receiving population, we need to choose parameters in (1) such

that for A = 0 they show a limit cycle. The conditions for the Wilson–Cowan equations to display oscillations have been

studied in classical papers [20,21] . Typically, the external currents P and Q are set as the bifurcation parameters. The reason

is because they translate the nullclines of system (1) and thus determine the position and number of the critical points. For

this problem we will use the following set of parameters 

P = { c 1 = 13 , c 2 = 12 , a e = 1 . 3 , θe = 4 , c 3 = 6 , c 4 = 3 , a i = 2 , θi = 1 . 5 } , (3)

for which, as the bifurcation diagram in Fig. 2 shows, the system (1) for A = 0 displays a limit cycle denoted by �0 for

some ( P, Q ) values. In particular, in this paper we choose (P, Q ) = (2 . 5 , 0) , so the unperturbed limit cycle is near a Hopf

bifurcation. 

Besides the Wilson–Cowan equations, we model the external input p ( t ) to the excitatory population by means of a posi-

tive T ′ -periodic function. In this paper we have chosen: 

p(t) = 1 + cos 

(
2 πt 

T ′ 
)
. (4)

3. Dynamical analysis 

In this Section we will define the stroboscopic map of system (1) and study the bifurcations of its fixed points as the

amplitude and the frequency of the perturbation p ( t ) in (4) are varied. In particular, we will focus on the study of the 1:1

and 1:2 phase-locked states, as we will see in Section 4 , they can serve to interpret several aspects of the CTC theory. 

3.1. The stroboscopic map 

To study the T ′ -periodic system (1) we use the stroboscopic map defined by 

F A : R 

2 → R 

2 , 

x → F A (x ) = φA (t 0 + T ′ ; t 0 , x ) , (5)

where φA ( t ; t 0 , x ) is the solution of (1) such that φA (t 0 ; t 0 , x ) = x . Calculations in this paper will always assume that t 0 = 0.

As it is well known, periodic orbits of system (1) are given by the fixed and periodic points of the stroboscopic map

(5) , whereas the quasi-periodic solutions correspond to its invariant curves [25] . More precisely, if γ (t) = φA (t; t 0 , x ) is a

solution of system (1) and [ F A (x )] q = x, then φA (t 0 + qT ′ ; t 0 , x ) = x and therefore γ ( t ) is a periodic orbit of system (1) with

period qT ′ . Analogously, if γ (t) = φA (t; t 0 , x ) is a periodic orbit of period T of (1) with 

T ′ 
T = 

p 
q , p, q ∈ N , then 

[ F A (x )] q = φA (t 0 + qT ′ ; t 0 , x ) = φA (t 0 + pT ; t 0 , x ) = x. (6)

Otherwise, if T ′ /T ∈ R \ Q , then the iterates of F A fill densely an invariant curve denoted by �A . 

In the perturbed Wilson–Cowan model (1) , the relationship (6) indicates a p:q phase locked state between the population

and the perturbation. This means that the neuronal population variables r e and r i have completed p revolutions in the same

time that the perturbation p ( t ) has completed q revolutions. 
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Fig. 2. For the unperturbed ( A = 0 ) Wilson–Cowan Eq. (1) having the set of parameters P given in (3) we show: Bifurcation diagram as a function of the 

external stimuli P and Q (Top panel). The pink dot indicates the pair of ( P, Q ) = (2.5, 0) values chosen so that (1) shows oscillations. The bottom-left panel 

shows the nullclines and the phase space for the choice ( P, Q ) = (2.5, 0). The phase space shows a limit cycle �0 and an unstable focus P 1 . The bottom-right 

panel shows the dynamics over the limit cycle �0 . Notice how oscillations arise from the interaction between excitatory and inhibitory activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Dynamics of the stroboscopic map F A 

Computing bifurcations of the fixed points of the stroboscopic map becomes relevant to identify different synchronous

regimes as well as asynchronous ones. Using the techniques described in Appendix A we can compute the bifurcation dia-

gram for the fixed points of the stroboscopic map (5) of system (1) as the amplitude and the frequency of the perturbation

p ( t ) in (4) are varied. As Fig. 3 shows, the fixed points of the map F A undergo different bifurcations, namely, saddle-node,

Neimark–Sacker and period doubling bifurcations, which bound the 1:1 and 1:2 phase locking areas, and allow for a natural

identification of the synchronous regimes of interest. The yellow and pink regions correspond to 1:1 and 1:2 phase locked

states of system (1) , respectively. We recall that they correspond to fixed points (1:1) and 2-periodic points (1:2) of the map

F A . The white regions may contain other p:q phase-locked states, as well as asynchronous states. The orange regions contain

more than one stable invariant object for the map F A . 

Next, we study in detail the dynamics predicted by the bifurcation diagram in Fig. 3 . In particular, we will consider

different T ′ / T intervals and study in detail the dynamics as the amplitude A of the perturbation p ( t ) is increased. We recall

that by choosing the set of parameters P given in (3) , ( P, Q ) = (2.5, 0) and A = 0 , the phase space for system (1) shows the

limit cycle �0 and an unstable focus P 1 (see Fig. 2 bottom left). As both objects are normally hyperbolic we expect them

to persist for weak enough amplitudes as an invariant curve �A and a fixed point P 1 , respectively, for the corresponding

stroboscopic map F A in (5) . The analysis that we perform focuses on 1:1 and 1:2 phase-locked states because they occupy

the largest regions of the parameter space. Furthermore, as we will see in Section 4 , the dynamics emerging in the 1:1
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Fig. 3. Bifurcation diagram for the fixed points of the stroboscopic map (5) of system (1) for the set of parameters P given in (3) , ( P, Q ) = (2.5, 0), as 

the frequency and the amplitude of the perturbation are varied. Solid curves correspond to bifurcations of stable fixed points whereas dashed curves 

correspond to bifurcations of unstable fixed points. The coloured regions correspond to different phase locking regimes: 1:1 phase-locking (yellow), 1:2 

phase-locking (pink), bistability (orange). See text for more details. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 4. Dynamics close to the saddle-node bifurcation at the 1:1 phase-locking region. Central panel shows a zoom of the bifurcation diagram for the map 

F A in Fig. 3 in the region close to the saddle-node bifurcation at the 1:1 phase-locking region. Panels A-D show a sketch of the phase space for the map F A 
in different parameter regions indicated accordingly in the central panel. Solid and empty dots correspond to stable and unstable fixed points, respectively, 

while orange curves correspond to a sketch of the invariant curves. Arrows indicate only the type of fixed point. See text for more details. 

 

 

 

 

 

 

 

 

 

 

and 1:2 phase-locking regions can be interpreted in terms of the CTC theory which motivates this study. In particular, the

1:1 phase-locking pattern allows for the study of the modulation of the input gain whereas the 1:2 phase-locking pattern

accounts for selective communication. 

3.2.1. Dynamics close to the saddle-node bifurcation at the 1:1 phase-locking region 

The dynamics for values of T ′ such that 0.9388 < 

T ′ 
T < 1.04, was studied in [26] . For the sake of completeness we recall

here the main results, which are shown in Fig. 4 . For A small, an attracting invariant curve �A and an unstable focus P 1 in-

side it exist (regions A 1 and B ). In region A 1 the invariant curve �A has no fixed points and once the saddle-node bifurcation

(solid blue curve) is crossed (region B), there appear two fixed points on the invariant curve: a stable node P 2 and a saddle

P 3 , thus a SNIC bifurcation occurs, so �A consists of the union of the saddle P 3 , its unstable invariant manifolds, and the

stable node P 2 . If the amplitude is increased (region C), P 1 becomes an unstable node (dashed gray curve). Furthermore, if

the amplitude is increased further, P 1 coalesces with P 3 in an unstable saddle-node bifurcation (dashed blue curve), causing

the disappearance of the invariant curve � and the stable node P remains as the unique fixed point (region D). Observe
A 2 
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Fig. 5. Dynamics close to the Neimark–Sacker bifurcation at the 1:1 phase-locking region. Right panel shows a zoom of the bifurcation diagram for the 

map F A in Fig. 3 in the region close to the Neimark–Sacker bifurcation at the 1:1 phase-locking region. Panels A-B show a sketch of the phase space for 

the map F A in different parameter regions indicated accordingly in the central panel. Solid and empty dots correspond to stable and unstable fixed points, 

respectively, while orange curves correspond to a sketch of the invariant curves. Arrows indicate only the type of fixed point. See text for more details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that it is possible to pass from region A 1 to region C, without passing through region B. In the region A 2 the unstable focus

P 1 becomes an unstable node before crossing the saddle-node bifurcation curve (solid blue curve). 

3.2.2. Dynamics close to the Neimark–Sacker bifurcation at the 1:1 phase-locking region 

The dynamics for values of T ′ such that 0.51 < 

T ′ 
T < 0.9388, was studied in [26] . For the sake of completeness we recall

here the main results, which are shown in Fig. 5 . For A small, the attracting invariant curve �A has no fixed points of F A ,

and an unstable focus P 1 exists inside �A (region A). If the amplitude A is further increased, a Neimark–Sacker bifurcation

occurs (green curve). At this point, the curve �A collapses to P 1 and disappears, while P 1 becomes a stable focus (region B).

3.2.3. Dynamics on the left hand side of the 1:2 phase-locking region 

For values of T ′ such that 0.32 < 

T ′ 
T < 0.42, the phase portrait for the map F A in different regions of the parameter space

is shown in Fig. 6 . For A small, there exists a stable invariant curve and an unstable focus P 1 (region A). When the amplitude

increases, P 1 becomes an unstable node when it crosses the dashed grey curve (region B). If the amplitude increases more,

one finds, depending on the T ′ value considered, different bifurcation curves where there appear unstable fixed points for the

map F 2 
A 

. Next, we describe the dynamics in the zoomed region in Fig. 6 containing a sketch of such bifurcations. For 0.355

< 

T ′ 
T < 0.4, as A increases an unstable saddle-node bifurcation for F 2 

A 
is crossed (dashed blue curve) and two saddles ( P 3 and

P 5 ) and two unstable nodes ( P 2 and P 4 ) appear as fixed points for the map F 2 
A 

(region C). By contrast for 0.32 < 

T ′ 
T < 0.355,

one finds a period doubling bifurcation (dashed purple curve), at which there appear two unstable nodes ( P 2 and P 4 ) and the

unstable node P 1 becomes a saddle (region G). In both cases, a slight increase of the amplitude A causes the unstable nodes

P 2 and P 4 of F 2 
A 

to become unstable focuses at the dashed grey line (regions D and H). These focuses change their stability

at a subcritical Neimark–Sacker bifurcation (green curve). Thus, an unstable invariant curve appears surrounding each of the

stable focuses (regions E and I, respectively), generating a situation of bistability between the invariant curve �A and the

fixed points P 2 and P 4 . These unstable invariant curves undergo a homoclinic bifurcation (not shown) generating a unique

unstable invariant curve which collides with the stable invariant curve �A at a saddle-node bifurcation of invariant curves

(brown dashed curve). Therefore, the stable focuses P 2 and P 4 remain as the unique attractors (regions F and J). Additionally,

the saddles P 3 and P 5 in region F disappear at a period doubling bifurcation (dashed purple curve) and transitioning from

region F to J. 

So, as the amplitude A increases, by means of different bifurcation routes, that depend on T ′ / T , the map F 2 
A 

shows the

phase portrait depicted in region J, consisting of a saddle P 1 and two stable focuses P 2 and P 4 . Finally, for large enough

amplitudes, the stable focuses P 2 and P 4 for the map F 2 
A 

become stable nodes when crossing the dashed grey line (region

K). Increasing the amplitude further, both points collapse at a period doubling bifurcation (solid purple line) where the

saddle P 1 becomes a stable node (region L). 

3.2.4. Dynamics on the right hand side of the 1:2 phase-locking region 

For values of T ′ such that 0.42 < 

T ′ 
T < 0.51, the phase portrait for the map (5) in different regions of the parameter space

is shown in Fig. 7 . For A small, the attracting invariant curve �A generated from the unperturbed limit cycle �0 has no fixed

points, and an unstable focus P 1 exists inside �A (region A). When the amplitude is increased, a saddle node bifurcation

curve of F 2 
A 

is crossed (blue curve), and there appear four fixed points on the invariant curve for the map F 2 
A 

: two stable
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Fig. 6. Dynamics close to the left hand side of the 1:2 phase-locking region. Top central panel shows a zoom of the bifurcation diagram for the map F 2 A in 

Fig. 3 for 0.32 < T ′ / T < 0.42. The bottom central panel contains a sketch of the bifurcations inside the black rectangle. Panels A-L show a sketch of the phase 

space for the map F 2 A in different parameter regions indicated accordingly in the central panel. Solid and empty dots correspond to stable and unstable 

fixed points, respectively, while orange curves correspond to a sketch of the invariant curves. Arrows indicate only the type of fixed point. See text for 

more details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nodes ( P 2 and P 4 ), and two saddles ( P 3 and P 5 ) (region B). The invariant curve consists of the union of both saddles and

their unstable invariant manifolds with the fixed points P 2 and P 4 . 

For values of T ′ such that 0.48 < 

T ′ 
T < 0.51, as the amplitude is increased, P 2 , P 3 , P 4 and P 5 pair-collide again on a saddle-

node bifurcation (blue curve) and disappear leaving an attracting invariant curve without periodic points and the unstable

fixed point P 1 (region A). The amplitude of this invariant curve decreases as the amplitude A increases until it reaches a

supercritical Neimark–Sacker bifurcation (green curve) for the map F A leaving just a stable focus as the unique fixed point

P 1 (Region F). 

For values of T ′ such that 0.42 < 

T ′ 
T < 0.48, as the amplitude A increases, very close to the saddle node bifurcation curve,

P 2 and P 4 become stable focuses at the grey dashed curve (region C). In this region the only stable objects are the focuses P 2
and P 4 . As the amplitude is increased further, this situation is maintained until P 2 and P 4 cross again the grey dashed curve

and become stable nodes, and the invariant curve is the union of the saddle points P 3 and P 5 and their unstable invariant

manifolds with the fixed points P 2 and P 4 (region B’). 

As the amplitude is increased further, a homoclinic bifurcation is crossed (red curve) and an invariant curve appears

(region D). Therefore, we have found a region where our system presents bistability between an attracting invariant curve

and the fixed points P 2 and P 4 for F 2 
A 

. If the amplitude is increased further, a Neimark–Sacker bifurcation is crossed (green

curve), thus the invariant curve disappears and P 1 changes stability (region E). This situation of bistability between a 2-

periodic orbit and a fixed point P 1 of the map F A persists as the amplitude increases further until it reaches a saddle-node

bifurcation (blue curve) for F 2 
A 

when the stable focus P 1 remains as the only fixed point (region F). See Appendix A for the

description of the procedure followed to compute the homoclinic bifurcation curve. 

3.2.5. Dynamics on the bottom right of the 1:1 phase-locking region 

For values of T ′ such that 1.04 < 

T ′ 
T < 1.125, the phase portrait for the map (5) in different regions of the parameter space

can be seen in Fig. 8 . The invariant curve �A (region A) evolves as the amplitude increases until crossing a saddle-node

bifurcation (blue curve). At this bifurcation a stable node P 2 and a saddle P 3 are born and the invariant curve consists of

the union of the saddle P and its unstable invariant manifolds with the stable node P (region B). Increasing the amplitude,
3 2 
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Fig. 7. Dynamics close to the right hand side of the 1:2 phase-locking region. Central panel shows a zoom of the bifurcation diagram for the map F 2 A in 

Fig. 3 for 0.42 < T ′ / T < 0.51. The inset panel contains a sketch of the bifurcations inside the black rectangle. Panels A-F show a sketch of the phase space for 

the map F 2 A in different parameter regions indicated accordingly in the central panel. Solid and empty dots correspond to stable and unstable fixed points, 

respectively, while orange curves correspond to a sketch of the invariant curves. Arrows indicate the type of fixed point in panels A, B and F while for the 

rest we include an sketch of the globalization of the invariant manifolds. See text for more details. 

Fig. 8. Dynamics close to the bottom right of the 1:1 phase-locking region. Central panel shows a zoom of the bifurcation diagram for the map F A in 

Fig. 3 for 1.04 < T ′ / T < 1.125. The inset contains a sketch of the bifurcations inside the black rectangle. Panels A-F show a sketch of the phase space for 

the map F A in different parameter regions indicated accordingly in the central panel. Solid and empty dots correspond to stable and unstable fixed points, 

respectively, while orange curves correspond to a sketch of the invariant curves. Arrows indicate only the type of fixed point. See text for more details. 

 

 

 

 

 

 

 

 

a homoclinic bifurcation is crossed (red curve) and there appears a stable invariant curve without fixed points generating

bistability between the invariant curve itself and the fixed point P 2 (region C). This invariant curve collapses at a Neimark–

Sacker bifurcation (green curve), where the focus becomes stable, generating bistability between the fixed points P 1 and P 2 
(region D). This situation persists until P 1 becomes a stable node at the grey dashed line (region E) which coalesces with

the saddle P 3 at a saddle node bifurcation (blue curve) and disappears leaving P 2 as the unique (stable) fixed point (region

F). See Appendix A for the description of the procedure followed to compute the homoclinic bifurcation curve. 

3.2.6. Dynamics on the top right of the 1:1 phase-locking region 

For values of T ′ such that 1.125 < 

T ′ 
T < 1.255, the phase portrait for the map (5) in different regions of the parameter

space can be seen in Fig. 9 . As the amplitude is increased, the invariant curve �A (region A) collapses at a Neimark–Sacker

bifurcation (green curve), where the stability of the focus P 1 changes (region B). If the amplitude is increased further, a stable

node P 2 and a saddle P 3 appear at a saddle-node bifurcation (blue curve), generating a situation of bistability between the

focus P 1 and the node P 2 (region C). As the amplitude A increases further, P 1 becomes a stable node at the grey dashed line

(region D) and coalesces with P at a saddle-node bifurcation, leaving node P as the unique (stable) fixed point (region E). 
3 2 
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Fig. 9. Dynamics close to the top right of the 1:1 phase-locking region. Central panel shows a zoom of the bifurcation diagram for the map F A in Fig. 3 for 

1.125 < T ′ / T < 1.255. The inset contains a sketch of the bifurcations inside the black rectangle. Panels A-F show a sketch of the phase space for the map F A 
in different parameter regions indicated accordingly in the central panel. Solid and empty dots correspond to stable and unstable fixed points, respectively, 

while orange curves correspond to a sketch of the invariant curves. Arrows indicate only the type of fixed point. See text for more details. 

Fig. 10. Effect of the phase �θ defined in Eq. (7) onto the excitatory response. For �θ > 0 (left) the input (green dashed curve) precedes the inhibition 

(blue curve), whereas for �θ < 0 (right) the input follows the inhibition. Parameters used are (A, T ′ /T ) = (0 . 47 , 1 . 2) (left) and (A, T ′ /T ) = (0 . 47 , 1 . 24) 

(right). Notice how, for two perturbations of identical amplitude and similar frequency, changes on the sign of �θ imply a change on the excitatory 

population response (red curve). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

 

 

 

 

 

 

 

 

 

 

 

4. Implications for CTC theory 

In this section, we interpret the results obtained in Section 3 in terms of the CTC framework. More precisely, we explore

the implications of the 1:1 phase-locked states in the modulation of the input gain, the 1:2 phase-locked states in selective

communication and the bistability regions in regulating communication. 

According to the CTC theory, phase locking between the emitting and receiving populations is required to establish an

effective communication. Nevertheless, as an effective communication is characterized by a noticeable increase of the re-

sponse of the excitatory receiving population, it turns out that the timing between the input and the inhibitory response

might modulate the response of the excitatory receiving population. Indeed, inputs preceding inhibition may participate ef-

fectively in the response of the receiving population, thus increasing it. By contrast, inputs following the inhibitory action

may be partially or totally silenced and, thus, have almost no noticeable effect in the receiving population. Next, in order to

explore the relationship between the timing of the inhibition and the increase of the response of the excitatory population

to the input we define and compute two magnitudes, �θ and �α, on the phase-locking areas of interest. 

In particular, we define �θ to compute the phase difference between the maximum of the inhibitory population and the

maximum of the perturbation, that is, 

�θ = 

t inh − t pert 

′ , �θ ∈ [ −0 . 5 , 0 . 5) , (7)

T 
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Fig. 11. For the 1:1 phase-locking region we show the phase difference �θ defined in Eq. (7) (left) and the amplitude increase factor �α defined in 

Eq. (8) (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where t inh and t pert are the times at which I ( t ) and p ( t ) of system (1) achieve a maximum inside a cycle. Notice that when �θ
is positive, the perturbation precedes the activation of the inhibitory population, so we expect that the excitatory receiving

population is sensitive to the input. On the contrary, when �θ is negative, the perturbation follows the activation of the

inhibitory population, so we expect that the excitatory receiving population is less sensitive to the input due to the presence

of inhibition (see Fig. 10 ). 

In addition, �α computes the maximum of the activity of the excitatory population αA , normalized by the maximum of

the activity of the unperturbed excitatory population α0 , that is, 

�α = 

αA 

α0 

. (8) 

Notice that when the rate �α is greater than one, the perturbation increases the amplitude of r e ( t ). Therefore, the larger

�α the more effective the input. 

Next, we compute both magnitudes �θ and �α for each of the two phase locked regions considered. Notice that results

for both regions can be interpreted differently. In the 1:1 region, as there is just one input per period, the input can precede

or follow the inhibitory action, whereas in the 1:2 case, as there are two inputs per period, we expect one to precede and

the other to follow the inhibitory action. 

4.1. Modulation of the input gain (1:1 phase-locking region) 

By looking at the bifurcation diagram in Fig. 3 , we observe that there is a large region of 1:1 entrainment, which cor-

responds to the yellow region. To investigate the features of this entrainment we compute the quantities �θ and �α de-

scribed above (see Fig. 11 ). 

We observe that, in general, 0 ≤�θ ≤ 0.5, indicating that inhibition typically follows the input. Predominance of positive

values of �θ (blue in the left panel of Fig. 11 ) seems to indicate that the perturbation will have a positive effect onto

the activity of the excitatory population. Indeed, we observe that the activity of the excitatory population increases since

�α > 1 (see the right panel for Fig. 11 ). Nevertheless, this increase is not the same for all the points in the 1:1 phase-

locking region. Notice that, as it is expected, the response of the receiving population is larger as the amplitude of the

input increases. Nevertheless, for a fixed forcing amplitude A , the factor �α is lower near the borders of the 1:1 phase-

locking region (white and red regions), where the inhibition action precedes the input ( �θ < 0) and it can suppress totally

or partially the input effect. 

In conclusion, the 1:1 phase-locking pattern naturally produces a stable phase relationship that is optimal for CTC in the

sense that it promotes an increase in the firing rate activity of the receiving population. Interestingly, near the boundaries

of the 1:1 region this situation is reversed ( �θ < 0) so the perturbation follows the inhibitory action. 

4.2. Selective communication (1:2 phase-locking region) 

In the previous Section, we have shown that for the 1:1 phase-locking region, the input typically precedes the inhibitory

response. This is especially interesting when studying the forcing with higher frequencies, as it is the case of the 1:2 phase-

locking region. In this region, the input undergoes two cycles for one cycle of activity of the receiving population. Because

of this, we expect that one of the input cycles precedes the inhibitory action whereas the other one follows it. Indeed, we

can interpret the input in the 1:2 phase-locking region as two identical inputs, I ( t ) and I ( t ), from two different emitting
1 2 
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Fig. 12. The 1:2 phase locked states can account for selective communication as the input p ( t ) can be interpreted as the sum of two identical competing 

inputs I 1 ( t ) and I 2 ( t ) in anti-phase coming from different sources. See text for more details. 

Fig. 13. Stable solution for system (1) with forcing parameters (A, T ′ /T ) = (0 . 4 , 0 . 4) (left) and (A, T ′ /T ) = (0 . 7 , 0 . 38) (right). In the left panel, the first 

input (green curve) elicits a response of the excitatory population (red curve), whereas the second input (purple curve) is not. By contrast, in the right 

panels, both inputs elicit a response (two bumps in the excitatory and inhibitory activity). In the left panel we compute only �θ 1 and in the right panel 

we compute �θ1 and �θ2 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

neural populations, which arrive to the receiving population separated by a half-period (see Fig. 12 ), and study competition

between inputs. That is, we explore whether one input phase-locks at an optimal phase so that it increases the post-synaptic

response, while the other one is ignored [27,28] . In the CTC context, this situation is known as selective communication

(only one pre-synaptic population communicates effectively) [8] . We refer to input I 1 ( t ) as the one that precedes the main

inhibitory response and I 2 ( t ) as the one that follows it. Thus, we expect that input I 1 produces an increase in the activity of

the receiving population whereas the other one I 2 , is ignored. 

Similarly as the procedure followed in the 1:1 phase-locking case, we will study selective communication by computing

the timing between the input and the inhibitory response �θ and the rate change in the response of the excitatory receiving

population �α. Since in this case the input is interpreted as the sum of two inputs ( Fig. 12 ), we will compute �θ and �α
for each input, provided that each input generates a response of the population. For the first input I 1 ( t ), as we assume that

it will always precede the inhibitory response, we can always compute the following magnitudes 

�θ1 = 

t (1) 
inh 

− t (1) 
pert 

T ′ , �α1 = 

α(1) 
A 

α0 

, (9)

where t (1) 
inh 

is the time at which r i ( t ) achieves a maximum inside a cycle and t (1) 
pert is the time at which I 1 ( t ) achieves a max-

imum inside the interval 0 < t < T ′ . Moreover, we denote by α(1) 
A 

the value of the excitatory activity at the main maximum. 

Nevertheless, for the second input I 2 ( t ) the situation is not so straightforward. We will consider that this input elicits

a response from the receiving population if the activity of the excitatory/inhibitory population shows, apart from the main

maximum, a second peak (see Fig. 13 ). In that case, we will also compute 

�θ2 = 

t (2) 
inh 

− t (2) 
pert 

T ′ , �α2 = 

α(2) 
A 

α
, (10)
0 
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Fig. 14. For the 1:2 phase-locking region we show for the input I 1 the phase difference �θ1 (left) and the amplitude increase factor �α1 defined in 

Eq. (9) (right). 

Fig. 15. For the 1:2 phase-locking region we show for the input I 2 , whenever the excitatory/inhibitory activity shows two local maxima, the phase differ- 

ence �θ2 (left) and the amplitude increase factor �α2 defined in Eq. (10) (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where t (2) 
inh 

is the time at which r i ( t ) achieves a second local maximum inside a cycle and t (2) 
pert is the time at which I 2 ( t )

achieves a maximum inside a cycle, so T ′ < t (2) 
pert < 2 T ′ . Moreover, we denote by α(2) 

A 
the value of the excitatory activity at

the second local maximum. 

We remark that, differently from the 1:1 case in which the perturbation can either follow or precede the inhibition,

so −0 . 5 < �θ < 0 . 5 , in this case both magnitudes �θ1 and �θ2 are defined in such a way that they always precede an

inhibitory response, so �θ1 , �θ2 ∈ [0, 1]. 

Fig. 14 shows the magnitudes �θ1 and �α1 defined in (9) , for the first input I 1 . Observe that as I 1 was defined as always

preceding the main inhibitory response, then 0 < �θ1 < 1 (see Fig. 14 left panel), so similarly to the 1:1 phase-locking case,

the effect of this input is to increase the activity of the excitatory population ( �α1 > 1) (see right panel in Fig. 14 ). By

contrast, the second input only elicits a response of the receiving population for large values of the amplitude (see coloured

region in Figs. 15 and 16 ), and this is smaller than the one produced by the first input. Indeed, both inputs only elicit the

same response just at the upper boundary of the 1:2 phase-locking region. 

In conclusion, the 1:2 phase-locking pattern naturally establishes a stable phase relationship so that one of the inputs

enhances the response of the excitatory neurons while preventing the second one to elicit a response (except at the upper

boundary of the 1:2 phase-locking region). Notice that because of the symmetry of the problem, no input is preferred, so

phase-shifts can change the input selected for effective communication. 

4.3. Bistable regions 

The analysis in Section 3.2 revealed the existence of different bistable regions which can be interpreted in terms of the

CTC framework. Bistability suggests that, for a given input, the population may operate in different regimes depending on

the initial conditions (which in fact correspond to the initial phase difference between oscillators). More interestingly, the
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Fig. 16. For the 1:2 phase locking region we show some phase locked states as the amplitude of the perturbation is increased. From lower to higher 

amplitude values, the frequency values are 0.46, 0.4, 0.37 and 0.38, respectively. 

Fig. 17. For the region of bistability in the 1:1 phase-locking area we show examples of bistability between synchronous solutions (left column) and 

between synchronous and asynchronous solutions (right column). Central panel shows a zoom of the bifurcation diagram in Fig. 3 . The bistable dynamics 

in the left column (Syn + Syn) can be found in the orange region of the central panel corresponding to regions D and E in Fig. 8 . Alternatively, the bistable 

dynamics in the right column (Syn + Asyn) can be found in the green region of the central panel corresponding to region C in Fig. 8 . (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

bistability regions that we have found can generate situations in which two different synchronous regimes or co-existence

of synchronous and asynchronous regimes are possible. Namely, 

• Bistability between a 2-periodic orbit and an invariant curve without fixed or 2-periodic points for the map F A (panel D

in Fig. 7 and panels E and I in Fig. 6 ). 
• Bistability between a 2-periodic orbit and a fixed point of F (panel E in Fig. 7 ). 
A 
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Fig. 18. For the region of bistability in the 1:2 phase-locking region we show examples of bistability between synchronous solutions (left column) and 

between synchronous and asynchronous solutions (right column). Central panel shows a zoom of the bifurcation diagram in Fig. 3 . The bistable dynamics 

in the left column (Syn + Syn) can be found in the orange region of the central panel corresponding to region E in Fig. 7 . Alternatively, the bistable 

dynamics in the right column (Syn + Asyn) can be found into the green region of the central panel corresponding to region D in Fig. 7 . (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Bistability between a fixed point and an invariant curve without fixed points of the map F A (panel C in Fig. 8 ). 
• Bistability between two stable fixed points of the map F A (panels D and E in Fig. 8 and panels C and D in Fig. 9 ). 

Figs. 17 and 18 show the main bistable regions. In particular, bistable situations between fixed points of the stroboscopic

map imply a defined phase locking relationship, suggesting that there can exist different encodings of the input by the

receiving population depending on the initial phase difference, as Fig. 17 left illustrates. In this case, one of the solutions

shows a larger variation in the activity of the E cells. We also observe bistability between 1:1 and 1:2 entrainment, see

Fig. 18 left, where the receiving population can either select only one input or respond to both at the price of reducing its

effects. 

By contrast, bistable situations between fixed points and attracting invariant curves, as illustrated in Figs. 17 right and

18 right, suggest that there might exist or not coherence between the emitting and receiving neural groups depending on 

the initial conditions. The absence of coherence (asynchronous regimes) prevents the communication between them. 

5. Discussion 

In this paper we have introduced a mathematical framework based on a phenomenological description of the population

activity to study some aspects of the CTC theory, namely coherence or selective communication. Our approach considers

an oscillating population of excitatory and inhibitory neurons described by the Wilson–Cowan equations, which models the

receiving population, submitted to an external time-periodic input, which models the effect of the emitting population. By

varying the amplitude and the frequency of the external forcing, we studied the phase-locking regions between the forcing

and the system, and interpreted the dynamics in terms of the CTC theory. 

To do so, we considered the stroboscopic map F A and computed the bifurcation diagram of the fixed points in terms of

the amplitude and the frequency. We have focused in the regions corresponding to 1:1 and 1:2 phase locking since they

are the largest ones and have stronger implications for CTC theory. In general, our analysis revealed the existence in the

parameter space of only one attracting object, either a fixed point for the map F A (or F 2 
A 

) or an invariant curve without

fixed points on it, which correspond to stable synchronous or asynchronous regimes, respectively. By performing a detailed

analysis of the boundaries of these regions, we have found rich dynamics, like bistability between invariant objects. 

Once we have identified the stable phase-locked states of the system, we have analysed those aspects of the dynamics

that have important implications for the CTC theory. In particular, the phase relationship between the inhibition and the

input and the increase in the activity of the target excitatory population due to the external input. Indeed, for an effective

communication (a positive effect of the input onto the activity of the excitatory target population), the theory requires the
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input to precede activation of the inhibition, since the inhibition may partially or totally silence the input effect. In general,

we have found that the entrainment of the postsynaptic population to the rhythmic input from the presynaptic population

naturally sets up a phase relationship that is optimal for CTC, in the sense that the input precedes the inhibition, leading

to an effective communication. Interestingly, we have found that near the borders of the phase-locking region, where the

transition from synchronous to asynchronous dynamics occurs, the general tendency is reversed and the inhibition precedes

the input. This result suggests a relationship between the loss of effective communication and the loss of phase-locking. 

By repeating the analysis for the 1:2 phase-locking region, we explored a different aspect of the CTC theory, which

is selective communication, that is, for a population that receives two identical inputs from different sources, how it can

respond to one while ignoring the other [11] . To do so, for this region, we interpreted the input to the receiving population

as the sum of two identical inputs arriving in anti-phase (see Fig. 12 ), and observed that the phase automatically sets up so

that one of the inputs precedes and the other one follows the inhibitory action. Our results confirm the hypothesis that the

input following the inhibitory action has almost no effect onto the target population. 

Moreover, we have found regions with bistability. Bistability suggests that depending on the initial conditions, the popu-

lation may operate in different regimes without changing the structure or the connections of the network. Thus, bistability

between synchronous and asynchronous solutions suggests that communication between brain areas cannot be predicted

by the actual network but depends on the current state of the network (initial conditions), indicating that communication

between neuronal populations can be switched on and off by means of possibly top-down influences [11] . 

Thus, we stress that thanks to the low-dimensionality of our system, we have been able to obtain a bifurcation diagram

which provides a broad picture of the dynamics in a large parameter space. Thus, our results confirm previous computa-

tional results on spiking networks, while they provide new results that suggest further research. More precisely, our study

corroborates the general result for network approaches [11,18] , in which the phase established between the input and the

receiving network is optimal for CTC. Moreover, we have also observed that selective communication occurs and depends on

the amplitude and frequency (see also [16,17] ). Moreover, because of the wide range of parameters explored, we have found

new interesting results. Namely, we have been able to detect the break up of the phase-locking patterns and relate them to

the phase relationship between excitation and inhibition, as well as to detect the possibility of having bistability between

synchronous regimes or synchronous and asynchronous regimes, which can motivate future research. 

The CTC theory proposes several hypothesis and we have not included all of them here. Other papers in the neuroscience

literature regarding the mathematical implementation of the CTC theory, focus on different aspects than the ones consid-

ered here. As the only requirement of our mathematical analysis is the periodicity of the input, it can be applied to explore

other hypothesis and propositions of the CTC theory. For instance, some studies related to our problem have explored the

coherence (in the sense of width) of the input in selective communication [16,17] . Instead of a sinusoidal input, we could

have considered other types of functions for the input, like Gaussian-shaped with a parameter that controls the width of

the input coherence (see, for instance, [16,18] ) to study this feature of CTC by means of our setting. We refer the reader to

the Appendix C for preliminary results on other types of inputs. Moreover, we could have also explored the implications of

inputs to the inhibitory cells (see, for instance, [29] ), as they have been also proposed to be a mechanisms of phase-shifting

in models of cortical networks [15] . Indeed, regarding the role of inhibition in the CTC, the Wilson–Cowan equations that we

used describe oscillations across the PING (Pyramidal Interneuron Network Gamma) mechanism [30] . As the ING (Interneu-

ron Network Gamma) mechanism can also account for gamma E-I oscillations [31,32] , we can use our setting to explore the

implications of ING mechanism in the CTC [7] . Furthermore the extension of our setting to networks of two populations,

can lead to the exploration of bi-directional communication [23,24,33,34] instead of the unidirectional communication that

we have explored in this paper. 

Finally, the model can be adjusted in order to provide a more biologically-based mathematical framework. As we stated in

the introduction, the framework that we introduce in this paper is an alternative to large-dimensional network approaches

to the CTC. A macroscopic observable measuring the mean rate of such neuronal networks has been described by means

of PDE equations such as the Fokker–Planck equation [35] or the refractory density equation [36] which have been used to

describe emerging oscillations in such neuronal networks. Interestingly, recently several groups have developed exact firing

rate models solving the Fokker–Planck PDE equation, thus leading to new neural mass models described by ODEs [37,38] ,

to which we can apply the methodology described in this paper. As the results from these models can be automatically

checked on the spiking network, these new models appear as a feasible and more realistic alternative to heuristic equations

such as the Wilson–Cowan equations that we use. Furthermore, independently of the rate model which is being used, the

addition of synaptic equations can account for the description of realistic gamma band scenarios in which our scheme can

also be applied [39] . 

Besides the neuroscience considerations, we would like also to emphasize several mathematical implications of our work.

Perturbations of non-linear oscillators have been extensively studied in the mathematical literature [40,41] . In particular,

this paper explores the dynamics of a perturbed oscillator close to a Hopf bifurcation. Our results are based on a rigorous

numerical study of a particular system (the Wilson–Cowan equations), which does not have any restrictions regarding the

size of the amplitude or the forcing frequency [42] . The results obtained numerically match the theoretical predictions

for perturbations of a Hopf bifurcation obtained in [43] using the normal form. We highlight here that our method does

not require the system to be close to the Hopf bifurcation. Indeed, we also have applied it to the case close to the SNIC

bifurcation (see Appendix B ). Interestingly, although the regions of strong resonances show a different shape, we obtain the
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same bifurcations of fixed points. A detailed study of the implications for CTC theory of this scenario is an interesting topic

for future research. 

In conclusion, we have shown that a simplified setting that extracts the essence of the CTC theory allows a basic under-

standing of the processes involved in the generation of communication through rhythms according to the CTC theory. We

expect that it would shed light into the field and open the door for future studies. 
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Appendix A. Numerical computation of the bifurcation Diagram 

In this Section we provide a brief description of the numerical procedure used to compute the bifurcations of the fixed

points of the map F A defined in (5) . We highlight that we have developed our own numerical software in Python to compute

the bifurcation diagram instead of relying on existing software packages, thus providing more control on the calculations

performed. We consider three types of bifurcations of fixed points: Saddle-Node ( SN ), Period Doubling ( PD ) and Neimark–

Sacker ( NS ) (see [44] ). 

We first note that the parameters that we will vary for the map F A in (5) will be the amplitude A and the period T ′ of

the perturbation. The computation of the bifurcation curves is based on the numerical methods provided in [45] . Here we

summarize the main steps of the procedure. 

We first assume that A is fixed and we look for a point x ∈ R 

2 and a period T ′ ∈ R that satisfy that x is a fixed point of

the map F A together with a bifurcation condition 	BIF (x ) = 0 . 

To set the mathematical formalism, we consider the extended system consisting of system (1) (that we will denote

generically ˙ x = X(x, t, T ′ ) where x = (x 1 , x 2 ) ∈ R 

2 ) with the extra equation 

˙ T ′ = 0 . Let us denote ˜ φA (t; t 0 , x, T ′ ) the flow of

the extended system and let us introduce the map 

˜ F A : R 

3 → R 

3 , 

z = (x, T ′ ) → 

˜ F A (z) = ( ̃  F x A (z) , ˜ F T 
′ 

A (z)) = 

˜ φA (T ′ ; z) , (11) 

Notice that we have set t 0 = 0 and abusing of notation we have removed the dependence on t 0 from the expression of

the flow 

˜ φA . From now on we will also remove the subscript A to avoid stodgy notation. The superscript ˜ F w refers to the

w -component of the map 

˜ F , where w = x 1 , x 2 , T 
′ . 

Remark A.11. We consider the extended system with the trivial equation 

˙ T ′ = 0 because, as we will see later, we need to

know how the solutions of system (1) vary with respect to the parameter T ′ . 

Thus, to detect the bifurcation values we need to look for zeroes of the equation 

G (x, T ′ ) = 

{
˜ F x (x, T ′ ) − x = 0 

	BIF (x, T ′ ) = 0 . 
(12) 

The conditions which must be satisfied at the bifurcation values for a Saddle-Node ( SN ), Period Doubling ( PD ) and

Neimark–Sacker ( NS ) bifurcations are, respectively, 

	SN (x, T ′ ) = det (D x ̃  F x (x, T ′ ) − Id 2 ) = 0 , 

	PD (x, T ′ ) = det (D x ̃  F x (x, T ′ ) + Id 2 ) = 0 , 

	NS (x, T ′ ) = det (D x ̃  F x (x, T ′ )) − 1 = 0 , (13) 

where we denote by D x ̃  F x the Jacobian matrix of the map 

˜ F x restricted to the first two components. 

We have implemented a Newton method to solve system (12) . Suppose we have an approximate solution z = (x, T ′ ) of

system (12) and we look for an improved solution z ∗ = z + �z. Straightforward calculations show that �z has to satisfy: 

(14) 

https://doi.org/10.13039/501100003329
https://doi.org/10.13039/501100013176
https://doi.org/10.13039/501100003741
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Notice that for the first two rows of the matrix DG we have 

∂ x j ̃  F x k (z) = ∂ x j 
˜ φx k (T ′ ; z) , 

∂ T ′ ̃  F x k (z) = ∂ T ′ ( ̃  φx k (T ′ ; z)) = 

d ̃  φx k 

dt 
(t; z) | t= T ′ + 

∂ ˜ φx k 

∂ T ′ (t; x, T ′ ) | t= T ′ 

= X 

x k ( ̃  φ(T ′ ; z)) + 

∂ ˜ φx k 

∂ T ′ (t; x, T ′ ) | t= T ′ (15)

for j, k = 1 , 2 . In order to obtain the derivatives of the flow 

˜ φ with respect to initial conditions ( x 1 , x 2 , T ′ ) at time T ′ , we

need to integrate the first variational equations given by 

d 

dt 
D z ̃

 φ(t; z) = A (t ) D z ̃
 φ(t ; z) (16)

with initial condition D z ̃
 φ(0 ; z) = Id 3 , where 

A (t) = 

[ 

∂ x 1 X 

x 1 ∂ x 2 X 

x 1 ∂ T ′ X 

x 1 

∂ x 1 X 

x 2 ∂ x 2 X 

x 2 ∂ T ′ X 

x 2 

0 0 0 

] 

| ̃ φ(t,z) 

Recall that these equations need to be integrated together with the flow 

˜ φ(t, z) up to time T ′ . 
Finally, one needs to compute the terms in the third row of DG in (14) . The exact expression depends on the bifurcation

for which we look for (see Eq. (13) ). Next, we will derive the expression for the SN case to illustrate the method, and the

other cases are analogous. The determinant of D x ̃  F x − Id 2 writes as 

	SN = det (D x ̃  F x − Id 2 ) = ( ̃  φx 1 
x 1 

− 1)( ̃  φx 2 
x 2 

− 1) − ˜ φx 2 
x 1 

˜ φx 1 
x 2 

, (17)

where ˜ φ
x k 
x j 

= ∂ x j 
˜ φx k (T ′ ; x, T ′ ) and therefore 

∂ x 1 	SN = 

˜ φx 1 
x 1 x 1 

˜ φx 2 
x 2 

+ 

˜ φx 1 
x 1 

˜ φx 2 
x 2 x 1 

− ˜ φx 1 
x 1 x 1 

− ˜ φx 2 
x 2 x 1 

− ˜ φx 2 
x 1 x 1 

˜ φx 1 
x 2 

− ˜ φx 2 
x 1 

˜ φx 1 
x 2 x 1 

∂ x 2 	SN = 

˜ φx 1 
x 1 x 2 

˜ φx 2 
x 2 

+ 

˜ φx 1 
x 1 

˜ φx 2 
x 2 x 2 

− ˜ φx 1 
x 1 x 2 

− ˜ φx 2 
x 2 x 2 

− ˜ φx 2 
x 1 x 2 

˜ φx 1 
x 2 

− ˜ φx 2 
x 1 

˜ φx 1 
x 2 x 2 

∂ T ′ 	SN = 

˜ φx 1 
x 1 T ′ 

˜ φx 2 
x 2 

+ 

˜ φx 1 
x 1 

˜ φx 2 
x 2 T ′ − ˜ φx 1 

x 1 T ′ − ˜ φx 2 
x 2 T ′ − ˜ φx 2 

x 1 T ′ 
˜ φx 1 

x 2 
− ˜ φx 2 

x 1 
˜ φx 1 

x 2 T ′ (18)

where ˜ φ
z k 
z i z j 

= 

∂ 2 

∂ z j ∂ z i 

˜ φz k (T ′ ; z) for k = 1 , 2 and i, j = 1 , 2 , 3 . Notice that z 3 = T ′ . 
The computation of the terms in Eq. (18) requires to solve the second order variational equations, which are given in

components as 

d 

dt 
˜ φz k 

z i z j 
(t; z) = 

3 ∑ 

p,q =1 

∂ z p z q X 

z k ( ̃  φ(t ; z)) 
∂ ˜ φz p (t ; z) 

∂z i 

∂ ˜ φz p (t ; z) 

∂z j 
+ 

3 ∑ 

p=1 

∂ z p X 

z k ( ̃  φ(t ; z)) 
∂ 2 ˜ φz p (t ; z) 

∂ z i ∂ z j 
, (19)

with initial condition 

˜ φ
z k 
z i z j 

(0 ; z) = 0 and k = 1 , 2 , i, j = 1 , 2 , 3 . 

Once a point z ∗ satisfies (12) with the established tolerance (in our case 10 −8 ), the procedure to continue the bifurcation

curve consists in selecting a new value for the amplitude A new 

= A + �A , use the computed point z ∗ as initial seed, and

repeat the above procedure for the new value A new 

. This procedure –which is the one used in this manuscript– requires

to change the sign of �A by hand when the derivative of the bifurcation curve with respect to A is zero. Nevertheless,

alternative strategies as the Lagrange multipliers or the pseudo arclength method (see [45,46] , respectively) can be used so

the tangent vector v to the bifurcation curve evaluated at z ∗ is obtained and can be used to provide z ∗ + εv as initial seed

for ε small enough. 

Homoclinic bifurcation 

In this Section, we explain the method used to compute the homoclinic bifurcation curve in Section 3.2 . The crossing of

an homoclinic bifurcation implies the appearance/disappearance of an attracting invariant curve which surrounds the un-

stable focus P 1 . Therefore, the crossing of this bifurcation implies a qualitative change in the asymptotic solutions of system

(5) when using an initial condition near the unstable focus P 1 . More precisely, in the case corresponding to “Dynamics on

the right hand side of the 1:2 phase-locking region” (see Fig. 7 ), if an attracting invariant curve exists, an initial condition

near the unstable focus P 1 will tend to the invariant curve for a large enough time of integration (see panel D in Fig. 7 ).

Otherwise, the 2-periodic orbit ( P 2 , P 4 ) will be the asymptotic solution (see panel B’ in Fig. 7 ). Similarly, in the case “Dy-

namics on the bottom right of the 1:1 phase-locking region” (see Fig. 8 ), if an attracting invariant curve exists, an initial

condition near the unstable focus P 1 will tend to the invariant curve for a large enough time of integration (see panel C in

Fig. 8 ). Otherwise, the fixed point P 2 will be the asymptotic solution (see panel B in Fig. 8 ). In conclusion, in both cases,

the homoclinic bifurcation curve is delimited by considering different values of the fraction 

T ′ 
T , and slightly varying the

amplitude while checking whether there is a qualitative change in the asymptotic solution of points near P . 
1 



18 A. Pérez-Cervera, T.M. Seara and G. Huguet / Commun Nonlinear Sci Numer Simulat 80 (2020) 104992 

 

 

 

 

 

 

 

 

 

 

Appendix B. Bifurcation Diagram for oscillations close to a SNIC bifurcation 

The unperturbed Wilson–Cowan Eq. (1) with the set of parameters P given in (3) , can also have oscillations which

are born from a Saddle-Node on Invariant Curve (SNIC) bifurcation (see Fig. 2 ). Thus, when we pick the values (P, Q ) =
(1 . 4 , −0 . 75) , identically as to the Hopf case, the phase space for system (1) shows a limit cycle and an unstable focus (see

Fig. 19 ). We have carried out a numerical exploration of the bifurcations that occur when we perturb this limit cycle close to

a SNIC bifurcation. Preliminary results are shown in Fig. 19 bottom. The regions with p:q phase-locking, start out of the point

( p / q , 0) but, as the amplitude increases, they tilt towards lower values of p / q as predicted by the Phase Response Curves [47] .

Indeed, the PRC for limit cycles close to a SNIC are mainly positive indicating that the phase can only be advanced by an

external excitatory perturbation. Therefore, they can only synchronize with external inputs with higher frequency. 

Moreover, when we compare with the Hopf diagram, in both cases, the phase-locking regions are bounded by saddle-

node bifurcation curves (for small values of A ) and Neimark–Sacker and period-doubling bifurcation curves for other values

of the amplitude. So, our preliminary study suggests a qualitatively similar dynamics as in the Hopf case. A thorough study
is left for future work. 

Fig. 19. For the unperturbed ( A = 0 ) Wilson–Cowan Eq. (1) and the set of parameters P given in (3) we show: Top-Left: Nullclines and phase space for 

( P, Q ) = (1.4, -0.75). The phase space shows a limit cycle �0 and an unstable focus P 1 . Top-Right: dynamics over the limit cycle �0 . Bottom: Bifurcation 

diagram for the fixed points of the stroboscopic map (5) of system (1) as the frequency and the amplitude of the perturbation are varied. The coloured 

regions correspond to different p:q phase locking regimes. 
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Fig. C1. For the unidirectionally coupled Wilson–Cowan Eq. (20) and the set of parameters P given in (3) we show the firing rate dynamics of the receiving 

population r e 1 and r i 1 , and the non-sinusoidal input corresponding to r e 2 . Results show that an optimal phase relationship �θ > 0 leading to an effective 

communication �α > 1 is established. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix C. Non-sinusoidal inputs 

Our analysis has been carried out for sinusoidal inputs while the oscillations generated by the E-I network are not. Thus,

in order to consider a more realistic approach, in this Section, we present preliminary results on the dynamical effects of

unidirectional coupling between two Wilson–Cowan populations. Thus, we use the value of r e of one population as the input

for the second one, which is periodic but non-sinusoidal. Mathematically, we consider the following system of equations: 

˙ r e 1 = −r e 1 + S e (c 1 r e 1 − c 2 r i 1 + P + r e 2 ) , 

˙ r i 1 = −r i 1 + S i (c 3 r e 1 − c 4 r i 1 + Q ) , 

˙ r e 2 = −r e 2 + S e (c 1 r e 2 − c 2 r i 2 + P ) , 

˙ r i 2 = −r i 2 + S i (c 3 r e 2 − c 4 r i 2 + Q ) , (20)

where the parameters are the same for both populations and correspond to the set P in (3) . 

When we simulate this system, the network establishes a 1:1 phase-locking and a phase relationship �θ > 0 that

increases the amplitude of oscillations �α > 1 (see Fig. C1 ), in agreement with the results of the paper presented in

Section 4.1 . A complete investigation varying the amplitude and frequency of the input, or even the coherence (in the sense

of sharpness) of the input (see [18] ) is left for future work. Indeed, regarding the coherence of the input, preliminary results

with inputs of the form p(t) = cos n (2 πt/T ′ ) with n = 4 , 8 , which have higher coherence than the input (4) considered in

this paper, show qualitatively the same bifurcation diagram as in Fig. 3 (results not shown). 
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