On the metric dimension of graphs

Ignacio M. Pelayo
U.P.C., Barcelona, Spain

C. Hernando, M. Mora, C. Seara, David R. Wood
U.P.C., Barcelona, Spain
J. Cáceres, M.L. Puertas
U.A., Almeria, Spain

7th International Colloquium on Graph Theory, France, 2005
RESOLVING SETS

* $G = (V, E)$ is a connected graph.

- A vertex x of G **RESOLVES** a pair of vertices u, v of G if:

 $$d(x, u) \neq d(x, v).$$

- A vertex subset $S \subseteq V$ is a **RESOLVING SET** of G if:

 every two distinct vertices of G are resolved by some vertex of S.
METRIC DIMENSION

* $S \subseteq V$ is a resolving set of $G = (V, E)$.

▶ S is a **metric basis** if it is a minimum resolving set.

* $S = \{u_1, u_2, \ldots, u_r\}$ is a metric basis of G.

▶ The **metric dimension** of G is: $\beta(G) = r$.

* x is a vertex of G.

▶ The **metric coordinates** of x are:

$$ (x_1, \ldots, x_r), \text{ where } x_i = d(u_i, x). $$
$S = \{x, y\}$ is a metric basis

$\beta(G) = 2$

$d(x, a) = 5$

$d(y, a) = 1$
Some Basic Known Results

- The problem of computing the metric dimension of an arbitrary graph is NP-hard.

<table>
<thead>
<tr>
<th>name</th>
<th>path</th>
<th>cycle</th>
<th>complete</th>
<th>bicomplete</th>
<th>wheel</th>
<th>hypercube</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>P_n</td>
<td>C_n</td>
<td>K_n</td>
<td>$K_{r,s}$</td>
<td>$W_{1,r}$</td>
<td>$Q_r = [K_2]^r$</td>
</tr>
<tr>
<td>$</td>
<td>V(G)</td>
<td>$</td>
<td>$n \geq 1$</td>
<td>$n \geq 3$</td>
<td>$n \geq 2$</td>
<td>$r + s \geq 3$</td>
</tr>
<tr>
<td>$\beta(G)$</td>
<td>1</td>
<td>2</td>
<td>$n - 1$</td>
<td>$n - 2$</td>
<td>3</td>
<td>$r \ (r \leq 4)$</td>
</tr>
</tbody>
</table>

- If T is a tree s.t. $\lambda(T) \geq 1$, then $\beta(T) = |Ext(T)| - \lambda(T)$.

- If $G = T + e$, then $\beta(T) - 2 \leq \beta(T + e) \leq \beta(T) + 1$.

- $r \notin \{3, 6\}$: $\beta(W_{1,r}) = \left\lfloor \frac{2^r + 2}{5} \right\rfloor$.
ICGT05, HYERES

leaves

exterior major vertices

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>255</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>144</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>342</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>451</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>562</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>233</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>435</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>324</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>415</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>055</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>506</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z</td>
<td>560</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BOUNDARY VERTICES

- u, v are two vertices of a graph G.

 - v is a boundary vertex of u if:
 \[
 \forall w \in N(v), \ d(u, w) \leq d(u, v).
 \]

 - The set of all boundary vertices of u is its boundary $\partial(u)$.

 - The boundary of G is the set $\partial(G) = \bigcup_{u \in V(G)} \partial(u)$.

■ **THEOREM:** The boundary $\partial(G)$ is a resolving set of G.

■ **COROLLARY:** $\beta(G) \leq |\partial(G)|$.
\[\partial(G) = \{a, b, c, d, e\} \]
BOUNDS AND CHARACTERIZATIONS

- $|G| - d^{\beta(G)} \leq \beta(G) \leq |G| - d$ ($d = \text{diam}(G)$).

- $\beta(G) = 1 \iff G = P_n$.

- $\beta(G) = |G| - 1 \iff G = K_n$.

- $t \geq 2$: $\beta(G) = |G| - 2 \iff G \in \{K_{s,t}, K_s + \overline{K}_t, K_s + (K_1 \cup K_t)\}$.

- $d \geq 3$, $\beta(G) = |G| - d \Rightarrow \exists a \in \text{Per}(G)$ without twins.

- $\beta(G) = |G| - 3 \iff G \in \{\ldots, \ldots, \ldots\}$.\[\begin{array}{cccc}
 & K_1 & K_r & K_s & K_1 \\
\end{array}\]
CARTESIAN PRODUCT

$\star G_1 = (V_1, E_1)$ $G_2 = (V_2, E_2)$ are two connected graphs.

\blacktriangleright The cartesian product $G_1 \square G_2$ is the graph with:

$\diamond V(G_1 \square G_2) = V_1 \times V_2$.

$\diamond (u_1, u_2)$ is adjacent to (v_1, v_2) iff

\[
\begin{cases}
 u_1 = v_1 \text{ and } u_2v_2 \in E_2 \\
 \text{ or } \\
 u_1v_1 \in E_1 \text{ and } u_2 = v_2
\end{cases}
\]

$\blacksquare d((u_1, u_2), (u_1, u_2)) = d_{G_1}(u_1, v_1) + d_{G_2}(u_2, v_2)$.

\blacksquare **THEOREM:** \(\beta(G_1 \square G_2) \geq \max[\beta(G_1), \beta(G_2)] \).
SOME KNOWN RESULTS ON THE C.P.

- $\beta(G) \leq \beta(G \square K_2) \leq \beta(G) + 1$.

- $\beta(P_m \square P_n) = 2$.

- $\lim_{n \to \infty} \beta(Q_n) \cdot \frac{\log_2(n)}{n} = 2$

- $\beta(P_{m_1} \square P_{m_2} \square \ldots \square P_{m_d}) = d$ (*wrong result: DAM, 70 (1996)*).
Cartesian Products [Bounds]

- \(\max[\beta(G), \beta(H)] \leq \beta(G \square H) \).

- \(|G| \geq 3, |H| \geq 3: \beta(G \square H) \leq \min\{\beta(G) + |H|, \beta(H) + |G|\} - 2 \)

- \(\beta(G \square K_n) \leq \max\{n - 1, 2 \cdot \beta(G)\} \).
- \(\beta(G \square P_n) \leq \beta(G) + 1 \).

- \(\beta(G \square C_n) \leq \beta(G) + 2 \).
- \(\beta(G \square T) \leq \beta(G) + |\text{Ext}(T)| - 1 \).

- For all \(k \geq 1 \) and \(n \geq 2 \) there is a \(k \)-connected graph \(G_{n,k} \) for which \(\beta(G_{n,k}) \leq 2k \) and \(\beta(G_{n,k} \square G_{n,k}) \geq n \).

- For all \(k \geq 1 \) there in no function \(f \) such that: \(\beta(G \square H) \leq f(\beta(G), \beta(H)) \), for all \(k \)-connected graphs \(G \) and \(H \).
CARTESIAN PRODUCTS [EXACT VALUES]

- \(m \leq n \Rightarrow \dim(K_m \square K_n) = \begin{cases}
 \frac{n - 1}{3} & \text{if } 2m - 2 < n, \\
 \frac{2m + 2n - 2}{3} & \text{if } 2m - 2 \geq n.
\end{cases} \)

- \(m \geq 4: \beta(K_m \square C_n) = \begin{cases}
 m, & \text{if } m = 4 \text{ and } n \text{ odd,} \\
 m - 1, & \text{otherwise.}
\end{cases} \)

- \(\beta(C_m \square C_n) = \begin{cases}
 3, & \text{if } m \text{ or } n \text{ is odd} \\
 4, & \text{otherwise.}
\end{cases} \)

- \(\beta(C_m \square P_n) = \begin{cases}
 2, & \text{if } m \text{ odd} \\
 3, & \text{if } m \text{ even (and } n \neq 1) \end{cases} \)

<table>
<thead>
<tr>
<th>G \backslash H</th>
<th>\begin{array}{c} K_n \ C_n \ P_n \end{array}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\begin{array}{c} K_m \ C_m \ P_m \end{array}</td>
<td>\begin{array}{c} n - 1, \left\lfloor \frac{2m + 2n - 2}{3} \right\rfloor \ m - 1, m \ 3, 4 \end{array}</td>
</tr>
<tr>
<td>\begin{array}{c} K_m \ C_m \ P_m \end{array}</td>
<td>\begin{array}{c} m - 1 \end{array}</td>
</tr>
<tr>
<td>\begin{array}{c} K_m \ C_m \ P_m \end{array}</td>
<td>\begin{array}{c} m - 1 \end{array}</td>
</tr>
<tr>
<td>\begin{array}{c} K_m \ C_m \ P_m \end{array}</td>
<td>\begin{array}{c} m - 1 \end{array}</td>
</tr>
</tbody>
</table>
Cartesian Product of a Cycle by a Path

- \(m \geq 3, n \geq 2: \beta(C_m) = 2, \beta(P_n) = 1 \)
- \(\max[\beta(G), \beta(H)] \leq \beta(G \square H) \).
- \(\beta(G \square P_n) \leq \beta(G) + 1 \).

\[\Rightarrow 2 = \beta(C_m) \leq \beta(C_m \square P_n) \leq \beta(C_m) + 1 = 3. \]

\(\Rightarrow \beta(C_m \square G) = 2 \iff G \) is a path and \(m \) is odd.

Theorem: \(\beta(C_m \square P_n) = \begin{cases}
2, & \text{if } m \text{ odd} \\
3, & \text{if } m \text{ even (and } n \neq 1)
\end{cases} \)
DOUBLY RESOLVING SETS

- Two vertices v, w of $G \neq K_1$ are **DOUBLY RESOLVED** by a pair of vertices x, y of G if:
 \[d(v, x) - d(w, x) \neq d(v, y) - d(w, y). \]

- A set $S \subseteq V$ is a **DOUBLY RESOLVING SET** of G if every pair of distinct vertices of G are doubly resolved by two vertices in S. $\psi(G)$ is the minimum cardinality of a doubly resolving set.

\[1 \leq \beta(G) \leq \psi(G) \leq |G| - 1 \quad \text{and} \quad 2 \cdot \beta(G \square G) \geq \psi(G) \]

\[\beta(G \square H) \leq \beta(G) + \psi(H) - 1 \quad \text{and} \quad \beta(G \square H) \leq \beta(G) + 2\beta(H \square H) - 1 \]

<table>
<thead>
<tr>
<th>name</th>
<th>path</th>
<th>odd cycle</th>
<th>even cycle</th>
<th>complete</th>
<th>tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>P_n</td>
<td>C_n</td>
<td>C_n</td>
<td>K_n</td>
<td>T_n</td>
</tr>
<tr>
<td>$</td>
<td>V(G)</td>
<td>$</td>
<td>$n \geq 2$</td>
<td>$n \geq 3$</td>
<td>$n \geq 4$</td>
</tr>
<tr>
<td>$\beta(G)$</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>$n - 1$</td>
<td>$</td>
</tr>
<tr>
<td>$\psi(G)$</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>$n - 1$</td>
<td>$</td>
</tr>
</tbody>
</table>
C. P. OF AN ODD CYCLE BY A PATH

\[\psi(C_m) = \begin{cases} 2, & \text{if } m \text{ odd} \\ 3, & \text{if } m \text{ even} \end{cases} \]

\[\psi(P_n) = 2 \]

\[\beta(G) \leq \beta(G \square P_n) \leq \beta(G) + \psi(P_n) - 1 = \beta(G) + 1 \]

\[\beta(G) \leq \beta(C_m \square G) \leq \beta(G) + \psi(C_m) - 1 \leq \begin{cases} \beta(G) + 1, & \text{if } m \text{ odd} \\ \beta(G) + 2, & \text{if } m \text{ even} \end{cases} \]

\[\Rightarrow m \text{ odd } \Rightarrow \beta(C_m \square P_n)) = 2. \]

http://es.arXiv.org/find/math/1/PELAYO/0/1/0/past/3/0