Watching Systems in Complete Bipartite Graphs

C. Hernando M. Mora I. M. Pelayo

Depts. Matemàtica Aplicada I, II, III
Universitat Politècnica de Catalunya

VIII JMDA. Almería, 10-13 de Julio de 2012
Outline

Introduction
 Detection devices and graphs
 Identifying codes

Watching systems and watching number
 Watching systems
 Bounds of the watching number

Complete bipartite graphs
 Bounds of the watching number
 Concrete values
Detection devices

- Detection devices located at some vertices of a graph
- Detect and locate an object placed at any vertex of a graph

- Dominating/total dominating sets
- Locating sets
Detection devices

- Detection devices located at some vertices of a graph
- Detect and locate an object placed at any vertex of a graph
- Dominating/total dominating sets
- Locating sets
Detection devices and graphs

Dominating set

Locating set

Locating-dominating set

Identifying set
Definitions

\[G = (V, E) \text{ graph,} \]

- \(N(u) = \{ v : uv \in E \} \)
- \(N[u] = \{ u \} \cup N(u) \)
- twin vertices: \(N[u] = N[v] \)
- twin-free graph: it has no pair of twin vertices
- dominating set: \(S \subseteq V \text{ s.t. for all } v \in V \setminus S, S \cap N(v) \neq \emptyset \)
- dominating number, \(\gamma(G) \): minimum size of a dominating set of \(G \)
Definitions

\[G = (V, E) \] graph,

- \[N(u) = \{ v : uv \in E \} \]
- \[N[u] = \{ u \} \cup N(u) \]
- \textit{twin vertices}: \[N[u] = N[v] \]
- \textit{twin-free} graph: it has no pair of twin vertices
- \textit{dominating set}: \(S \subseteq V \) s.t. for all \(v \in V \setminus S \), \(S \cap N(v) \neq \emptyset \)
- \textit{dominating number}, \(\gamma(G) \): minimum size of a dominating set of \(G \)
Definitions

$G = (V, E)$ graph,

- $N(u) = \{ v : uv \in E \}$
- $N[u] = \{ u \} \cup N(u)$
- twin vertices: $N[u] = N[v]
- twin-free graph: it has no pair of twin vertices
- dominating set: $S \subseteq V$ s.t. for all $v \in V \setminus S$, $S \cap N(v) \neq \emptyset$
- dominating number, $\gamma(G)$: minimum size of a dominating set of G
Identifying codes

[Karpovsky, Chakrabarty, Levitin, 1998]

Identifying code in a graph $G = (V, E)$:

$S \subseteq V$ s.t. the sets $N[v] \cap C$, $v \in V(G)$, are all nonempty and distinct.

- *label* of vertex v: $L_C(v) = N[v] \cap C$
- *identifying number*, $i(G)$: minimum size of an identifying code of G
- Identifying codes exist only in twin-free graphs.
Identifying codes

[Karpovsky, Chakrabarty, Levitin, 1998]

Identifying code in a graph $G = (V, E)$:

$S \subseteq V$ s.t. the sets $N[v] \cap C$, $v \in V(G)$, are all nonempty and distinct.

- **label** of vertex v: $L_C(v) = N[v] \cap C$
- **identifying number**, $i(G)$: minimum size of an identifying code of G
- Identifying codes exist only in twin-free graphs.

Detection devices and graphs
Complete bipartite graphs
Identifying codes
Watching systems

[Auger, Charon, Hudry, Lobstein, 2010]

Watching system in a graph $G = (V, E)$ graph:

$W = \{w_1, w_2, \ldots, w_k\}$ where $w_i = (l(w_i), A(w_i))$, with

$l(w_i) = v_i \in V(G)$ and $A(w_i) \subseteq N[v_i]$, for all $i \in \{1, 2, \ldots, k\}$, s.t.
the sets $L_W(v) = \{w \in W : v \in A(w_i)\}$ are all nonempty and distinct.

- w_i is a *watcher* located at vertex $l(w_i)$ that checks its *watching zone*, $A(w_i)$

- $L_W(v)$ is the label of vertex v

Several watchers at the same vertex, each watcher checks its watching zone
Watching systems

[Auger, Charon, Hudry, Lobstein, 2010]

Watching system in a graph $G = (V, E)$ graph:

$W = \{w_1, w_2, \ldots, w_k\}$ where $w_i = (l(w_i), A(w_i))$, with $l(w_i) = v_i \in V(G)$ and $A(w_i) \subseteq N[v_i]$, for all $i \in \{1, 2, \ldots, k\}$, s.t. the sets $L_W(v) = \{w \in W : v \in A(w_i)\}$ are all nonempty and distinct.

- w_i is a *watcher* located at vertex $l(w_i)$ that checks its *watching zone*, $A(w_i)$
- $L_W(v)$ is the label of vertex v

Several watchers at the same vertex, each watcher checks its watching zone
Watching systems

[Auger, Charon, Hudry, Lobstein, 2010]

Watching system in a graph $G = (V, E)$ graph:

$W = \{w_1, w_2, \ldots, w_k\}$ where $w_i = (l(w_i), A(w_i))$, with $l(w_i) = v_i \in V(G)$ and $A(w_i) \subseteq N[v_i]$, for all $i \in \{1, 2, \ldots, k\}$, s.t. the sets $L_W(v) = \{w \in W : v \in A(w_i)\}$ are all nonempty and distinct.

- w_i is a *watcher* located at vertex $l(w_i)$ that checks its *watching zone*, $A(w_i)$
- $L_W(v)$ is the label of vertex v

Several watchers at the same vertex, each watcher checks its watching zone
Watching number

- **watching number**, $w(G)$: minimum size of a watching system of G
- **minimum watching system**: watching system of cardinality $w(G)$

- Watching systems exist for all graphs
- $w(G) \leq i(G)$ if there exists at least an identifying code in G
- A watching system remains so if we add edges
Watching number

- **watching number**, \(w(G) \): minimum size of a watching system of \(G \)
- **minimum watching system**: watching system of cardinality \(w(G) \)

- Watching systems exist for all graphs
- \(w(G) \leq i(G) \) if there exists at least an identifying code in \(G \)
- A watching system remains so if we add edges
Example

$G = K_{1,6}: i(G) = 6, w(G) = 3$

$W = \{w_1, w_2, w_3\}, l(w_i) = 7$

$A(w_1) = \{1, 4, 5, 7\}, A(w_2) = \{2, 4, 6, 7\}, A(w_3) = \{3, 5, 6, 7\}$
General bounds of the watching number

- $w(G) \geq \lceil \log_2(n + 1) \rceil$
- Complete graphs, stars, graphs s.t. $\Delta = n - 1$ attain this bound
- $w(G) \geq \gamma(G)$
- $w(G) \leq \gamma(G) \lceil \log_2(\Delta + 2) \rceil$
- $w(G) \leq i(G)$, if G is twin-free
- $w(G) \leq w(H)$ for any spanning subgraph H of G
- $w(G) \leq \frac{2n}{3}$, if G is a connected graph of order 3 or ≥ 5 [Auger, Charon, Hudry, Lobstein, to appear]
General bounds of the watching number

- \(w(G) \geq \lceil \log_2(n + 1) \rceil \)
- Complete graphs, stars, graphs s.t. \(\Delta = n - 1 \) attain this bound
- \(w(G) \geq \gamma(G) \)
- \(w(G) \leq \gamma(G) \lceil \log_2(\Delta + 2) \rceil \)
- \(w(G) \leq i(G) \), if \(G \) is twin-free
- \(w(G) \leq w(H) \) for any spanning subgraph \(H \) of \(G \)
- \(w(G) \leq \frac{2n}{3} \), if \(G \) is a connected graph of order 3 or \(\geq 5 \) [Auger, Charon, Hudry, Lobstein, to appear]
General bounds of the watching number

- \(w(G) \geq \lceil \log_2(n + 1) \rceil \)
- Complete graphs, stars, graphs s.t. \(\Delta = n - 1 \) attain this bound
- \(w(G) \geq \gamma(G) \)
- \(w(G) \leq \gamma(G) \lceil \log_2(\Delta + 2) \rceil \)
- \(w(G) \leq i(G) \), if \(G \) is twin-free
- \(w(G) \leq w(H) \) for any spanning subgraph \(H \) of \(G \)
- \(w(G) \leq \frac{2n}{3} \), if \(G \) is a connected graph of order 3 or \(\geq 5 \)
 [Auger, Charon, Hudry, Lobstein, to appear]
General bounds of the watching number

- $w(G) \geq \lceil \log_2 (n + 1) \rceil$
- Complete graphs, stars, graphs s.t. $\Delta = n - 1$ attain this bound
- $w(G) \geq \gamma(G)$
- $w(G) \leq \gamma(G) \lceil \log_2 (\Delta + 2) \rceil$
- $w(G) \leq i(G)$, if G is twin-free
- $w(G) \leq w(H)$ for any spanning subgraph H of G
- $w(G) \leq \frac{2n}{3}$, if G is a connected graph of order 3 or ≥ 5

 [Auger, Charon, Hudry, Lobstein, to appear]
Watching number and identifying number of some families

\[w(P_n) = \left\lceil \frac{n+1}{2} \right\rceil \quad i(P_n) = \left\lceil \frac{n+1}{2} \right\rceil \]

\[w(C_n) = \begin{cases}
3, & \text{if } n = 4; \\
\left\lceil \frac{n}{2} \right\rceil, & \text{otherwise.}
\end{cases} \quad i(C_n) = \begin{cases}
3, & \text{if } n = 4, 5; \\
\frac{n}{2}, & \text{if } n \geq 6 \text{ even}; \\
\frac{n+3}{2}, & \text{if } n \geq 7 \text{ odd.}
\end{cases} \]
Complete bipartite graphs

$K_{r,s}$, $2 \leq r \leq s$

- $\gamma(K_{r,s}) = 2$
- $i(K_{r,s}) = r + s - 2$

$W = \{w_i : i \in [m]\}$ watching system in $K_{r,s}$

- $V(K_{r,s}) = V_1 \cup V_2$, $|V_1| = r$, $|V_2| = s$
- $\mathcal{L}(W) = \{l(w_i) : i \in [m]\} \subseteq V$
- $\mathcal{L}_1(W) = \mathcal{L}(W) \cap V_1$, $\mathcal{L}_2(W) = \mathcal{L}(W) \cap V_2$,
Complete bipartite graphs

\[K_{r,s}, \quad 2 \leq r \leq s \]

- \(\gamma(K_{r,s}) = 2 \)
- \(i(K_{r,s}) = r + s - 2 \)

\(W = \{ w_i : i \in [m] \} \) watching system in \(K_{r,s} \)

- \(V(K_{r,s}) = V_1 \cup V_2, \quad |V_1| = r, \quad |V_2| = s \)
- \(\mathcal{L}(W) = \{ l(w_i) : i \in [m] \} \subseteq V \)
- \(\mathcal{L}_1(W) = \mathcal{L}(W) \cap V_1, \quad \mathcal{L}_2(W) = \mathcal{L}(W) \cap V_2, \)
Bounds

\[w_0(r, s) = \lceil \log_2(r + s + 1) \rceil \]

Bounds:

- \[w_0(r, s) \leq w(K_{r,s}) \leq \lceil \log_2 r \rceil + \lceil \log_2 s \rceil \]

Both bounds are tight:

- \[w(K_{3,16}) = w_0(3, 16) = 5 \]
- \[w(K_{8,11}) = \lceil \log_2 8 \rceil + \lceil \log_2 11 \rceil = 7 \]

Particular case:

- \[w(K_{2,s}) = w_0(2, s) = \lceil \log_2(s + 3) \rceil \]
Bounds

\[w_0(r, s) = \lceil \log_2 (r + s + 1) \rceil \]

Bounds:

- \[w_0(r, s) \leq w(K_{r,s}) \leq \lceil \log_2 r \rceil + \lceil \log_2 s \rceil \]

Both bounds are tight:

- \[w(K_{3,16}) = w_0(3, 16) = 5 \]
- \[w(K_{8,11}) = \lceil \log_2 8 \rceil + \lceil \log_2 11 \rceil = 7 \]

Particular case:

- \[w(K_{2,s}) = w_0(2, s) = \lceil \log_2 (s + 3) \rceil \]
Bounds

\[w_0(r, s) = \lceil \log_2(r + s + 1) \rceil \]

Bounds:
- \[w_0(r, s) \leq w(K_{r,s}) \leq \lceil \log_2 r \rceil + \lceil \log_2 s \rceil \]

Both bounds are tight:
- \[w(K_{3,16}) = w_0(3, 16) = 5 \]
- \[w(K_{8,11}) = \lceil \log_2 8 \rceil + \lceil \log_2 11 \rceil = 7 \]

Particular case:
- \[w(K_{2,s}) = w_0(2, s) = \lceil \log_2(s + 3) \rceil \]
Bounds

\[w_0(r, s) = \lceil \log_2(r + s + 1) \rceil \]

Bounds:

\[w_0(r, s) \leq w(K_{r,s}) \leq \lceil \log_2 r \rceil + \lceil \log_2 s \rceil \]

Both bounds are tight:

\[w(K_{3,16}) = w_0(3, 16) = 5 \]
\[w(K_{8,11}) = \lceil \log_2 8 \rceil + \lceil \log_2 11 \rceil = 7 \]

Particular case:

\[w(K_{2,s}) = w_0(2, s) = \lceil \log_2(s + 3) \rceil \]
Watching Systems in Complete Bipartite Graphs

Consider $K_{r,s}$, $2 \leq r \leq s$:

- If a watching system has 2 watchers at a same vertex, we obtain another watching system by placing one of them at another vertex of the same stable set.
- A watching system with all watchers located in the same stable set has size at least $\max\{r, \lceil \log_2(r + s + 1) \rceil \}$.
- A watching system with at least a watcher in each stable set has size $> w_0(r, s)$.

C. Hernando, M. Mora, I. M. Pelayo

Watching Systems in Complete Bipartite Graphs
Watching Systems in Complete Bipartite Graphs

Consider $K_{r,s}$, $2 \leq r \leq s$:

- If a watching system has 2 watchers at a same vertex, we obtain another watching system by placing one of them at another vertex of the same stable set.
- A watching system with all watchers located in the same stable set has size at least $\max\{r, \lceil \log_2(r + s + 1) \rceil \}$.
- A watching system with at least a watcher in each stable set has size $> w_0(r, s)$.
Watching Systems in Complete Bipartite Graphs

Consider $K_{r,s}$, $2 \leq r \leq s$:

- If a watching system has 2 watchers at a same vertex, we obtain another watching system by placing one of them at another vertex of the same stable set.
- A watching system with all watchers located in the same stable set has size at least $\max\{r, \lceil \log_2(r + s + 1) \rceil \}$.
- A watching system with at least a watcher in each stable set has size $> w_0(r, s)$.
Attaining the lower bound

If $2 \leq r \leq s,$

- If $K_{r,s} \neq K_{5,5},$ $w(K_{r,s}) = w_0(r,s)$ if and only if $r \leq w_0(r,s).$
Attaining the lower bound

If \(2 \leq r \leq s \),

- If \(K_{r,s} \neq K_{5,5} \), \(w(K_{r,s}) = w_0(r, s) \) if and only if \(r \leq w_0(r, s) \).
Not attaining the lower bound

If $r > w_0(r, s)$,

- There is a minimum watching system W satisfying $|L_1(W)| \geq |L_2(W)|$
- $w(K_{r,s}) = \min \{m : m = h+k, r \leq k+2^h-1, s \leq h+2^k-1\}$
- If $6 \leq r = s$, then $w(K_{r,r}) \neq w_0(r, r)$
- For each $r \geq 3$, there is a minimum watching system of $K_{r,r}$ such that $0 \leq |L_1(W)| - |L_2(W)| \leq 1$
- For each $r \geq 3$, if $n_h = h+2^h$,

$$w(K_{r,r}) = \begin{cases}
2h, & \text{if } n_{h-1} < r < n_h \text{ for some } h \geq 2; \\
2h+1, & \text{if } r = n_h \text{ for some } h \geq 2.
\end{cases}$$
Not attaining the lower bound

If $r > w_0(r, s)$,

- There is a minimum watching system W satisfying
 $|L_1(W)| \geq |L_2(W)|$
- $w(K_{r,s}) = \min\{m : m = h+k, r \leq k+2^h-1, s \leq h+2^k-1\}$
- If $6 \leq r = s$, then $w(K_{r,r}) \neq w_0(r, r)$
- For each $r \geq 3$, there is a minimum watching system of $K_{r,r}$ such that $0 \leq |L_1(W)| - |L_2(W)| \leq 1$
- For each $r \geq 3$, if $n_h = h + 2^h$,

 $$w(K_{r,r}) = \begin{cases}
 2h, & \text{if } n_{h-1} < r < n_h \text{ for some } h \geq 2; \\
 2h + 1, & \text{if } r = n_h \text{ for some } h \geq 2.
 \end{cases}$$
Feasible values

\[w(K_{r,s}) = w_0(r, s), \text{ if } r \leq w_0(r, s); \]
\[w_0(r, s) \leq w(K_{r,s}) \leq r, \text{ if } r > w_0(r, s). \]

Given \(a, b, c \) with \(2 \leq a \leq b \leq c \), find \(r, s \), such that \(2 \leq r \leq s \) and \(w_0(K_{r,s}) = a, w(K_{r,s}) = b, \max\{r, w_0(r, s)\} = c \).
Feasible values

\[w(K_{r,s}) = w_0(r, s), \text{ if } r \leq w_0(r, s); \]
\[w_0(r, s) \leq w(K_{r,s}) \leq r, \text{ if } r > w_0(r, s). \]

Given \(a, b, c \) with \(2 \leq a \leq b \leq c \), find \(r, s \), such that \(2 \leq r \leq s \) and \(w_0(K_{r,s}) = a, w(K_{r,s}) = b, \max\{r, w_0(r, s)\} = c \)
Feasible values

\[w(K_{r,s}) = w_0(r, s), \text{ if } r \leq w_0(r, s); \]
\[w_0(r, s) \leq w(K_{r,s}) \leq r, \text{ if } r > w_0(r, s). \]

Given \(a, b, c \) with \(2 \leq a \leq b \leq c \), find \(r, s \), such that \(2 \leq r \leq s \)
and \(w_0(K_{r,s}) = a, w(K_{r,s}) = b, \max\{r, w_0(r, s)\} = c \).
Feasible values

Existence of r, s such that $w_0(K_{r,s}) = a$, $w(K_{r,s}) = b$, and $\max\{r, w_0(r, s)\} = c$:

- If $2 \leq a = b = c$, a solution is $r = a$ and $s = 2^a - a - 1$
- If $2 \leq a = b < c$, there is no solution
- If $2 \leq a < b = c$, there is solution if and only if $a \geq \log_2(2^{c-3} + c + 3)$.
- If $2 \leq a < b < c$, if there is a solution, then $a + \lceil \log_2(c - a + 3) \rceil - 2 \leq b \leq a + \lceil \log_2(c - a + 1) \rceil$
Watching number of $K_{r,s}$

$w(K_{5,5}) = 4$, and for $s \geq r \geq 3$, not both equal to 5:

\[
\begin{align*}
 w(K_{r,s}) &= w_0, & \text{if } r \leq w_0; \\
 w(K_{r,s}) &= w_0 + 1, & \text{if } r = w_0 + 1; \\
 w(K_{r,s}) &\in \{w_0 + 1, w_0 + 2\}, & \text{if } r = w_0 + 2; \\
 w(K_{r,s}) &\in \{w_0 + \lceil \log_2(r - w_0 + 1) \rceil, \\
 &\quad w_0 + \lceil \log_2(r - w_0 + 2) \rceil - 1, \\
 &\quad w_0 + \lceil \log_2(r - w_0 + 3) \rceil - 2\} & \text{if } r \geq w_0 + 3.
\end{align*}
\]

The identifying number of the complete bipartite graph $K_{r,s}$ is $r + s - 2$!
Summary

- Watching systems as an extension of identifying codes
 - Watching systems exist in all graphs
 - $w(G) \leq i(G)$ if G has at least an identifying code

- Watching systems and watching number of complete bipartite graphs

- Open problems
 - Watching number in bipartite graphs and other families
 - Graphs with minimum watching number
Summary

- Watching systems as an extension of identifying codes
 - Watching systems exist in all graphs
 - \(w(G) \leq i(G) \) if \(G \) has at least an identifying code

- Watching systems and watching number of complete bipartite graphs

- Open problems
 - Watching number in bipartite graphs and other families
 - Graphs with minimum watching number
Summary

- Watching systems as an extension of identifying codes
 - Watching systems exist in all graphs
 - $w(G) \leq i(G)$ if G has at least an identifying code

- Watching systems and watching number of complete bipartite graphs

- Open problems
 - Watching number in bipartite graphs and other families
 - Graphs with minimum watching number