Extremal Graph Theory for Metric Dimension and Diameter

C. Hernando, M. Mora, I. M. Pelayo, C. Seara and D. R. Wood

Departaments de Matemàtica Aplicada I,II, III
Universitat Politècnica de Catalunya
Barcelona, Spain

Abstract

Let $\mathcal{G}_{\beta,D}$ be the set of graphs with metric dimension β and diameter D. The first contribution is to characterize the graphs in $\mathcal{G}_{\beta,D}$ with order $\beta + D$ for all values of β and D. The second contribution is to determine the maximum order of a graph in $\mathcal{G}_{\beta,D}$ for all values of D and β. Only a weak upper bound was previously known.

Keywords: Graph, resolving set, metric dimension, metric basis, diameter, order.

1 Introduction

Let G be a connected graph. A vertex $x \in V(G)$ resolves a pair of vertices $v, w \in V(G)$ if $\text{dist}(v, x) \neq \text{dist}(w, x)$. A set of vertices $S \subseteq V(G)$ resolves G, and S is a resolving set of G, if every pair of distinct vertices of G are resolved

1 Research supported by projects MCYT-FEDER-BFM2003-00368, MCYT-HU2002-0010, MTM-2004-07891-C02-01, MEC-SB2003-0270, and MCYT-FEDER BFM2003-00368. The research of David R. Wood is supported by a Marie Curie Fellowship of the European Community under contract 023865.
by some vertex in S. Informally, S resolves G if every vertex of G is uniquely determined by its vector of distances to the vertices in S. A resolving set S of G with the minimum cardinality is a metric basis of G, and $\beta(G) := |S|$ is the metric dimension of G. Resolving sets in general graphs were first defined by Slater [7] and Harary and Melter [4]. Resolving sets have since been widely investigated [2,5,9], and arise in diverse areas including coin weighing problems [8], network discovery and verification [1], robot navigation [5], connected joins in graphs [6], and strategies for the Mastermind game [3]. For non-negative integers β and D, let $G_{\beta,D}$ be the class of connected graphs with metric dimension β and diameter D. Consider the following two extremal questions: (1) What is the minimum order of a graph in $G_{\beta,D}$? (2) What is the maximum order of a graph in $G_{\beta,D}$?

The first question was independently answered by Yushmanov [9], Khuller et al. [5], and Chartrand et al. [2], who proved that the minimum order of a graph in $G_{\beta,D}$ is $\beta + D$. Thus it is natural to consider the following problem: Characterize the graphs in $G_{\beta,D}$ with order $\beta + D$. Such a characterization is simple for $\beta = 1$. In particular, Khuller et al. [5] and Chartrand et al. [2] independently proved that paths P_n (with $n \geq 2$ vertices) are the only graphs with metric dimension 1. Thus $G_{1,D} = \{P_{D+1}\}$. The characterization is again simple at the other extreme with $D = 1$. In particular, Chartrand et al. [2] proved that the complete graph K_n (with $n \geq 1$ vertices) is the only graph with metric dimension $n-1$ (see Proposition 2.1). Thus $G_{\beta,1} = \{K_{\beta+1}\}$. Chartrand et al. [2] studied the case $D = 2$, and obtained a non-trivial characterization of graphs in $G_{\beta,2}$ with order $\beta + 2$ (see Proposition 2.2). The first contribution of this paper is to characterize the graphs in $G_{\beta,D}$ with order $\beta + D$ for all values of $\beta \geq 1$ and $D \geq 3$, thus completing the characterization for all values of D. This result is stated and proved in Section 2. We then study the second question above: What is the maximum order of a graph in $G_{\beta,D}$? Previously, only a weak upper bound was known. In particular, Khuller et al. [5] and Chartrand et al. [2] independently proved that every graph in $G_{\beta,D}$ has at most $D^\beta + \beta$ vertices. This bound is tight only for $D \leq 3$ or $\beta = 1$. Our second contribution is to determine the (exact) maximum order of a graph in $G_{\beta,D}$ for all values of D and β. This result is stated and proved in Section 3.

2 Graphs with minimum order

Twin vertices. Let u be a vertex of a graph G. The open neighborhood of u is $N(u) := \{v \in V(G) : uv \in E(G)\}$, and the closed neighborhood of u is $N[u] := N(u) \cup \{u\}$. Two distinct vertices u, v are adjacent twins if $N[u] = N[v]$,
and non-adjacent twins if \(N(u) = N(v) \). Observe that if \(u, v \) are adjacent twins then \(uv \in E(G) \), and if \(u, v \) are non-adjacent twins then \(uv \notin E(G) \); thus the names are justified. If \(u, v \) are adjacent or non-adjacent twins, then \(u, v \) are twins. A consequence of the definitions is that if \(u, v \) are twins in a connected graph \(G \), then \(\text{dist}(u, x) = \text{dist}(v, x) \) for every vertex \(x \in V(G) \setminus \{u, v\} \). This implies that if \(u, v \) are twins in a connected graph \(G \) and \(S \) resolves \(G \), then \(u \) or \(v \) is in \(S \). Moreover, if \(u \in S \) and \(v \notin S \), then \((S \setminus \{u\}) \cup \{v\} \) resolves \(G \).

For a graph \(G \), a set \(T \subseteq V(G) \) is a twin-set of \(G \) if \(v, w \) are twins in \(G \) for every pair of distinct vertices \(v, w \in T \). It is easy to prove that if \(T \) is a twin-set of a graph \(G \), then either every pair of vertices in \(T \) are adjacent twins, or every pair of vertices in \(T \) are non-adjacent twins. If \(T \) is a twin-set of a connected graph \(G \) with \(|T| \geq 3 \), it can be proved that \(\beta(G) = \beta(G \setminus S) + |S| \) for every subset \(S \subseteq T \) with \(|S| \leq |T| - 2 \).

The Twin Graph. Let \(G \) be a graph. Define a relation \(\equiv \) on \(V(G) \) by \(u \equiv v \) if and only if \(u = v \) or \(u, v \) are twins. \(\equiv \) is an equivalence relation. For each vertex \(v \in V(G) \), let \(v^* \) be the set of vertices of \(G \) that are equivalent to \(v \) under \(\equiv \). Let \(\{v^*_1, \ldots, v^*_k\} \) be the partition of \(V(G) \) induced by \(\equiv \), where each \(v_i \) is a representative of the set \(v^*_i \). The twin graph of \(G \), denoted by \(G^* \), is the graph with vertex set \(V(G^*) := \{v^*_1, \ldots, v^*_k\} \), where \(v^*_i v^*_j \in E(G^*) \) if and only if \(v_i v_j \in E(G) \). Two vertices \(v^* \) and \(w^* \) of \(G^* \) are adjacent if and only if every vertex in \(v^* \) is adjacent to every vertex in \(w^* \) in \(G \). Each vertex \(v^* \) of \(G^* \) is a maximal twin-set of \(G \). \(G[v^*] \) is a complete graph if the vertices of \(v^* \) are adjacent twins, or \(G[v^*] \) is a null graph if the vertices of \(v^* \) are non-adjacent twins. So it makes sense to consider the following types of vertices in \(G^* \). We say that \(v^* \in V(G^*) \) is of type: (i) \((1) \) if \(|v^*| = 1 \); (ii) \((K) \) if \(G[v^*] \cong K_r \) and \(r \geq 2 \); (iii) \((N) \) if \(G[v^*] \cong N_r \) and \(r \geq 2 \); where \(N_r \) is the null graph with \(r \) vertices and no edges. A vertex of \(G^* \) is of type \((1K) \) if it is of type \((1) \) or \((K) \). A vertex of \(G^* \) is of type \((1N) \) if it is of type \((1) \) or \((N) \). Observe that the graph \(G \) is uniquely determined by \(G^* \), and the type and cardinality of each vertex of \(G^* \). In particular, if \(v^* \) is adjacent to \(w^* \) in \(G^* \), then every vertex in \(v^* \) is adjacent to every vertex in \(w^* \) in \(G \). If \(G \) is a graph with \(\text{diam}(G) \geq 3 \) then \(\text{diam}(G) = \text{diam}(G^*) \). Theorem 2.3 below characterizes the graphs in \(G_{\beta,D} \) for \(D \geq 3 \) in terms of the twin graph. Chartrand et al. [2] characterized the graphs in \(G_{\beta,D} \) for \(D \leq 2 \). For consistency with Theorem 2.3, we describe the characterization by Chartrand et al. [2] in terms of the twin graph.

Proposition 2.1 ([2]) The following are equivalent for \(G \) with \(n \) vertices: i) \(G \) has metric dimension \(\beta(G) = n - 1 \); ii) \(G \cong K_n \); iii) \(\text{diam}(G) = 1 \); (iv) the twin graph \(G^* \) has one vertex, which is of type \((1K) \).
Proposition 2.2 ([2]) The following are equivalent for G with $n \geq 3$ vertices: i) G has metric dimension $\beta(G) = n - 2$; ii) G has metric dimension $\beta(G) = n - 2$ and diameter $\text{diam}(G) = 2$; iii) the twin graph G^* of G satisfies: a) $G^* \cong P_2$ with at least one vertex of type (N), or b) $G^* \cong P_3$ with one leaf of type (1), the other leaf of type $(1K)$, and the degree-2 vertex of type $(1K)$.

To describe our characterization we introduce the following notation. Let $P_{D+1} = (u_0, u_1, \ldots, u_D)$ be a path of length D. For $k \in [3, D - 1]$ let $P_{D+1,k}$ be the graph obtained from P_{D+1} by adding one vertex adjacent to u_{k-1}. For $k \in [2, D - 1]$ let $P'_{D+1,k}$ be the graph obtained from P_{D+1} by adding one vertex adjacent to u_{k-1} and u_k.

Theorem 2.3 Let G be a connected graph of order n and diameter $D \geq 3$. Let G^* be the twin graph of G. Let $\alpha(G^*)$ be the number of vertices of G^* of type (K) or (N). Then $\beta(G) = n - D$ if and only if G^* is one of the following graphs:

(i) $G^* \cong P_{D+1}$ and one of the following cases hold:
 (a) $\alpha(G^*) \leq 1$;
 (b) $\alpha(G^*) = 2$, the two vertices of G^* not of type (1) are adjacent, and if one is a leaf of type (K) then the other is also of type (K);
 (c) $\alpha(G^*) = 2$, the two vertices of G^* not of type (1) are at distance 2 and both are of type (N); or
 (d) $\alpha(G^*) = 3$ and there is a vertex of type (N) or (K) adjacent to two vertices of type (N).

(ii) $G^* \cong P_{D+1,k}$ for some $k \in [3, D - 1]$, the degree-3 vertex u^*_k of G^* is any type, each neighbour of u^*_k is type $(1N)$, and every other vertex is type (1).

(iii) $G^* \cong P'_{D+1,k}$ for some $k \in [2, D - 1]$, the three vertices in the cycle are of type $(1K)$, and every other vertex is of type (1).

3 Graphs with maximum order

Theorem 3.1 For all integers $D \geq 2$ and $\beta \geq 0$, the maximum order of a connected graph with diameter D and metric dimension β is

$$m(D, \beta) = \left(\left\lfloor \frac{2D}{3} \right\rfloor + 1\right)^\beta + \beta \sum_{i=1}^{\left\lfloor D/3 \right\rfloor} (2i - 1)^{\beta - 1}.$$

(1)

Lemma 3.2 For every graph $G \in \mathcal{G}_{\beta,D}$, $|V(G)| \leq m(D, \beta)$.

To prove the lower bound in Theorem 3.1 we construct a graph $G \in \mathcal{G}_{\beta,D}$
with as many vertices as in Equation (1). Let \(A = \lceil D/3 \rceil, B = \lceil D/3 \rceil + \lfloor D/3 \rfloor, \) and \(Q = \{(x_1, \ldots, x_\beta) : A \leq x_i \leq D, i \in [1, \beta] \}. \) For each \(i \in [1, \beta] \) and \(r \in [0, A-1], \) let \(P_{i,r} = \{(x_1, \ldots, x_{i-1}, r, x_{i+1}, \ldots, x_\beta) : x_j \in [B-r, B+r], j \neq i \}. \) Let \(P_i = \bigcup \{P_{i,r} : r \in [0, A-1] \} \) and \(P = \bigcup \{P_i : i \in [1, \beta] \}. \) Let \(G \) be the graph with \(V(G) = Q \cup P, \) where \((x_1, \ldots, x_\beta) \) and \((y_1, \ldots, y_\beta) \) in \(V(G) \) are adjacent if and only if \(|y_i - x_i| \leq 1 \) for each \(i \in [1, \beta]. \) Let \(S = \{v_1, \ldots, v_\beta\}, \) where \(v_i = (t, \ldots, t, 0, t, \ldots, t) \in P_i. \) For all \(D, \beta > 0, |V(G)| = m(D, \beta). \)

Lemma 3.3 For all vertices \(x = (x_1, \ldots, x_\beta) \) and \(y = (y_1, \ldots, y_\beta) \) of \(G, \) \(\text{dist}(x, y) = \max\{|y_i - x_i| : i \in [1, \beta]\} \leq D. \)

Lemma 3.4 For every \(x = (x_1, \ldots, x_\beta) \) and for each \(v_i \in S \) \(\text{dist}(x, v_i) = x_i. \)

By Lemma 3.3 \(\text{diam}(G) = D. \) By Lemma 3.4 \(S \) resolves \(G. \) If the metric dimension of \(G \) is \(< |S| = \beta \) then, by Lemma 3.2, we get a contradiction.

References

