Quasiperfect Domination in Trees

Ignacio M. Pelayo

Universitat Politècnica de Catalunya, Barcelona, Spain

VIII Latin-American Algorithms, Graphs and Optimization Symposium

Praia das Fontes, Beberibe, Ceará, Brazil

Joint work with José Cáceres, Carmen Hernando, Mercè Mora and Maria Luz Puertas.
1. QP-dominating codes and the QP-chain
2. Short QP-chains
3. Trees
1. QP-dominating codes and the QP-chain

2. Short QP-chains

3. Trees
A set \(D \subset V(G) \) of a graph \(G \) is a dominating set if every vertex \(u \) not in \(D \) has at least a neighbour in \(D \), i.e., \(N(u) \cap D \neq \emptyset \).

The domination number of \(G \), denoted by \(\gamma(G) \), is the minimum cardinality of a dominating set of \(G \).

A dominating set of cardinality \(\gamma(G) \) is called a \(\gamma \)-code.

\(\gamma(P) = 3 \), since red vertices form a \(\gamma \)-code.
A set $D \subset V(G)$ of a graph G is a *dominating set* if every vertex u not in D has at least a neighbour in D, i.e., $N(u) \cap D \neq \emptyset$. The *domination number* of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. A dominating set of cardinality $\gamma(G)$ is called a γ-code.
A set $D \subset V(G)$ of a graph G is a dominating set if every vertex u not in D has at least a neighbour in D, i.e., $N(u) \cap D \neq \emptyset$.

The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G.\[\gamma(P) = 3, \text{ since red vertices form a } \gamma\text{-code.}\]
A set $D \subset V(G)$ of a graph G is a dominating set if every vertex u not in D has at least a neighbour in D, i.e., $N(u) \cap D \neq \emptyset$.

The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G.

A dominating set of cardinality $\gamma(G)$ is called a γ-code.
A set $D \subseteq V(G)$ of a graph G is a dominating set if every vertex u not in D has at least a neighbour in D, i.e., $N(u) \cap D \neq \emptyset$.

The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G.

A dominating set of cardinality $\gamma(G)$ is called a γ-code.
A set $D \subset V(G)$ of a graph G is a **dominating set** if every vertex u not in D has **at least** a neighbour in D, i.e., $N(u) \cap D \neq \emptyset$.

The **domination number** of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G.

A dominating set of cardinality $\gamma(G)$ is called a **γ-code**.

$\gamma(P) = 3$, since red vertices form a γ-code.
A dominating set \(D \) is a perfect dominating set if every vertex \(u \) not in \(D \) has exactly one neighbour in \(D \), i.e., \(|N(u) \cap D| = 1 \).

The perfect domination number, denoted by \(\gamma_1 \), is the minimum cardinality of a perfect dominating set of \(G \).

A perfect dominating set of cardinality \(\gamma_1 \) is called a \(\gamma_1 \)-code.

\(\gamma_1(P) = 4 \), since red vertices form a \(\gamma_1 \)-code.
A dominating set D is a **perfect dominating set** if every vertex u not in D has **exactly** one neighbour in D, i.e., $|N(u) \cap D| = 1$.
A dominating set D is a **perfect dominating set** if every vertex u not in D has **exactly** one neighbour in D, i.e., $|N(u) \cap D| = 1$.

The **perfect domination number**, denoted by $\gamma_{11}(G)$, is the minimum cardinality of a perfect dominating set of G.

$\gamma_{11}(P) = 4$, since red vertices form a γ_{11}-code.
A dominating set D is a perfect dominating set if every vertex u not in D has exactly one neighbour in D, i.e., $|N(u) \cap D| = 1$.

The perfect domination number, denoted by $\gamma_{11}(G)$, is the minimum cardinality of a perfect dominating set of G.

A perfect dominating set of cardinality $\gamma_{11}(G)$ is called a γ_{11}-code.
A dominating set D is a *perfect dominating set* if every vertex u not in D has exactly one neighbour in D, i.e., $|N(u) \cap D| = 1$.

The *perfect domination number*, denoted by $\gamma_{11}(G)$, is the minimum cardinality of a perfect dominating set of G.

A perfect dominating set of cardinality $\gamma_{11}(G)$ is called a γ_{11}-code.
A dominating set D is a **perfect dominating set** if every vertex u not in D has **exactly** one neighbour in D, i.e., $|N(u) \cap D| = 1$.

The **perfect domination number**, denoted by $\gamma_{11}(G)$, is the minimum cardinality of a perfect dominating set of G.

A perfect dominating set of cardinality $\gamma_{11}(G)$ is called a γ_{11}-code.

$\gamma_{11}(P) = 4$, since red vertices form a γ_{11}-code.
A dominating set $D \subset V(G)$ of a graph G is a k-quasiperfect dominating set if every vertex of $V \setminus D$ has at most k neighbours in D, i.e., for each $u \in V \setminus D$, $1 \leq |N(u) \cap D| \leq k$.

The k-quasiperfect perfect domination number, denoted $\gamma_1^k(G)$, is the minimum cardinality of a k-quasiperfect dominating set of G.

A γ_1^k-code is a k-QP dominating set of cardinality $\gamma_1^k(G)$.

Note that $n = 10$, $\Delta = 3$, $\gamma_1^1(P) = \gamma_1^2(P) = 4$, $\gamma_1^3(P) = \gamma_1(P) = 3$.

I. M. Pelayo (U.P.C.)

Quasiperfect Domination in Trees
A dominating set \(D \subset V(G) \) of a graph \(G \) is a \(k \)-quasiperfect dominating set if every vertex of \(V \setminus D \) has at most \(k \) neighbours in \(D \), i.e., for each \(u \in V \setminus D \), \(1 \leq |N(u) \cap D| \leq k \).
A dominating set $D \subset V(G)$ of a graph G is a k-quasiperfect dominating set if every vertex of $V \setminus D$ has at most k neighbours in D, i.e., for each $u \in V \setminus D$, $1 \leq |N(u) \cap D| \leq k$.

The k-quasiperfect perfect domination number, denoted $\gamma_{1k}(G)$, is the minimum cardinality of a k-quasiperfect dominating set of G.
A dominating set $D \subset V(G)$ of a graph G is a *k-quasiperfect dominating set* if every vertex of $V \setminus D$ has at most k neighbours in D, i.e., for each $u \in V \setminus D$, $1 \leq |N(u) \cap D| \leq k$.

The *k-quasiperfect perfect domination number*, denoted $\gamma_{1k}(G)$, is the minimum cardinality of a k-quasiperfect dominating set of G.

A γ_{1k}-code is a k-QP dominating set of cardinality $\gamma_{1k}(G)$.
A dominating set $D \subset V(G)$ of a graph G is a k-quasiperfect dominating set if every vertex of $V \setminus D$ has at most k neighbours in D, i.e., for each $u \in V \setminus D$, $1 \leq |N(u) \cap D| \leq k$.

The k-quasiperfect perfect domination number, denoted $\gamma_{1k}(G)$, is the minimum cardinality of a k-quasiperfect dominating set of G.

A γ_{1k}-code is a k-QP dominating set of cardinality $\gamma_{1k}(G)$.
A dominating set $D \subset V(G)$ of a graph G is a k-quasiperfect dominating set if every vertex of $V \setminus D$ has at most k neighbours in D, i.e., for each $u \in V \setminus D$, \[1 \leq |N(u) \cap D| \leq k.\]

The k-quasiperfect perfect domination number, denoted $\gamma_{1k}(G)$, is the minimum cardinality of a k-quasiperfect dominating set of G.

A γ_{1k}-code is a k-QP dominating set of cardinality $\gamma_{1k}(G)$.

Note that $n = 10$, $\Delta = 3$, $\gamma_{11}(P) = \gamma_{12}(P) = 4$, $\gamma_{13}(P) = \gamma(P) = 3$.
A QP-chain is called SHORT if \(1 \leq |\Gamma(G)| \leq 2\). For example:

\[\gamma_{11}(G) \geq \gamma_{12}(G) = \ldots = \gamma(G) \]
\(G \) is a graph of order \(n \) and maximum degree \(\Delta \).
- G is a graph of order n and maximum degree Δ.

- **QP-sequence** of G: $\Gamma(G) = \{\gamma_{1_i}(G)\}_{i=1}^{\Delta}$

- A **QP-chain** is called **short** if $1 \leq |\Gamma(G)| \leq 2$. For example: $\gamma_{11}(G) \geq \gamma_{12}(G) = \ldots = \gamma(G)$

- A short QP-chain is called **constant** if $\gamma_{11}(G) = \gamma_{12}(G) = \ldots = \gamma(G)$
- G is a graph of order n and maximum degree Δ.
- **QP-sequence** of G: $\Gamma(G) = \{\gamma_{1i}(G)\}_{i=1}^{\Delta}$
- **QP-chain** of G:

\[
\gamma_{11}(G) \geq \gamma_{12}(G) \geq \ldots \geq \gamma_{1\Delta}(G) = \gamma(G)
\]
- G is a graph of order n and maximum degree Δ.

- **QP-sequence** of G: $\Gamma(G) = \{\gamma_{1i}(G)\}_{i=1}^{\Delta}$

- **QP-chain** of G:

 \[
 \gamma_{11}(G) \geq \gamma_{12}(G) \geq \ldots \geq \gamma_{1\Delta}(G) = \gamma(G)
 \]

- A QP-chain is called **SHORT** if $1 \leq |\Gamma(G)| \leq 2$. For example:

 \[
 \gamma_{11}(G) \geq \gamma_{12}(G) = \ldots = \gamma(G)
 \]
\(G \) is a graph of order \(n \) and maximum degree \(\Delta \).

QP-sequence of \(G \):

\[
\Gamma(G) = \{ \gamma_{1i}(G) \}_{i=1}^{\Delta}
\]

QP-chain of \(G \):

\[
\gamma_{11}(G) \geq \gamma_{12}(G) \geq \ldots \geq \gamma_{1\Delta}(G) = \gamma(G)
\]

A QP-chain is called *SHORT* if \(1 \leq |\Gamma(G)| \leq 2 \). For example:

\[
\gamma_{11}(G) \geq \gamma_{12}(G) = \ldots = \gamma(G)
\]

A short QP-chain is called *CONSTANT* if

\[
\gamma_{11}(G) = \gamma_{12}(G) = \ldots = \gamma(G)
\]
1. QP-dominating codes and the QP-chain

2. Short QP-chains

3. Trees
QP-chain of some basic graph families

<table>
<thead>
<tr>
<th>G</th>
<th>P_n</th>
<th>C_n</th>
<th>K_n</th>
<th>$K_{1,n-1}$</th>
<th>$K_{p,n-p}$</th>
<th>W_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta(G)$</td>
<td>2</td>
<td>2</td>
<td>$n-1$</td>
<td>$n-1$</td>
<td>$n-p$</td>
<td>$n-1$</td>
</tr>
<tr>
<td>$\gamma_{11}(G)$</td>
<td>$\left\lceil \frac{n}{3} \right\rceil$</td>
<td>$\left\lfloor \frac{2n}{3} \right\rfloor - \left\lfloor \frac{n}{3} \right\rfloor$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>$\gamma_{12}(G)$</td>
<td>$\left\lceil \frac{n}{3} \right\rceil$</td>
<td>$\left\lfloor \frac{n}{3} \right\rfloor$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>$\gamma(G)$</td>
<td>$\left\lceil \frac{n}{3} \right\rceil$</td>
<td>$\left\lfloor \frac{n}{3} \right\rfloor$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

All of these graph families have a constant QP-chain, except cycles C_{3k+2} whose QP-chain is short.
More graph families with a short QP-chain
More graph families with a short QP-chain

\[\Delta = n - 1 \text{. Every graph satisfies: } \gamma_{11} = \gamma = 1. \]
More graph families with a short QP-chain

\[\Delta = n - 1 \]

Every graph satisfies: \(\gamma_{11} = \gamma = 1 \).

\(\{u\} \) is a \(\gamma_{11} \)-code of \(G = K_1 \lor H \).
More graph families with a short QP-chain
More graph families with a short QP-chain

\[\Delta = n - 2 \]. Every graph satisfies: \(\gamma_{12}(G) = \gamma(G) = 2 \). Moreover:
More graph families with a short QP-chain

1. $\Delta = n - 2$. Every graph satisfies: $\gamma_{12}(G) = \gamma(G) = 2$. Moreover:

2. If $n \geq 6$ and $2 \leq k \leq n$, then there exists a graph G of order n s.t. $\Delta(G) = n - 2$, $\gamma_{11}(G) = k$.
More graph families with a short QP-chain

- $\Delta = n - 2$. Every graph satisfies: $\gamma_{12}(G) = \gamma(G) = 2$. Moreover:

- If $n \geq 6$ and $2 \leq k \leq n$, then there exists a graph G of order n s.t. $\Delta(G) = n - 2$, $\gamma_{11}(G) = k$.

- Case $k = n$: Take $G = P_{n-2} \vee \bar{K}_2$

\[\{u, w\} \text{ is a } \gamma\text{-code and the unique } \gamma_{11}\text{-set is the whole graph.} \]
More graph families with a short QP-chain
More graph families with a short QP-chain

\[\Delta = n - 3 \].

Every graph satisfies: \(\gamma_{12}(G) = \gamma(G) \in \{2, 3\} \).

Moreover:

\[\Delta = n - 3 \].
More graph families with a short QP-chain

- \[\Delta = n - 3 \]. Every graph satisfies: \(\gamma_{12}(G) = \gamma(G) \in \{2, 3\} \).

Moreover:

- If \(n \geq 7 \) and \(2 \leq k \leq n \), then there exists a graph \(G \) of order \(n \) and \(\gamma(G) = 2 \) s.t. \(\Delta(G) = n - 3 \), \(\gamma_{11}(G) = k \).
More graph families with a short QP-chain

- $\Delta = n - 3$. Every graph satisfies: $\gamma_{12}(G) = \gamma(G) \in \{2, 3\}$. Moreover:

- If $n \geq 7$ and $2 \leq k \leq n$, then there exists a graph G of order n and $\gamma(G) = 2$ s.t. $\Delta(G) = n - 3$, $\gamma_{11}(G) = k$.

- If $n \geq 9$ and $3 \leq k \leq n$, then there exists a graph G of order n and $\gamma(G) = 3$ s.t. $\Delta(G) = n - 3$, $\gamma_{11}(G) = k$.
More graph families with a short QP-chain
More graph families with a short QP-chain

\[P_4 \text{-free graphs} \]. Every cograph satisfies: \(\gamma_{12}(G) = \gamma(G) \).
Moreover:
More graph families with a short QP-chain

- P_4-free graphs. Every cograph satisfies: $\gamma_{12}(G) = \gamma(G)$.

Moreover:

- $\gamma_{11}(G) \in \{1, 2, n\}$
More graph families with a short QP-chain

- P_4-free graphs. Every cograph satisfies: $\gamma_{12}(G) = \gamma(G)$.

Moreover:
- $\gamma_{11}(G) \in \{1, 2, n\}$
- $\gamma_{11}(G) = 2 \iff G$ is as in Figure.

Figure: $H = H_1 \vee H_2$, $N_G(u_1) = V(H_1) + u_2$, $N_G(u_2) = V(H_2) + u_1$.
More graph families with a short QP-chain

Let h, k, n be integers such that $2 \leq h \leq k$ and $h \leq \frac{n}{2}$. Then, there exists a claw-free graph G s.t. $\left[\gamma(G), \gamma_1(G), |V(G)|\right] = [h, k, n]$ if at least one of the following conditions holds:

1. $4 \leq n \leq 7$: $3h + k < 2n$ or $[h, k, n] \in \{[2, 6, 6], [3, 3, 6]\}$ (converse true).
2. $h + k \leq n$.
3. $3h + k + 1 \leq 2n$.

Open Problem: $3 \leq h < k$, $2n \leq 3h + k$.
More graph families with a short QP-chain

\[K_{1,3} \]-free graphs. Every claw-free graph satisfies: \(\gamma_{12}(G) = \gamma(G) \).

Moreover:
More graph families with a short QP-chain

- $K_{1,3}$-free graphs. Every claw-free graph satisfies: $\gamma_{12}(G) = \gamma(G)$.

Moreover:

- Let h, k, n be integers such that $2 \leq h \leq k$ and $h \leq \frac{n}{2}$. Then, there exists a claw-free graph G s.t.

 $$[\gamma(G), \gamma_{11}(G), |V(G)|] = [h, k, n]$$

 if at least one of the following conditions holds:
More graph families with a short QP-chain

- \(K_{1,3}\)-free graphs. Every claw-free graph satisfies: \(\gamma_{12}(G) = \gamma(G)\).

Moreover:

- Let \(h, k, n\) be integers such that \(2 \leq h \leq k\) and \(h \leq \frac{n}{2}\). Then, there exists a claw-free graph \(G\) s.t.

\[
[\gamma(G), \gamma_{11}(G), |V(G)|] = [h, k, n]
\]

if at least one of the following conditions holds:

1. \(4 \leq n \leq 7\): \(3h + k < 2n\) or \([h, k, n] \in \{[2, 6, 6], [3, 3, 6]\}\) (converse true).
More graph families with a short QP-chain

- $K_{1,3}$-free graphs. Every claw-free graph satisfies: $\gamma_{12}(G) = \gamma(G)$. Moreover:

- Let h, k, n be integers such that $2 \leq h \leq k$ and $h \leq \frac{n}{2}$. Then, there exists a claw-free graph G s.t.

 \[[\gamma(G), \gamma_{11}(G), |V(G)|] = [h, k, n] \]

 if at least one of the following conditions holds:

1. $4 \leq n \leq 7$: $3h + k < 2n$ or $[h, k, n] \in \{[2, 6, 6], [3, 3, 6]\}$ (converse true).
2. $h + k \leq n$.

Open Problem: $3 \leq h < k$, $2n \leq 3h + k$.

I. M. Pelayo (U.P.C.)

Quasiperfect Domination in Trees

14 May 2015 14 / 21
More graph families with a short QP-chain

- $K_{1,3}$-free graphs. Every claw-free graph satisfies: $\gamma_{12}(G) = \gamma(G)$. Moreover:

- Let h, k, n be integers such that $2 \leq h \leq k$ and $h \leq \frac{n}{2}$. Then, there exists a claw-free graph G s.t.

 $$[\gamma(G), \gamma_{11}(G), |V(G)|] = [h, k, n]$$

 if at least one of the following conditions holds:

 1. $4 \leq n \leq 7$: $3h + k < 2n$ or $[h, k, n] \in \{[2, 6, 6], [3, 3, 6]\}$ (converse true).
 2. $h + k \leq n$.
 3. $3h + k + 1 \leq 2n$.
More graph families with a short QP-chain

- $K_{1,3}$-free graphs. Every claw-free graph satisfies: $\gamma_{12}(G) = \gamma(G)$.

Moreover:

- Let h, k, n be integers such that $2 \leq h \leq k$ and $h \leq \frac{n}{2}$. Then, there exists a claw-free graph G s.t.

$$[\gamma(G), \gamma_{11}(G), |V(G)|] = [h, k, n]$$

if at least one of the following conditions holds:

1. $4 \leq n \leq 7$: $3h + k < 2n$ or $[h, k, n] \in \{[2, 6, 6], [3, 3, 6]\}$ (converse true).

2. $h + k \leq n$.

3. $3h + k + 1 \leq 2n$.

- Open Problem: $3 \leq h < k$, $2n \leq 3h + k$.
1. QP-dominating codes and the QP-chain

2. Short QP-chains

3. Trees
If T is a tree, then $\gamma_1^k(T)$ can be computed in linear time.

For $k \geq 1$:

$$\gamma_1^k(T) \leq \gamma(T) + \left\lceil \gamma(T) \frac{k}{k} \right\rceil - 1$$

Sketch of proof:

Take S, a γ-code of T. Assume S is not a γ_1^k-set of T.

Let r be the number of the components of $T[S]$: $\gamma(T) \geq r > k$.

Every $v \not\in S$ has at most one neighbor in each component of $T[S]$.

Take $x_0 \not\in S$ with at least $k + 1$ neighbors in S.

Take $S_1 = S + x_0$. $T[S_1]$ has at most $r - k$ components.

If S_1 is not a γ_1^k-set of T, goto $\Delta \Delta$.

After at most $j = \left\lceil \frac{r - k}{k} \right\rceil$ iterations, S_j is a γ_1^k-set of T.

$$\gamma_1^k(T) \leq |S_j| = |S| + j \leq \gamma(T) + \left\lceil \gamma(T) - \frac{k}{k} \right\rceil \leq \gamma(T) + \left\lceil \gamma(T) - k \right\rceil$$
If T is a tree, then $\gamma_{1k}(T)$ can be computed in linear time.
If T is a tree, then $\gamma_{1k}(T)$ can be computed in linear time.

$k \geq 1$: $\gamma_{1k}(T) \leq \gamma(T) + \lceil \frac{\gamma(T)}{k} \rceil - 1$
If T is a tree, then $\gamma_{1k}(T)$ can be computed in linear time.

$k \geq 1: \quad \gamma_{1k}(T) \leq \gamma(T) + \left\lceil \frac{\gamma(T)}{k} \right\rceil - 1$

Sketch of proof:
If T is a tree, then $\gamma_{1k}(T)$ can be computed in linear time.

$k \geq 1$: $\gamma_{1k}(T) \leq \gamma(T) + \lceil \frac{\gamma(T)}{k} \rceil - 1$

Sketch of proof:
- Take S, a γ-code of T. Assume S is not a γ_{1k}-set of T.
If T is a tree, then $\gamma_{1k}(T)$ can be computed in linear time.

$k \geq 1$: $\gamma_{1k}(T) \leq \gamma(T) + \left\lceil \frac{\gamma(T)}{k} \right\rceil - 1$

Sketch of proof:
- Take S, a γ-code of T. Assume S is not a γ_{1k}-set of T.
- Let r be the number of the components of $T[S]$: $\gamma(T) \geq r > k$.
If T is a tree, then $\gamma_{1k}(T)$ can be computed in linear time.

$k \geq 1$: $\gamma_{1k}(T) \leq \gamma(T) + \left\lceil \frac{\gamma(T)}{k} \right\rceil - 1$

Sketch of proof:

- Take S, a γ-code of T. Assume S is not a γ_{1k}-set of T.
- Let r be the number of the components of $T[S]$: $\gamma(T) \geq r > k$.
- Every $v \notin S$ has at most one neighbor in each component of $T[S]$.
If T is a tree, then $\gamma_{1k}(T)$ can be computed in linear time.

$k \geq 1: \quad \gamma_{1k}(T) \leq \gamma(T) + \left\lceil \frac{\gamma(T)}{k} \right\rceil - 1$

Sketch of proof:
- Take S, a γ-code of T. Assume S is not a γ_{1k}-set of T.
- Let r be the number of the components of $T[S]: \gamma(T) \geq r > k$.
- Every $v \notin S$ has at most one neighbor in each component of $T[S]$.
- Take $x_0 \notin S$ with at least $k + 1$ neighbors in S.

I. M. Pelayo (U.P.C.)

Quasiperfect Domination in Trees
If T is a tree, then $\gamma_{1k}(T)$ can be computed in linear time.

$k \geq 1$:

$$\gamma_{1k}(T) \leq \gamma(T) + \left\lceil \frac{\gamma(T)}{k} \right\rceil - 1$$

Sketch of proof:

- Take S, a γ-code of T. Assume S is not a γ_{1k}-set of T.
- Let r be the number of the components of $T[S]: \gamma(T) \geq r > k$.
- Every $v \notin S$ has at most one neighbor in each component of $T[S]$.
- Take $x_0 \notin S$ with at least $k + 1$ neighbors in S.
- Take $S_1 = S + x_0$. $T[S_1]$ has at most $r - k$ components.
If T is a tree, then $\gamma_{1k}(T)$ can be computed in linear time.

$k \geq 1$: $\gamma_{1k}(T) \leq \gamma(T) + \left\lceil \frac{\gamma(T)}{k} \right\rceil - 1$

Sketch of proof:
- Take S, a γ-code of T. Assume S is not a γ_{1k}-set of T.
- Let r be the number of the components of $T[S]$: $\gamma(T) \geq r > k$.
- Every $v \notin S$ has at most one neighbor in each component of $T[S]$.
- Take $x_0 \notin S$ with at least $k + 1$ neighbors in S.
- Take $S_1 = S + x_0$. $T[S_1]$ has at most $r - k$ components.
- If S_1 is not a γ_{1k}-set of T, goto $\triangleright\triangleright$.
If T is a tree, then $\gamma_{1k}(T)$ can be computed in linear time.

$k \geq 1$: $\gamma_{1k}(T) \leq \gamma(T) + \left\lceil \frac{\gamma(T)}{k} \right\rceil - 1$

Sketch of proof:
- Take S, a γ-code of T. Assume S is not a γ_{1k}-set of T.
- Let r be the number of the components of $T[S]$: $\gamma(T) \geq r > k$.
- Every $v \notin S$ has at most one neighbor in each component of $T[S]$.
- Take $x_0 \notin S$ with at least $k + 1$ neighbors in S.
- Take $S_1 = S + x_0$. $T[S_1]$ has at most $r - k$ components.
- If S_1 is not a γ_{1k}-set of T, goto $\triangleright\triangleright$.
- After at most $j = \left\lceil \frac{r-k}{k} \right\rceil$ iterations, S_j is a γ_{1k}-set of T.
If T is a tree, then $\gamma_{1k}(T)$ can be computed in linear time.

$k \geq 1:\ \ \ \ \ \gamma_{1k}(T) \leq \gamma(T) + \left\lceil \frac{\gamma(T)}{k} \right\rceil - 1$

Sketch of proof:
- Take S, a γ-code of T. Assume S is not a γ_{1k}-set of T.
- Let r be the number of the components of $T[S]: \gamma(T) \geq r > k$.
- Every $v \notin S$ has at most one neighbor in each component of $T[S]$.
- Take $x_0 \notin S$ with at least $k + 1$ neighbors in S.
- Take $S_1 = S + x_0$. $T[S_1]$ has at most $r - k$ components.
- If S_1 is not a γ_{1k}-set of T, goto $\triangleright \triangleright$.
- After at most $j = \left\lceil \frac{r-k}{k} \right\rceil$ iterations, S_j is a γ_{1k}-set of T.
- $\gamma_{1k}(T) \leq |S_j| = |S| + j \leq \gamma(T) + \left\lceil \frac{r-k}{k} \right\rceil \leq \gamma(T) + \left\lceil \frac{\gamma(T)-k}{k} \right\rceil$
T is a tree.

$\gamma_1(T) \leq \gamma(T) + \lceil \gamma(T) \rceil - 1$ is tight.

Sketch of proof:
If $k \geq \gamma(T)$, then $\gamma_1(T) = \gamma(T)$.
If $k < \gamma(T) = a = q \cdot k + r$, with $1 \leq r \leq k$, then take this tree:
T is a tree.

The bound $\gamma_{1k}(T) \leq \gamma(T) + \left\lceil \frac{\gamma(T)}{k} \right\rceil - 1$ is tight.
T is a tree.

The bound $\gamma_{1k}(T) \leq \gamma(T) + \left\lceil \frac{\gamma(T)}{k} \right\rceil - 1$ is tight.

Sketch of proof:
T is a tree.

The bound $\gamma_{1k}(T) \leq \gamma(T) + \lceil \frac{\gamma(T)}{k} \rceil - 1$ is tight.

Sketch of proof:

- If $k \geq \gamma(T)$, then $\gamma_{1k}(T) = \gamma(T)$.
T is a tree.

The bound $\gamma_{1k}(T) \leq \gamma(T) + \lceil \frac{\gamma(T)}{k} \rceil - 1$ is tight.

Sketch of proof:

- If $k \geq \gamma(T)$, then $\gamma_{1k}(T) = \gamma(T)$.
- If $k < \gamma(T) = a = q \cdot k + r$, with $1 \leq r \leq k$, then take this tree:

![Tree Diagram]

Figure: Squared vertices are a γ-code and black vertices are a γ_{1k}-code.
T is a tree.

The bound $\gamma_{1k}(T) \leq \gamma(T) + \left\lceil \frac{\gamma(T)}{k} \right\rceil - 1$ is tight.

Sketch of proof:

1. If $k \geq \gamma(T)$, then $\gamma_{1k}(T) = \gamma(T)$.
2. If $k < \gamma(T) = a = q \cdot k + r$, with $1 \leq r \leq k$, then take this tree:

Figure: Squared vertices are a γ-code and black vertices are a γ_{1k}-code

\[
\gamma(T) + \left\lceil \frac{\gamma(T)}{k} \right\rceil - 1 = a + \left\lceil \frac{q \cdot k + r}{k} \right\rceil - 1 = a + q + 1 - 1 = q \cdot k + r + q = \gamma_{1k}(T)
\]
A tree T satisfies $\gamma(T) \leq \gamma_{11}(T) \leq 2\gamma(T) - 1$ iff:

1. The set S of strong support vertices of T is an independent dominating set, and
2. Every vertex of any component C of $T - (S \cup L)$ has exactly one neighbor in S except one vertex that has two neighbors in S.

$\gamma(T)$ is the domination number, $\gamma_{11}(T)$ is the quasiperfect domination number, and $\gamma(T)$ is the upper domination number.
A tree T satisfies $\gamma_{11}(T) = 2\gamma(T) - 1$ iff:

1. The set S of strong support vertices of T is an independent dominating set, and

2. Every vertex of any component C of $T - (S \cup L)$ has exactly one neighbor in S except one vertex that has two neighbors in S.
Two realization theorems

Let a, b, n be integers such that $2 \leq a \leq b \leq 2a - 1$ and $n > 2b$:

 большим

There exists a tree T of order n s.t. $\gamma(T) = a$ and $\gamma_1(T) = b$.

There exists a tree with maximum degree Δ satisfying each one of the $2\Delta - 1$ possible combinations of the QP-chain.
Two realization theorems

\[\gamma(T) \leq \gamma_{11}(T) \leq 2\gamma(T) - 1 \]
Two realization theorems

$$\gamma(T) \leq \gamma_{11}(T) \leq 2\gamma(T) - 1$$

Let a, b, n be integers such that $2 \leq a \leq b \leq 2a - 1$ and $n > 2b$:
Two realization theorems

$$\gamma(T) \leq \gamma_{11}(T) \leq 2\gamma(T) - 1$$

Let a, b, n be integers such that $2 \leq a \leq b \leq 2a - 1$ and $n > 2b$:

- There exists a tree T of order n s.t. $\gamma(T) = a$ and $\gamma_{11}(T) = b$.
Two realization theorems

\[\gamma(T) \leq \gamma_{11}(T) \leq 2\gamma(T) - 1 \]

Let \(a, b, n \) be integers such that \(2 \leq a \leq b \leq 2a - 1 \) and \(n > 2b \):

▷ There exists a tree \(T \) of order \(n \) s.t. \(\gamma(T) = a \) and \(\gamma_{11}(T) = b \).

\[\gamma_{11}(T) \geq \gamma_{12}(T) \geq \cdots \geq \gamma_{1\Delta}(T) = \gamma(T) \]
Two realization theorems

\[\gamma(T) \leq \gamma_{11}(T) \leq 2\gamma(T) - 1 \]

Let \(a, b, n \) be integers such that \(2 \leq a \leq b \leq 2a - 1 \) and \(n > 2b \):

- There exists a tree \(T \) of order \(n \) s.t. \(\gamma(T) = a \) and \(\gamma_{11}(T) = b \).

\[\gamma_{11}(T) \geq \gamma_{12}(T) \geq \ldots \geq \gamma_{1\Delta}(T) = \gamma(T) \]

\(\Delta \geq 3 \):
Two realization theorems

\[\gamma(T) \leq \gamma_{11}(T) \leq 2\gamma(T) - 1 \]

Let \(a, b, n \) be integers such that \(2 \leq a \leq b \leq 2a - 1 \) and \(n > 2b \):

- There exists a tree \(T \) of order \(n \) s.t. \(\gamma(T) = a \) and \(\gamma_{11}(T) = b \).

\[\gamma_{11}(T) \geq \gamma_{12}(T) \geq \ldots \geq \gamma_{1\Delta}(T) = \gamma(T) \]

\(\Delta \geq 3 \):

- There exists a tree with maximum degree \(\Delta \) satisfying each one of the \(2^{\Delta-1} \) possible combinations of the QP-chain.
Two tree families with a short QP-chain

★ A *caterpillar* is a tree s.t. the removal of all its leaves gives rise to a path.
★ A *k-ary tree* is a rooted tree such that each vertex has at most k children.
★ A *full k-ary tree* is a k-ary tree such that all vertices that are not leaves have exactly k children.
Two tree families with a short QP-chain

A caterpillar is a tree s.t. the removal of all its leaves gives rise to a path.
A k-ary tree is a rooted tree such that each vertex has at most k children.
A full k-ary tree is a k-ary tree such that all vertices that are not leaves have exactly k children.

If T is a caterpillar, then:

\[2\gamma(T) > \gamma_{11}(T) \geq \gamma_{12}(T) = \gamma(T) \]
Two tree families with a short QP-chain

★ A **caterpillar** is a tree s.t. the removal of all its leaves gives rise to a path.
★ A **k-ary tree** is a rooted tree such that each vertex has at most k children.
★ A **full k-ary tree** is a k-ary tree such that all vertices that are not leaves have exactly k children.

▷ If T is a caterpillar, then:

\[2\gamma(T) > \gamma_{11}(T) \geq \gamma_{12}(T) = \gamma(T) \]

▷ If T is full k-ary tree, then:

\[n - \ell(T) = \gamma_{11}(T) = \cdots = \gamma_{1,k-1}(T) > \gamma_{1,k}(T) = \gamma_{1,k+1}(T) = \gamma(T) \]

Bibliography

GRACIAS/OBRIGADO/THANKS

