On the Metric Dimension of Cartesian Products of Graphs

José Cáceresa Carmen Hernandob Merce Morab Ignacio M. Pelayob María L. Puertasa Carlos Searab David R. Woodb

aDepartamento de Estadística y Matemática Aplicada
Universidad de Almería, Almería, Spain
\{jcaceres,mpuertas\}@ual.es

bDepartament de Matemàtica Aplicada I, II, III
Universitat Politècnica de Catalunya, Barcelona, Spain
\{carmen.hernando,merce.mora,ignacio.m.pelayo,carlos.seara,david.wood\}@upc.edu

Abstract

A set S of vertices in a graph G \textit{resolves} G if every vertex is uniquely determined by its vector of distances to the vertices in S. The \textit{metric dimension} of G is the minimum cardinality of a resolving set of G. This paper studies the metric dimension of cartesian products $G \Box H$. We prove that the metric dimension of $G \Box G$ is tied in a strong sense to the minimum order of a so-called doubly resolving set in G. Using bounds on the order of doubly resolving sets, we establish bounds on $G \Box H$ for many examples of G and H. One of our main results is a family of graphs G with bounded metric dimension for which the metric dimension of $G \Box G$ is unbounded.

\textbf{Key words:} graph, distance, resolving set, metric dimension, metric basis, cartesian product, Hamming graph, Mastermind, coin weighing

1 Introduction

This paper undertakes a general study of the metric dimension of cartesian products of graphs. All the graphs considered are finite, undirected, simple,