Global locating domination in bipartite graphs

Ignacio M. Pelayo

2 Department de Matemàtica Aplicada III
Universitat Politècnica de Catalunya
Barcelona, Catalunya, Spain

24th British Combinatorial Conference
Royal Holloway, University of London

Joint work with Carmen Hernando and Mercè Mora.
A set $D \subset V(G)$ of a graph G is a dominating set if every vertex of $V \setminus D$ has a neighbour in D, i.e., for each $u \in V \setminus D$, $N(u) \cap D \neq \emptyset$.

The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G.

$\gamma(P) = 3$, since blue vertices form a minimum dominating set.
A set $D \subset V(G)$ of a graph G is a *dominating set* if every vertex of $V \setminus D$ has a neighbour in D, i.e., for each $u \in V \setminus D$, $N(u) \cap D \neq \emptyset$.

The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G.

$\gamma(P) = 3$, since blue vertices form a minimum dominating set.
A set $D \subseteq V(G)$ of a graph G is a **dominating set** if every vertex of $V \setminus D$ has a neighbour in D, i.e., for each $u \in V \setminus D$, $N(u) \cap D \neq \emptyset$.

The **domination number** of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G.

\[\gamma(P) = 3 \], since blue vertices form a minimum dominating set.
A set $D \subseteq V(G)$ of a graph G is a **dominating set** if every vertex of $V \setminus D$ has a neighbour in D, i.e., for each $u \in V \setminus D$, $N(u) \cap D \neq \emptyset$.

The **domination number** of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G.

$\gamma(P) = 3$, since blue vertices form a minimum dominating set.
Let $G = (V, E)$ be a connected graph and $v, w \in V$.

A vertex $x \in V$ resolves the pair $\{v, w\}$ if $d(x, v) \neq d(x, w)$.

A set $S \subseteq V$ is a locating set of G if every pair $v, w \in V$ are resolved by some vertex $x \in S$.

Let $S = \{u_1, \ldots, u_k\}$ be a locating set. The ordered set:

$$[d(x, u_1), \ldots, d(x, u_k)]$$

is the vector of metric coordinates of $x \in V$ with respect to S.

I. M. PELAYO (U.P.C.)
Let $G = (V, E)$ be a connected graph and $v, w \in V$.

- A vertex $x \in V$ resolves the pair $\{v, w\}$ if $d(x, v) \neq d(x, w)$.
Let $G = (V, E)$ be a connected graph and $v, w ∈ V$.

- A vertex $x ∈ V$ resolves the pair $\{v, w\}$ if $d(x, v) \neq d(x, w)$.

- A set $S ⊆ V$ is a locating set of G if every pair $v, w ∈ V$ are resolved by some vertex $x ∈ S$.
Let $G = (V, E)$ be a connected graph and $v, w \in V$.

- A vertex $x \in V$ resolves the pair $\{v, w\}$ if $d(x, v) \neq d(x, w)$.

- A set $S \subseteq V$ is a locating set of G if every pair $v, w \in V$ are resolved by some vertex $x \in S$.

- Let $S = \{u_1, \ldots, u_k\}$ be a locating set. The ordered set:

$$[d(x, u_1), \ldots, d(x, u_k)]$$

is the vector of metric coordinates of $x \in V$ with respect to S.
LOCATING SETS

\[\Delta \text{Metric basis of } G \]: locating set of minimum cardinality.

\[\Delta \text{Metric dimension of } G, \beta(G) \]: cardinality of a metric basis.

In this graph, \{u, v, w\} is a metric basis.
Metric basis of G: locating set of minimum cardinality.
Metric basis of G: locating set of minimum cardinality.

Metric dimension of G, $\beta(G)$: cardinality of a metric basis.

In this graph, $\{u, v, w\}$ is a metric basis.
A set D of vertices in a graph G is a locating dominating set if it is both locating and dominating. The metric-location-domination number $\eta(G)$ is the minimum cardinality of a locating dominating set of G.

Let $S_1, S_2 \subseteq V(G)$. If S_1 is dominating and S_2 is locating, then $S_1 \cup S_2$ is both locating and dominating. Hence, $\max\{\gamma(G), \beta(G)\} \leq \eta(G) \leq \gamma(G) + \beta(G)$.
A set D of vertices in a graph G is a *locating dominating set* if it is both locating and dominating.
A set D of vertices in a graph G is a *locating dominating set* if it is both locating and dominating.

The *metric-location-domination number* $\eta(G)$ is the minimum cardinality of a locating dominating set of G.
A set D of vertices in a graph G is a **locating dominating set** if it is both locating and dominating.

The **metric-location-domination number** $\eta(G)$ is the minimum cardinality of a locating dominating set of G.

Let $S_1, S_2 \subseteq V(G)$. If S_1 is dominating and S_2 is locating, then $S_1 \cup S_2$ is both locating and dominating. Hence,
A set D of vertices in a graph G is a **locating dominating set** if it is both locating and dominating.

The **metric-location-domination number** $\eta(G)$ is the minimum cardinality of a locating dominating set of G.

Let $S_1, S_2 \subseteq V(G)$. If S_1 is dominating and S_2 is locating, then $S_1 \cup S_2$ is both locating and dominating. Hence,

$$\max\{\gamma(G), \beta(G)\} \leq \eta(G) \leq \gamma(G) + \beta(G)$$
A set D of vertices in a graph G is a **locating-dominating set**, or simply an **LD-set**, if for every two vertices $u, v \in V(G) \setminus D$, $\emptyset \neq N(u) \cap D \neq N(v) \cap D \neq \emptyset$.

The **location-domination number** $\lambda(G)$ is the minimum cardinality of an LD-set of G.

A $\lambda(G)$-code is an LD-set of cardinality $\lambda(G)$.

Every locating-dominating set is both locating and dominating. Hence, $\max\{\gamma(G), \beta(G)\} \leq \eta(G) \leq \min\{\lambda(G), \gamma(G) + \beta(G)\}$ and both bounds are tight.
A set D of vertices in a graph G is a *locating-dominating set*, or simply an *LD-set*, if for every two vertices $u, v \in V(G) \setminus D$,

$$\emptyset \neq N(u) \cap D \neq N(v) \cap D \neq \emptyset.$$
A set D of vertices in a graph G is a \textit{locating-dominating set}, or simply an \textit{LD-set}, if for every two vertices $u, v \in V(G) \setminus D$,

$\emptyset \neq N(u) \cap D \neq N(v) \cap D \neq \emptyset$.

The \textit{location-domination number} $\lambda(G)$ is the minimum cardinality of an LD-set of G.

Every locating-dominating set is both locating and dominating. Hence, $\max\{\gamma(G), \beta(G)\} \leq \eta(G) \leq \min\{\lambda(G), \gamma(G) + \beta(G)\}$ and both bounds are tight.
A set D of vertices in a graph G is a \textit{locating-dominating set}, or simply an \textit{LD-set}, if for every two vertices $u, v \in V(G) \setminus D$,

$$\emptyset \neq N(u) \cap D \neq N(v) \cap D \neq \emptyset.$$

The \textit{location-domination number} $\lambda(G)$ is the minimum cardinality of an LD-set of G.

A λ-\textit{code} is an LD-set of cardinality $\lambda(G)$.
A set D of vertices in a graph G is a **locating-dominating set**, or simply an **LD-set**, if for every two vertices $u, v \in V(G) \setminus D$,

$$\emptyset \neq N(u) \cap D \neq N(v) \cap D \neq \emptyset.$$

The **location-domination number** $\lambda(G)$ is the minimum cardinality of an LD-set of G.

A **λ-code** is an LD-set of cardinality $\lambda(G)$.

Every locating-dominating set is both locating and dominating. Hence,

$$\max\{\gamma(G), \beta(G)\} \leq \eta(G) \leq \min\{\lambda(G), \gamma(G) + \beta(G)\}$$

and both bounds are tight.
In all cases, digit 0 means "greater than 1"

\[\lambda(G) = 3 \], since \(\{ a_1, a_2, a_3 \} \) is a \(\lambda \)-code.
In this example:

\[
\begin{align*}
\beta(G) &= 2 \\
\gamma(G) &= \eta(G) = 3 \\
\lambda(G) &= 4
\end{align*}
\]

\[
\max\{\gamma(G), \beta(G)\} = 3 \leq \eta(G) = 3 \leq \min\{\lambda(G), \gamma(G) + \beta(G)\} = 4
\]
$G = (V, E)$ is a graph and $\bar{G} = (V, \bar{E})$ is its complementary graph.
Global locating domination

\(G = (V, E) \) is a graph and \(\overline{G} = (V, \overline{E}) \) is its complementary graph.

- A dominating set \(D \subseteq V \) of \(G \) is a \textit{global dominating set} if it is also a dominating set of \(\overline{G} \).

\[\Rightarrow \text{An LD-set } S \text{ is global iff no vertex } u \in V \text{ satisfies } S \subseteq N_G(u). \]

\[\Rightarrow \text{A set } S \text{ is a global LD-set of } G \text{ iff it is a global LD-set of } \overline{G}. \]

\[\Rightarrow \text{Equivalently, an LD-set } S \text{ of } G \text{ is called non-global if there exists a vertex } w \in V \setminus S \text{ such that } S \subseteq N(w). \text{ The vertex } w, \text{ which is necessarily unique, is called the dominating vertex of } S. \]

\[\Rightarrow \text{If } S \text{ is a non-global LD-set of } G, \text{ then } S + w \text{ is an LD-set of } \overline{G}. \]
Global locating domination

\[G = (V, E) \] is a graph and \(\overline{G} = (V, \overline{E}) \) is its complementary graph.

- A dominating set \(D \subseteq V \) of \(G \) is a **global dominating set** if it is also a dominating set of \(\overline{G} \).

- An LD-set \(S \) of \(G \) is called **global** if it is a global dominating set.

\[\Rightarrow \text{An LD-set } S \text{ is global iff no vertex } u \in V \text{ satisfies } S \subseteq N_G(u). \]

\[\Rightarrow \text{A set } S \text{ is a global LD-set of } G \text{ iff it is a global LD-set of } \overline{G}. \]

- Equivalently, an LD-set \(S \) of \(G \) is called **non-global** if there exists a vertex \(w \in V \setminus S \) such that \(S \subseteq N(w) \). The vertex \(w \), which is necessarily unique, is called the **dominating vertex** of \(S \).

\[\Rightarrow \text{If } S \text{ is a non-global LD-set of } G, \text{ then } S + w \text{ is an LD-set of } G. \]
$G = (V, E)$ is a graph and $\overline{G} = (V, \overline{E})$ is its complementary graph.

- A dominating set $D \subseteq V$ of G is a **global dominating set** if it is also a dominating set of \overline{G}.

- An LD-set S of G is called **global** if it is a global dominating set.

\Rightarrow An LD-set S is global iff no vertex $u \in V$ satisfies $S \subseteq N_G(u)$.
Global locating domination

$G = (V, E)$ is a graph and $\overline{G} = (V, \overline{E})$ is its complementary graph.

- A dominating set $D \subseteq V$ of G is a *global dominating set* if it is also a dominating set of \overline{G}.

- An LD-set S of G is called *global* if it is a global dominating set.

\Rightarrow An LD-set S is global iff no vertex $u \in V$ satisfies $S \subseteq N_G(u)$.

\Rightarrow A set S is a global LD-set of G iff it is a global LD-set of \overline{G}.
A dominating set $D \subseteq V$ of G is a *global dominating set* if it is also a dominating set of \overline{G}.

An LD-set S of G is called *global* if it is a global dominating set.

An LD-set S is global iff no vertex $u \in V$ satisfies $S \subseteq N_G(u)$.

A set S is a global LD-set of G iff it is a global LD-set of \overline{G}.

Equivalently, an LD-set S of G is called *non-global* if there exists a vertex $w \in V \setminus S$ such that $S \subseteq N(w)$. The vertex w, which is necessarily unique, is called the *dominating vertex* of S.

$G = (V, E)$ is a graph and $\overline{G} = (V, \overline{E})$ is its complementary graph.
$G = (V, E)$ is a graph and $\overline{G} = (V, \overline{E})$ is its complementary graph.

- A dominating set $D \subseteq V$ of G is a **global dominating set** if it is also a dominating set of \overline{G}.

- An LD-set S of G is called **global** if it is a global dominating set.

\Rightarrow An LD-set S is global iff no vertex $u \in V$ satisfies $S \subseteq N_G(u)$.

\Rightarrow A set S is a global LD-set of G iff it is a global LD-set of \overline{G}.

- Equivalently, an LD-set S of G is called **non-global** if there exists a vertex $w \in V \setminus S$ such that $S \subseteq N(w)$. The vertex w, which is necessarily unique, is called the **dominating vertex** of S.

\Rightarrow If S is a non-global LD-set of G, then $S + w$ is an LD-set of \overline{G}.
If G contains a global λ-code, then $\lambda(G) \leq \lambda(G)$.

If every λ-code of G is non-global, then $\lambda(G) \leq \lambda(G) + 1$.

$|\lambda(G) - \lambda(G)| \leq 1$

$\lambda(G) \in \{\lambda(G) - 1, \lambda(G), \lambda(G) + 1\}$

G is of type I:

$\lambda(G) - 1 \leq \lambda(G) \leq \lambda(G)$

G is of type II:

$\lambda(G) = \lambda(G) + 1$
⇒ If G contains a global λ-code, then $\lambda(\overline{G}) \leq \lambda(G)$.
⇒ If G contains a global λ-code, then $\lambda(\bar{G}) \leq \lambda(G)$.

⇒ If every λ-code of G is non-global, then $\lambda(\bar{G}) \leq \lambda(G) + 1$.
⇒ If G contains a global λ-code, then $\lambda(\overline{G}) \leq \lambda(G)$.

⇒ If every λ-code of G is non-global, then $\lambda(\overline{G}) \leq \lambda(G) + 1$.

⇒ $|\lambda(G) - \lambda(\overline{G})| \leq 1$
⇒ If G contains a global λ-code, then $\lambda(\overline{G}) \leq \lambda(G)$.

⇒ If every λ-code of G is non-global, then $\lambda(\overline{G}) \leq \lambda(G) + 1$.

⇒ $|\lambda(G) - \lambda(\overline{G})| \leq 1$

⇒ $\lambda(\overline{G}) \in \{\lambda(G) - 1, \lambda(G), \lambda(G) + 1\}$
⇒ If \(G \) contains a global \(\lambda \)-code, then \(\lambda(\overline{G}) \leq \lambda(G) \).

⇒ If every \(\lambda \)-code of \(G \) is non-global, then \(\lambda(\overline{G}) \leq \lambda(G) + 1 \).

\[|\lambda(G) - \lambda(\overline{G})| \leq 1 \]

⇒ \(\lambda(\overline{G}) \in \{ \lambda(G) - 1, \lambda(G), \lambda(G) + 1 \} \)

▷ \(G \) is of type I: \(\lambda(G) - 1 \leq \lambda(\overline{G}) \leq \lambda(G) \)
⇒ If G contains a global λ-code, then $\lambda(\overline{G}) \leq \lambda(G)$.

⇒ If every λ-code of G is non-global, then $\lambda(\overline{G}) \leq \lambda(G) + 1$.

⇒ $|\lambda(G) - \lambda(\overline{G})| \leq 1$

⇒ $\lambda(\overline{G}) \in \{\lambda(G) - 1, \lambda(G), \lambda(G) + 1\}$

▷ G is of **type I**: $\lambda(G) - 1 \leq \lambda(\overline{G}) \leq \lambda(G)$

▷ G is of **type II**: $\lambda(\overline{G}) = \lambda(G) + 1$
Let S be a non-global λ-code of a graph $G = (V, E)$. Then, $\Rightarrow \text{ecc}(w) \leq 2$. $\Rightarrow G$ is connected. $\Rightarrow \text{rad}(G) \leq 2$. $\Rightarrow \text{diam}(G) \leq 4$. $\Rightarrow \Delta(G) \geq \lambda(G)$.
Let S be a non-global λ-code of a graph $G = (V, E)$.

$\Rightarrow \text{ecc}(w) \leq 2.$

$\Rightarrow G$ is connected.

$\Rightarrow \text{rad}(G) \leq 2.$

$\Rightarrow \text{diam}(G) \leq 4.$

$\Rightarrow \Delta(G) \geq \lambda(G).$
Let S be a non-global λ-code of a graph $G = (V, E)$.

Let w be the dominating vertex of S, i.e., s.t. $S \subseteq N_G(w)$. Then,
Let S be a non-global λ-code of a graph $G = (V, E)$.

Let w be the dominating vertex of S, i.e., s.t. $S \subseteq N_G(w)$.

Then,

$\Rightarrow \ ecc(w) \leq 2$.

Let S be a non-global λ-code of a graph $G = (V, E)$.

Let w be the dominating vertex of S, i.e., s.t. $S \subseteq N_G(w)$. Then,

\Rightarrow $ecc(w) \leq 2$.

\Rightarrow G is connected.
Let S be a non-global λ-code of a graph $G = (V, E)$.

Let w be the dominating vertex of S, i.e., s.t. $S \subseteq N_G(w)$. Then,

\Rightarrow $ecc(w) \leq 2$.

\Rightarrow G is connected.

\Rightarrow $rad(G) \leq 2$.

\Rightarrow $diam(G) \leq 4$.
Let S be a non-global λ-code of a graph $G = (V, E)$.

Let w be the dominating vertex of S, i.e., s.t. $S \subseteq N_G(w)$. Then,

\Rightarrow $\text{ecc}(w) \leq 2$.

\Rightarrow G is connected.

\Rightarrow $\text{rad}(G) \leq 2$.

\Rightarrow $\text{diam}(G) \leq 4$.
Let S be a non-global λ-code of a graph $G = (V, E)$.

Let w be the dominating vertex of S, i.e., s.t. $S \subseteq N_G(w)$. Then,

\Rightarrow $\text{ecc}(w) \leq 2$.

\Rightarrow G is connected.

\Rightarrow $\text{rad}(G) \leq 2$.

\Rightarrow $\text{diam}(G) \leq 4$.

\Rightarrow $\Delta(G) \geq \lambda(G)$.

Solving $\lambda(\overline{G}) \leq \lambda(G)$ (Type I)

If G is a graph satisfying at least one of the following conditions, then $\lambda(G) \leq \lambda(G)$.

- G is disconnected.
- $\text{rad}(G) \geq 3$.
- $\text{diam}(G) \geq 5$.
- $\Delta(G) < \lambda(G)$.

Moreover, all conditions are tight.
If G is a graph satisfying at least one of the following conditions, then $\lambda(G) \leq \lambda(\overline{G})$.

1. G is disconnected.
2. $\text{rad}(G) \geq 3$.
3. $\text{diam}(G) \geq 5$.
4. $\Delta(G) < \lambda(G)$.

Moreover, all conditions are tight.
If G is a graph satisfying at least one the following conditions, then $\lambda(\overline{G}) \leq \lambda(G)$.

- G is disconnected.
- $\text{rad}(G) \geq 3$.
- $\text{diam}(G) \geq 5$.
- $\Delta(G) < \lambda(G)$.

Moreover, all conditions are tight.
If G is a graph satisfying at least one of the following conditions, then $\lambda(\overline{G}) \leq \lambda(G)$.

- G is disconnected.
- $\text{rad}(G) \geq 3$.
If G is a graph satisfying at least one of the following conditions, then $\lambda(\overline{G}) \leq \lambda(G)$.

- G is disconnected.
- $\text{rad}(G) \geq 3$.
- $\text{diam}(G) \geq 5$.
If G is a graph satisfying at least one of the following conditions, then $\lambda(\overline{G}) \leq \lambda(G)$.

- G is disconnected.
- $\text{rad}(G) \geq 3$.
- $\text{diam}(G) \geq 5$.
- $\Delta(G) < \lambda(G)$.
If G is a graph satisfying at least one the following conditions, then $\lambda(\overline{G}) \leq \lambda(G)$.

- G is disconnected.
- $\text{rad}(G) \geq 3$.
- $\text{diam}(G) \geq 5$.
- $\Delta(G) < \lambda(G)$.

Moreover, all conditions are tight.
Solving $\lambda(\overline{T}) \leq \lambda(T)$

If T is a tree other than K_2, then $\lambda(T) \leq \lambda(T)$.

If T is a tree, then the following statements are equivalent:

- $\text{diam}(T) = 2$.
- $T \sim K_1, n-1$ (i.e., T is a star).
- T is disconnected.
- $\lambda(T) = \lambda(T) = n - 1$.

If T is a tree other than P_4, then the following statements are equivalent:

- $\text{diam}(T) = 3$.
- $T \sim K_2(r, s)$ (i.e., T is a double star).
- $\lambda(T) = \lambda(T) - 1 = n - 2$.

⋆ $\lambda(P_n) = \lambda(P_n) - 1$ if $n \in \{5k + 1, 5k + 3\}$, otherwise $\lambda(P_n) = \lambda(P_n)$.

⋆ $\lambda(P_n/2, n/2) = \lambda(P_n/2, n/2) - 1$, $n \neq 6$, $\lambda(P_3, 3) = \lambda(P_3, 3)$.
If T is a tree other than K_2, then $\lambda(T) \leq \lambda(T)$.
If T is a tree other than K_2, then $\lambda(\overline{T}) \leq \lambda(T)$.

If T is a tree, then the following statements are equivalent:

- $diam(T) = 2$.
- $T \cong K_{1,n-1}$ (i.e., T is a star).
- \overline{T} is disconnected
- $\lambda(\overline{T}) = \lambda(T) = n - 1$.
If T is a tree other than K_2, then $\lambda(\overline{T}) \leq \lambda(T)$.

If T is a tree, then the following statements are equivalent:

- $\text{diam}(T) = 2$.
- $T \cong K_{1,n-1}$ (i.e., T is a star).
- \overline{T} is disconnected
- $\lambda(\overline{T}) = \lambda(T) = n - 1$.

If T is a tree other than P_4, then the following statements are equivalent:

- $\text{diam}(T) = 3$.
- $T \cong K_2(r,s)$ (i.e., T is a double star).
- $\lambda(\overline{T}) = \lambda(T) - 1 = n - 2$.
If T is a tree other than K_2, then $\lambda(\overline{T}) \leq \lambda(T)$.

- If T is a tree, then the following statements are equivalent:
 - $\text{diam}(T) = 2$.
 - $T \cong K_{1,n-1}$ (i.e., T is a star).
 - \overline{T} is disconnected
 - $\lambda(\overline{T}) = \lambda(T) = n - 1$.

- If T is a tree other than P_4, then the following statements are equivalent:
 - $\text{diam}(T) = 3$.
 - $T \cong K_2(r, s)$ (i.e., T is a double star).
 - $\lambda(\overline{T}) = \lambda(T) - 1 = n - 2$.

- $\lambda(\overline{P_n}) = \lambda(P_n) - 1$ if $n \in \{5k + 1, 5k + 3\}$, otherwise $\lambda(\overline{P_n}) = \lambda(P_n)$.
If T is a tree other than K_2, then $\lambda(T) \leq \lambda(T)$.

- If T is a tree, then the following statements are equivalent:
 - $diam(T) = 2$.
 - $T \cong K_{1,n-1}$ (i.e., T is a star).
 - T is disconnected
 - $\lambda(T) = \lambda(T) = n - 1$.

- If T is a tree other than P_4, then the following statements are equivalent:
 - $diam(T) = 3$.
 - $T \cong K_2(r, s)$ (i.e., T is a double star).
 - $\lambda(T) = \lambda(T) - 1 = n - 2$.

- $\lambda(\overline{P_n}) = \lambda(P_n) - 1$ if $n \in \{5k + 1, 5k + 3\}$, otherwise $\lambda(\overline{P_n}) = \lambda(P_n)$.

- $\lambda(\overline{P_{n/2,n/2}}) = \lambda(P_{n/2,n/2}) - 1$, $n \neq 6$, $\lambda(\overline{P_{3,3}}) = \lambda(P_{3,3})$.
There are 48 trees of order at most 8, 23 of them s.t. $\lambda(T) = \lambda(T')$.
Let G be a non-complete graph. If $\lambda(G) = \lambda(G) + 1$, then

* Every λ-code of G is non-global.

* $\operatorname{rad}(G) \leq 2$ and $\operatorname{diam}(G) \leq 4$.

* If T is a tree other than K_2, then $\lambda(T) \leq \lambda(T)$.

What about other bipartite graphs?
Solving $\lambda(\overline{G}) = \lambda(G) + 1$ (Type II)

$\Rightarrow \lambda(\overline{K_n}) = n = \lambda(K_n) + 1$.
\[\Rightarrow \lambda(K_n) = n = \lambda(K_n) + 1. \]

\[\Rightarrow \text{Let } G \text{ be a non-complete graph. If } \lambda(\overline{G}) = \lambda(G) + 1, \text{ then} \]
⇒ \(\lambda(K_n) = n = \lambda(K_n) + 1. \)

⇒ Let \(G \) be a non-complete graph. If \(\lambda(\overline{G}) = \lambda(G) + 1 \), then

⋆ Every \(\lambda \)-code of \(G \) is non-global.
\[\lambda(K_n) = n = \lambda(K_n) + 1. \]

⇒ Let \(G \) be a non-complete graph. If \(\lambda(\overline{G}) = \lambda(G) + 1 \), then

- Every \(\lambda \)-code of \(G \) is non-global.
- \(rad(G) \leq 2 \) and \(diam(G) \leq 4 \).
⇒ \(\lambda(K_n) = n = \lambda(K_n) + 1 \).

⇒ Let \(G \) be a non-complete graph. If \(\lambda(\overline{G}) = \lambda(G) + 1 \), then

* Every \(\lambda \)-code of \(G \) is non-global.

* \(\text{rad}(G) \leq 2 \) and \(\text{diam}(G) \leq 4 \).

* If \(T \) is a tree other than \(K_2 \), then \(\lambda(\overline{T}) \leq \lambda(T) \).
$\Rightarrow \lambda(K_n) = n = \lambda(K_n) + 1.$

\Rightarrow Let G be a non-complete graph. If $\lambda(G) = \lambda(G) + 1$, then

- Every λ-code of G is non-global.
- $\text{rad}(G) \leq 2$ and $\text{diam}(G) \leq 4$.

- If T is a tree other than K_2, then $\lambda(T) \leq \lambda(T)$.

What about other bipartite graphs?
If \(G \sim K_{r,s} \), then \(\lambda(G) = \lambda(G) - 1 \).

If \(G \sim K_r,s \), then \(\lambda(G) = \lambda(G) \).

If \(G \sim C_{2k} \), then \(\lambda(G) - 1 \leq \lambda(G) \).

An \((r,s)\)-graph is a bipartite graph \(G = (V = U \cup W, E) \) order \(n = r + s \) such that \(2 \leq |U| = r \leq |W| = s \).

Let \(S \) be a \(\lambda \)-code of \(G \). Then, if \(S \cap U \neq \emptyset \) and \(S \cap W \neq \emptyset \), then \(S \) is a global \(\lambda \)-code.

If \(S \cap W = \emptyset \), then \(S = U \).

If \(S \cap U = \emptyset \), then \(S = W \).

If \(r < s \) and \(W \) is a \(\lambda \)-code of \(G \), then \(\lambda(G) \leq \lambda(G) \).

COROLLARY: If \(\lambda(G) = \lambda(G) + 1 \), then \(U \) is the unique \(\lambda \)-code of \(G \).
If \(G \cong K_2(r, s) \), then \(\lambda(\overline{G}) = \lambda(G) - 1 \).
If $G \cong K_2(r, s)$, then $\lambda(\overline{G}) = \lambda(G) - 1$.
If $G \cong K_{r,s}$, then $\lambda(\overline{G}) = \lambda(G)$.
⇒ If $G \cong K_2(r, s)$, then $\lambda(\overline{G}) = \lambda(G) - 1$.
⇒ If $G \cong K_{r,s}$, then $\lambda(\overline{G}) = \lambda(G)$.
⇒ If $G \cong C_{2k}$, then $\lambda(G) - 1 \leq \lambda(\overline{G}) \leq \lambda(G)$.
⇒ If $G \cong K_2(r, s)$, then $\lambda(\overline{G}) = \lambda(G) - 1$.

⇒ If $G \cong K_{r,s}$, then $\lambda(\overline{G}) = \lambda(G)$.

⇒ If $G \cong C_{2k}$, then $\lambda(G) - 1 \leq \lambda(\overline{G}) \leq \lambda(G)$.

▶ An (r, s)-graph is a bipartite graph $G = (V = U \cup W, E)$ order $n = r + s$ such that $2 \leq |U| = r \leq |W| = s$.
⇒ If $G \cong K_2(r, s)$, then $\lambda(\overline{G}) = \lambda(G) - 1$.
⇒ If $G \cong K_{r,s}$, then $\lambda(\overline{G}) = \lambda(G)$.
⇒ If $G \cong C_{2k}$, then $\lambda(G) - 1 \leq \lambda(\overline{G}) \leq \lambda(G)$.

▷ An (r, s)-graph is a bipartite graph $G = (V = U \cup W, E)$ order $n = r + s$ such that $2 \leq |U| = r \leq |W| = s$.

⇒ Let S be a λ-code of G. Then,
 - If $S \cap U \neq \emptyset$ and $S \cap W \neq \emptyset$, then S is a global λ-code.
 - If $S \cap W = \emptyset$, then $S = U$.
 - If $S \cap U = \emptyset$, then $S = W$.
⇒ If \(G \cong K_2(r, s) \), then \(\lambda(\overline{G}) = \lambda(G) - 1 \).
⇒ If \(G \cong K_{r,s} \), then \(\lambda(\overline{G}) = \lambda(G) \).
⇒ If \(G \cong C_{2k} \), then \(\lambda(G) - 1 \leq \lambda(\overline{G}) \leq \lambda(G) \).

▷ An \((r, s)\)-graph is a bipartite graph \(G = (V = U \cup W, E) \) order \(n = r + s \) such that \(2 \leq |U| = r \leq |W| = s \).

⇒ Let \(S \) be a \(\lambda \)-code of \(G \). Then,
 - If \(S \cap U \neq \emptyset \) and \(S \cap W \neq \emptyset \), then \(S \) is a global \(\lambda \)-code.
 - If \(S \cap W = \emptyset \), then \(S = U \).
 - If \(S \cap U = \emptyset \), then \(S = W \).

⇒ If \(r < s \) and \(W \) is a \(\lambda \)-code of \(G \), then \(\lambda(\overline{G}) \leq \lambda(G) \).
⇒ If $G \cong K_2(r, s)$, then $\lambda(\overline{G}) = \lambda(G) - 1$.
⇒ If $G \cong K_{r,s}$, then $\lambda(\overline{G}) = \lambda(G)$.
⇒ If $G \cong C_{2k}$, then $\lambda(G) - 1 \leq \lambda(\overline{G}) \leq \lambda(G)$.

▷ An (r, s)-graph is a bipartite graph $G = (V = U \cup W, E)$ order $n = r + s$ such that $2 \leq |U| = r \leq |W| = s$.

⇒ Let S be a λ-code of G. Then,

- If $S \cap U \neq \emptyset$ and $S \cap W \neq \emptyset$, then S is a global λ-code.
- If $S \cap W = \emptyset$, then $S = U$.
- If $S \cap U = \emptyset$, then $S = W$.

⇒ If $r < s$ and W is a λ-code of G, then $\lambda(\overline{G}) \leq \lambda(G)$.

COROLLARY: If $\lambda(\overline{G}) = \lambda(G) + 1$, then U is the unique λ-code of G.
\[G = (V = U \cup W, E), \quad n = r + s, \quad \text{with} \quad 1 \leq |U| = r \leq |W| = s. \]
\[G = (V = U \cup W, E), \ n = r + s, \ \text{with} \ 1 \leq |U| = r \leq |W| = s. \]

\[\Rightarrow \text{If} \ 1 \leq r \leq 3, \ \text{then} \ \lambda(G) \leq \lambda(G), \ \text{unless} \ (r, s) \in \{(3, 6), (3, 7)\}. \]

\[\begin{align*}
(r, s) &= (3, 6) \\
(r, s) &= (3, 7)
\end{align*} \]

In both cases \(\lambda(G) = 4 = \lambda(G) + 1 \)
\[G = (V = U \cup W, E), \; n = r + s, \text{ with } 1 \leq |U| = r \leq |W| = s. \]

⇒ If \(1 \leq r \leq 3 \), then \(\lambda(\overline{G}) \leq \lambda(G) \), unless \((r, s) \in \{(3, 6), (3, 7)\} \).

⇒ If \(4 \leq r \leq s \): If \(\lambda(\overline{G}) = \lambda(G) + 1 \), then \(U \) is the unique \(\lambda \)-code of \(G \).
\[G = (V = U \cup W, E), \ n = r + s, \text{ with } 1 \leq |U| = r \leq |W| = s. \]
⇒ If \(1 \leq r \leq 3 \), then \(\lambda(\overline{G}) \leq \lambda(G) \), unless \((r, s) \in \{(3, 6), (3, 7)\} \).
⇒ 4 \leq r \leq s : \text{If } \lambda(\overline{G}) = \lambda(G) + 1, \text{ then } U \text{ is the unique } \lambda\text{-code of } G.

- Let \(G \) be a bipartite graph such that \(U \) is its unique \(\lambda \)-code.
\(G = (V = U \cup W, E), n = r + s, \) with \(1 \leq |U| = r \leq |W| = s. \)

\(\Rightarrow \) If \(1 \leq r \leq 3, \) then \(\lambda(\overline{G}) \leq \lambda(G), \) unless \((r, s) \in \{(3, 6), (3, 7)\}. \)

\(\Rightarrow 4 \leq r \leq s : \) If \(\lambda(\overline{G}) = \lambda(G) + 1, \) then \(U \) is the unique \(\lambda \)-code of \(G. \)

Let \(G \) be a bipartite graph such that \(U \) is its unique \(\lambda \)-code.

\(\Rightarrow s \leq 2^r - 1. \)
Bipartite graphs of type II

- \(G = (V = U \cup W, E), \ n = r + s, \) with \(1 \leq |U| = r \leq |W| = s. \)

⇒ If \(1 \leq r \leq 3, \) then \(\lambda(\overline{G}) \leq \lambda(G), \) unless \((r, s) \in \{(3, 6), (3, 7)\}. \)

⇒ \(4 \leq r \leq s : \) If \(\lambda(\overline{G}) = \lambda(G) + 1, \) then \(U \) is the unique \(\lambda \)-code of \(G. \)

- Let \(G \) be a bipartite graph such that \(U \) is its unique \(\lambda \)-code.

⇒ \(s \leq 2^r - 1. \)

⇒ If \(U \) is non-global and \(2^{r-1} + 2 \leq s, \) then \(\lambda(\overline{G}) = \lambda(G) + 1. \)

G = (V = U ∪ W, E), n = r + s, with 1 ≤ |U| = r ≤ |W| = s.

⇒ If 1 ≤ r ≤ 3, then \(\lambda(\overline{G}) \leq \lambda(G) \), unless \((r, s) \in \{(3, 6), (3, 7)\} \).

⇒ 4 ≤ r ≤ s: If \(\lambda(\overline{G}) = \lambda(G) + 1 \), then \(U \) is the unique \(\lambda \)-code of \(G \).

Let \(G \) be a bipartite graph such that \(U \) is its unique \(\lambda \)-code.

⇒ \(s \leq 2^r - 1 \).

⇒ If \(U \) is non-global and \(2^{r-1} + 2 \leq s \), then \(\lambda(\overline{G}) = \lambda(G) + 1 \).
THEOREM: If \(2r + 1 \leq s \leq 2^r - 1\), then there exists a bipartite \((r, s)\)-graph \(H_{r,s}\) such that \(\lambda(H_{r,s}) = \lambda(H_{r,s}) + 1\).
THEOREM: If $2r + 1 \leq s \leq 2^r - 1$, then there exists a bipartite (r, s)-graph $H_{r,s}$ such that $\lambda(H_{r,s}) = \lambda(H_{r,s}) + 1$.

Sketch of proof:
THEOREM: If $2r + 1 \leq s \leq 2^r - 1$, then there exists a bipartite \((r, s)\)-graph \(H_{r,s}\) such that \(\lambda(H_{r,s}) = \lambda(H_{r,s}) + 1\).

Sketch of proof:

- \(G_r\) is the \((r, 2r + 1)\)-graph such that \(U = \{1, \ldots, r\}\), \(W = \{[1], [2], [3], [12], [13], [23], [24], [34], \ldots, [2r], [3r], [12 \ldots r]\}\) and \(N(j) = \{w \in W : j \in w\}\).
THEOREM: If $2r + 1 \leq s \leq 2^r - 1$, then there exists a bipartite (r, s)-graph $H_{r,s}$ such that $\lambda(H_{r,s}) = \lambda(H_{r,s}) + 1$.

Sketch of proof:

G_r is the $(r, 2r + 1)$-graph such that $U = \{1, \ldots, r\}$, $W = \{[1], [2], [3], [12], [13], [23], [24], [34], \ldots, [2r], [3r], [12 \ldots r]\}$ and $N(j) = \{w \in W : j \in w\}$.

G_3 and G_5 illustrate the structure of these graphs.
THEOREM: If $2r + 1 \leq s \leq 2^r - 1$, then there exists a bipartite (r, s)-graph $H_{r,s}$ such that $\lambda(H_{r,s}) = \lambda(H_{r,s}) + 1$.

Sketch of proof:

- G_r is the $(r, 2r + 1)$-graph such that $U = \{1, \ldots, r\}$, $W = \{[1], [2], [3], [12], [13], [23], [24], [34], \ldots, [2r], [3r], [12 \ldots r]\}$ and $N(j) = \{w \in W : j \in w\}$.

- Prove that U is its unique LD-set, that it is non-global, and that $\lambda(G_r) = \lambda(G_r) + 1$.
THEOREM: If \(2r + 1 \leq s \leq 2^{r} - 1 \), then there exists a bipartite \((r, s)\)-graph \(H_{r,s} \) such that \(\lambda(\overline{H_{r,s}}) = \lambda(H_{r,s}) + 1 \).

Sketch of proof:

- \(G_{r} \) is the \((r, 2r + 1)\)-graph such that \(U = \{1, \ldots, r\} \), \(W = \{[1], [2], [3], [12], [13], [23], [24], [34], \ldots, [2r], [3r], [12 \ldots r]\} \) and \(N(j) = \{w \in W : j \in w\} \).

- Prove that \(U \) is its unique LD-set, that it is non-global, and that \(\lambda(\overline{G_{r}}) = \lambda(G_{r}) + 1 \).

- \(H_{r,s} \) is any \((r, s)\)-graph such that \(U = \{1, \ldots, r\} \), \(\{[1], [2], [3], [12], [13], [23], [24], [34], \ldots, [2r], [3r], [12 \ldots r]\} \subseteq W \), \(N(j) = \{w \in W : j \in w\} \) and \(U \) is an LD-set.
THEOREM: If $2r + 1 \leq s \leq 2^r - 1$, then there exists a bipartite (r, s)-graph $H_{r,s}$ such that $\lambda(\overline{H}_{r,s}) = \lambda(H_{r,s}) + 1$.

Sketch of proof:

- G_r is the $(r, 2r + 1)$-graph such that $U = \{1, \ldots, r\}$, $W = \{[1], [2], [3], [12], [13], [23], [24], [34], \ldots, [2r], [3r], [12 \ldots r]\}$ and $N(j) = \{w \in W : j \in w\}$.

- Prove that U is its unique LD-set, that it is non-global, and that $\lambda(\overline{G}_r) = \lambda(G_r) + 1$.

- $H_{r,s}$ is any (r, s)-graph such that $U = \{1, \ldots, r\}$, $\{[1], [2], [3], [12], [13], [23], [24], [34], \ldots, [2r], [3r], [12 \ldots r]\} \subseteq W$, $N(j) = \{w \in W : j \in w\}$ and U is an LD-set.

- Prove that U is its unique LD-set, that it is non-global, and that $\lambda(\overline{H}_{r,s}) = \lambda(H_{r,s}) + 1$.
CONJECTURE 1:

For every bipartite \((r, r)\)-graph \(G\), \(\lambda(\overline{G}) \leq \lambda(G)\).

CONJECTURE 2:

For every bipartite \((r, s)\)-graph \(G\), if \(r \leq s \leq 2r\), then \(\lambda(\overline{G}) \leq \lambda(G)\).