Locating domination in graphs

Ignacio M. Pelayo

Department de Matemàtica Aplicada III
Universitat Politècnica de Catalunya
Barcelona, Catalunya, Spain

8th French Combinatorial Conference
$G = (V, E)$ is a simple finite connected graph.

- A set D of vertices in G is a *dominating set* if, for every $u \in V(G) \setminus D$:
 \[N(u) \cap D \neq \emptyset \]

- The *domination number* of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G.

- A set $D = \{x_1, \ldots, x_k\}$ is a *locating set* if, for every pair $u, v \in V(G)$,
 \[(d(u, x_1), \ldots, d(u, x_k)) \neq (d(v, x_1), \ldots, d(v, x_k)). \]

- The *metric dimension* (also called the *location number*) $\beta(G)$ is the minimum cardinality of a locating set of G.

I. M. Pelayo (U.P.C.)

Locating domination in graphs

29 June 2010
$G = (V, E)$ is a simple finite connected graph.

- A set D of vertices in G is a **dominating set** if, for every $u \in V(G) \setminus D$:
 \[N(u) \cap D \neq \emptyset \]

- The **domination number** of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G.

- A set $D = \{x_1, \ldots, x_k\}$ is a **locating set** if, for every pair $u, v \in V(G)$,
 \[(d(u, x_1), \ldots, d(u, x_k)) \neq (d(v, x_1), \ldots, d(v, x_k)). \]

- The **metric dimension** (also called the **location number**) $\beta(G)$ is the minimum cardinality of a locating set of G.

I. M. Pelayo (U.P.C.)

Locating domination in graphs

29 June 2010 2 / 15
$G = (V, E)$ is a simple finite connected graph.

▶ A set D of vertices in G is a *dominating set* if, for every $u \in V(G) \setminus D$:

$$N(u) \cap D \neq \emptyset$$

▶ The *domination number* of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G.

▶ A set $D = \{x_1, \ldots, x_k\}$ is a *locating set* if, for every pair $u, v \in V(G)$,

$$(d(u, x_1), \ldots, d(u, x_k)) \neq (d(v, x_1), \ldots, d(v, x_k)).$$

▶ The *metric dimension* (also called the *location number*) $\beta(G)$ is the minimum cardinality of a locating set of G.
\[G = (V, E) \] is a simple finite connected graph.

- A set \(D \) of vertices in \(G \) is a \textit{dominating set} if, for every \(u \in V(G) \setminus D \):
 \[N(u) \cap D \neq \emptyset \]

- The \textit{domination number} of \(G \), denoted by \(\gamma(G) \), is the minimum cardinality of a dominating set of \(G \).

- A set \(D = \{ x_1, \ldots, x_k \} \) is a \textit{locating set} if, for every pair \(u, v \in V(G) \),
 \[(d(u, x_1), \ldots, d(u, x_k)) \neq (d(v, x_1), \ldots, d(v, x_k)). \]

- The \textit{metric dimension} (also called the \textit{location number}) \(\beta(G) \) is the minimum cardinality of a locating set of \(G \).
\[G = (V, E) \] is a simple finite connected graph.

- A set \(D \) of vertices in \(G \) is a dominating set if, for every \(u \in V(G) \setminus D \):
 \[N(u) \cap D \neq \emptyset \]

- The domination number of \(G \), denoted by \(\gamma(G) \), is the minimum cardinality of a dominating set of \(G \).

- A set \(D = \{x_1, \ldots, x_k\} \) is a locating set if, for every pair \(u, v \in V(G) \),
 \[(d(u, x_1), \ldots, d(u, x_k)) \neq (d(v, x_1), \ldots, d(v, x_k)) \]

- The metric dimension (also called the location number) \(\beta(G) \) is the minimum cardinality of a locating set of \(G \).
A set D of vertices in a graph G is a \textit{locating dominating set} if it is both locating and dominating.

The \textit{metric-location-domination number} $\eta(G)$ is the minimum cardinality of a locating dominating set of G.

Let $S_1, S_2 \subseteq V(G)$. If S_1 is dominating and S_2 is locating, then $S_1 \cup S_2$ is both locating and dominating. Hence,

$$\max\{\gamma(G), \beta(G)\} \leq \eta(G) \leq \gamma(G) + \beta(G)$$

Given three positive integers a, b, c verifying that $\max\{a, b\} \leq c \leq a + b$, there always exists a graph G such that $\gamma(G) = a, \beta(G) = b$ and $\eta(G) = c$, except for the case $1 = b < a < c = a + 1$.
A set D of vertices in a graph G is a *locating dominating set* if it is both locating and dominating.

The *metric-location-domination number* $\eta(G)$ is the minimum cardinality of a locating dominating set of G.

Let $S_1, S_2 \subseteq V(G)$. If S_1 is dominating and S_2 is locating, then $S_1 \cup S_2$ is both locating and dominating. Hence,

$$\max\{\gamma(G), \beta(G)\} \leq \eta(G) \leq \gamma(G) + \beta(G)$$

Given three positive integers a, b, c verifying that $\max\{a, b\} \leq c \leq a + b$, there always exists a graph G such that $\gamma(G) = a, \beta(G) = b$ and $\eta(G) = c$, except for the case $1 = b < a < c = a + 1$.

I. M. Pelayo (U.P.C.)

Locating domination in graphs
A set D of vertices in a graph G is a **locating dominating set** if it is both locating and dominating.

The **metric-location-domination number** $\eta(G)$ is the minimum cardinality of a locating dominating set of G.

Let $S_1, S_2 \subseteq V(G)$. If S_1 is dominating and S_2 is locating, then $S_1 \cup S_2$ is both locating and dominating. Hence,

$$\max\{\gamma(G), \beta(G)\} \leq \eta(G) \leq \gamma(G) + \beta(G)$$

Given three positive integers a, b, c verifying that $\max\{a, b\} \leq c \leq a + b$, there always exists a graph G such that $\gamma(G) = a$, $\beta(G) = b$ and $\eta(G) = c$, except for the case $1 = b < a < c = a + 1$.ё
A set D of vertices in a graph G is a *locating dominating set* if it is both locating and dominating.

The *metric-location-domination number* $\eta(G)$ is the minimum cardinality of a locating dominating set of G.

Let $S_1, S_2 \subseteq V(G)$. If S_1 is dominating and S_2 is locating, then $S_1 \cup S_2$ is both locating and dominating. Hence,

$$\max\{\gamma(G), \beta(G)\} \leq \eta(G) \leq \gamma(G) + \beta(G)$$

Given three positive integers a, b, c verifying that $\max\{a, b\} \leq c \leq a + b$, there always exists a graph G such that $\gamma(G) = a$, $\beta(G) = b$ and $\eta(G) = c$, except for the case $1 = b < a < c = a + 1$.
A set D of vertices in a graph G is a **locating dominating set** if it is both locating and dominating.

The **metric-location-domination number** $\eta(G)$ is the minimum cardinality of a locating dominating set of G.

Let $S_1, S_2 \subseteq V(G)$. If S_1 is dominating and S_2 is locating, then $S_1 \cup S_2$ is both locating and dominating. Hence,

$$\max\{\gamma(G), \beta(G)\} \leq \eta(G) \leq \gamma(G) + \beta(G)$$

Given three positive integers a, b, c verifying that $\max\{a, b\} \leq c \leq a + b$, there always exists a graph G such that $\gamma(G) = a$, $\beta(G) = b$ and $\eta(G) = c$, except for the case $1 = b < a < c = a + 1$.
\(\eta(G) = 2 \), since \(\{a, b\} \) is a minimum locating dominating set
In this example: \(\max\{\gamma(G), \beta(G)\} = 3 \leq \eta(G) = 4 \leq \gamma(G) + \beta(G) = 5 \)
A set D of vertices in a graph G is a \textit{locating-dominating set} if for every two vertices $u, v \in V(G) \setminus D$,

\[\emptyset \neq N[u] \cap D \neq N[v] \cap D \neq \emptyset. \]

The \textit{location-domination number} $\lambda(G)$ is the minimum cardinality of a locating-dominating set of G.

Every locating-dominating set is both locating and dominating. Hence,

\[\max\{\gamma(G), \beta(G)\} \leq \eta(G) \leq \min\{\lambda(G), \gamma(G) + \beta(G)\} \]

and both bounds are tight.

Realization theorem? Not yet.
A set D of vertices in a graph G is a **locating-dominating set** if for every two vertices $u, v \in V(G) \setminus D$,

$$\emptyset \neq N[u] \cap D \neq N[v] \cap D \neq \emptyset.$$

The **location-domination number** $\lambda(G)$ is the minimum cardinality of a locating-dominating set of G.

Every locating-dominating set is both locating and dominating. Hence,

$$\max\{\gamma(G), \beta(G)\} \leq \eta(G) \leq \min\{\lambda(G), \gamma(G) + \beta(G)\}$$

and both bounds are tight.

Realization theorem? Not yet.
A set D of vertices in a graph G is a **locating-dominating set** if for every two vertices $u, v \in V(G) \setminus D$,

$$\emptyset \neq N[u] \cap D \neq N[v] \cap D \neq \emptyset.$$

The **location-domination number** $\lambda(G)$ is the minimum cardinality of a locating-dominating set of G.

Every locating-dominating set is both locating and dominating. Hence,

$$\max\{\gamma(G), \beta(G)\} \leq \eta(G) \leq \min\{\lambda(G), \gamma(G) + \beta(G)\}$$

and both bounds are tight.

Realization theorem? Not yet.
A set D of vertices in a graph G is a *locating-dominating set* if for every two vertices $u, v \in V(G) \setminus D$,

$$\emptyset \neq N[u] \cap D \neq N[v] \cap D \neq \emptyset.$$

The *location-domination number* $\lambda(G)$ is the minimum cardinality of a locating-dominating set of G.

Every locating-dominating set is both locating and dominating. Hence,

$$\max\{\gamma(G), \beta(G)\} \leq \eta(G) \leq \min\{\lambda(G), \gamma(G) + \beta(G)\}$$

and both bounds are tight.

Realization theorem? Not yet.
A set D of vertices in a graph G is a **locating-dominating set** if for every two vertices $u, v \in V(G) \setminus D$,

$$\emptyset \neq N[u] \cap D \neq N[v] \cap D \neq \emptyset.$$

The **location-domination number** $\lambda(G)$ is the minimum cardinality of a locating-dominating set of G.

Every locating-dominating set is both locating and dominating. Hence,

$$\max\{\gamma(G), \beta(G)\} \leq \eta(G) \leq \min\{\lambda(G), \gamma(G) + \beta(G)\}$$

and both bounds are tight.

Realization theorem? Not yet.
A set D of vertices in a graph G is a *locating-dominating set* if for every two vertices $u, v \in V(G) \setminus D$,

$$\emptyset \neq N[u] \cap D \neq N[v] \cap D \neq \emptyset.$$

The *location-domination number* $\lambda(G)$ is the minimum cardinality of a locating-dominating set of G.

Every locating-dominating set is both locating and dominating. Hence,

$$\max\{\gamma(G), \beta(G)\} \leq \eta(G) \leq \min\{\lambda(G), \gamma(G) + \beta(G)\}$$

and both bounds are tight.

Realization theorem? Not yet.
In all cases, digit 0 means "greater than 1"

\[\lambda(G) = 3, \text{ since } \{a_1, a_2, a_3\} \text{ is a minimum locating-dominating set} \]
In this example:

\[\max\{\gamma(G), \beta(G)\} = 3 \leq \eta(G) = 3 \leq \min\{\lambda(G), \gamma(G) + \beta(G)\} = 4 \]
<table>
<thead>
<tr>
<th>G</th>
<th>γ</th>
<th>β</th>
<th>η</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_n, n > 3$</td>
<td>$\left\lceil \frac{n}{3} \right\rceil$</td>
<td>1</td>
<td>$\left\lceil \frac{n}{3} \right\rceil$</td>
<td>$\left\lceil \frac{2n}{5} \right\rceil$</td>
</tr>
<tr>
<td>$C_n, n > 6$</td>
<td>$\left\lceil \frac{n}{3} \right\rceil$</td>
<td>2</td>
<td>$\left\lceil \frac{n}{3} \right\rceil$</td>
<td>$\left\lceil \frac{2n}{5} \right\rceil$</td>
</tr>
<tr>
<td>$K_n, n > 1$</td>
<td>1</td>
<td>$n - 1$</td>
<td>$n - 1$</td>
<td>$n - 1$</td>
</tr>
<tr>
<td>$K_{1,n-1}, n > 2$</td>
<td>1</td>
<td>$n - 2$</td>
<td>$n - 1$</td>
<td>$n - 1$</td>
</tr>
<tr>
<td>$K_{r,n-r}, n - r \geq r > 1$</td>
<td>2</td>
<td>$n - 2$</td>
<td>$n - 2$</td>
<td>$n - 2$</td>
</tr>
<tr>
<td>$W_{1,n-1}, n > 7$</td>
<td>1</td>
<td>$\left\lfloor \frac{2n}{5} \right\rfloor$</td>
<td>$\left\lfloor \frac{2n-2}{5} \right\rfloor$</td>
<td>$\left\lfloor \frac{2n-2}{5} \right\rfloor$</td>
</tr>
</tbody>
</table>

Domination parameters of some basic families
G is a graph of order n, diameter $D \geq 2$, location number β, metric-location-domination number η and location-domination number λ.

- $\beta + D \leq n \leq (\lceil \frac{2D}{3} \rceil + 1)^\beta + \beta \sum_{i=1}^{\lceil D/3 \rceil} (2i - 1)^{\beta - 1}$
- If $G \neq K_{1,n-1}$, then $\eta + \lceil \frac{2D}{3} \rceil \leq n \leq \eta + \eta \cdot 3^{\eta - 1}$
- $\lambda + \lceil \frac{3D+1}{5} \rceil \leq n \leq \lambda + 2^\lambda - 1$

* In all cases, both bounds are tight.
G is a graph of order n, diameter $D \geq 2$, location number β, metric-location-domination number η and location-domination number λ.

- $\beta + D \leq n \leq (\lceil \frac{2D}{3} \rceil + 1)^\beta + \beta \sum_{i=1}^{\lceil D/3 \rceil} (2i - 1)^{\beta-1}$

- If $G \neq K_{1,n-1}$, then $\eta + \lceil \frac{2D}{3} \rceil \leq n \leq \eta + \eta \cdot 3^{\eta-1}$

- $\lambda + \lceil \frac{3D+1}{5} \rceil \leq n \leq \lambda + 2^\lambda - 1$

* In all cases, both bounds are tight.
\(G \) is a graph of order \(n \), diameter \(D \geq 2 \), location number \(\beta \), metric-location-domination number \(\eta \) and location-domination number \(\lambda \).

- \(\beta + D \leq n \leq \left(\left\lfloor \frac{2D}{3} \right\rfloor + 1 \right)^\beta + \beta \sum_{i=1}^{\left\lceil \frac{D}{3} \right\rceil} (2i - 1)^{\beta - 1} \)
- If \(G \neq K_{1,n-1} \), then \(\eta + \left\lfloor \frac{2D}{3} \right\rfloor \leq n \leq \eta + \eta \cdot 3^{\eta - 1} \)
- \(\lambda + \left\lfloor \frac{3D+1}{5} \right\rfloor \leq n \leq \lambda + 2^\lambda - 1 \)

* In all cases, both bounds are tight.
G is a graph of order n, diameter $D \geq 2$, location number β, metric-location-domination number η and location-domination number λ.

- $\beta + D \leq n \leq (\lceil \frac{2D}{3} \rceil + 1)^\beta + \beta \sum_{i=1}^{\lceil D/3 \rceil} (2i - 1)^{\beta-1}$

- If $G \neq K_{1,n-1}$, then $\eta + \lceil \frac{2D}{3} \rceil \leq n \leq \eta + \eta \cdot 3^{\eta-1}$

- $\lambda + \lceil \frac{3D+1}{5} \rceil \leq n \leq \lambda + 2^\lambda - 1$

* In all cases, both bounds are tight.
G is a graph of order n, diameter $D \geq 2$, location number β, metric-location-domination number η and location-domination number λ.

- $\beta + D \leq n \leq \left(\left\lfloor \frac{2D}{3} \right\rfloor + 1 \right)^\beta + \beta \sum_{i=1}^{\left\lceil \frac{D}{3} \right\rceil} (2i - 1)^{\beta - 1}$
- If $G \neq K_{1,n-1}$, then $\eta + \left\lfloor \frac{2D}{3} \right\rfloor \leq n \leq \eta + \eta \cdot 3^{\eta - 1}$
- $\lambda + \left\lfloor \frac{3D+1}{5} \right\rfloor \leq n \leq \lambda + 2^\lambda - 1$

* In all cases, both bounds are tight.
\[\eta(G) = 1 \iff \lambda(G) = 1 \iff G = P_2 \]

\[\lambda(G) = 2 \implies \eta(G) = 2. \text{ [converse false]} \]

There are 16 graphs s.t. \(\lambda = 2 \) (notice that \(\lambda = 2 \implies n \leq 5 \))
There are 51 graphs satisfying $\eta = 2$

- $\eta = 2 \Rightarrow n \leq 8$
- If $\{u, v\}$ is an η-set, then $d(u, v) \leq 2$.
- Every graph verifying $\beta \leq 2$ can be embedded into the strong grid.
There are 51 graphs satisfying $\eta = 2$

$\triangleright \eta = 2 \Rightarrow n \leq 8$

\triangleright If $\{u, v\}$ is an η-set, then $d(u, v) \leq 2$.

\triangleright Every graph verifying $\beta \leq 2$ can be embedded into the strong grid.
There are 51 graphs satisfying $\eta = 2$

$\eta = 2 \Rightarrow n \leq 8$

If $\{u, v\}$ is an η-set, then $d(u, v) \leq 2$.

Every graph verifying $\beta \leq 2$ can be embedded into the strong grid.
There are 51 graphs satisfying $\eta = 2$

$\eta = 2 \Rightarrow n \leq 8$

If $\{u, v\}$ is an η-set, then $d(u, v) \leq 2$.

Every graph verifying $\beta \leq 2$ can be embedded into the strong grid.
SOLVING $\eta = \lambda$

- $\eta(G) = n - 1 \iff \lambda(G) = n - 1$

- $\lambda(G) = n - 1 \iff G = K_n$ or $G = K_1, n-1$

- $\lambda(G) = n - 2 \iff \eta(G) = n - 2$

- $\lambda(G) = n - 2 \iff G \in F_1 \cup \cdots \cup F_7$, where

 $F_1 = \{K_{r,s} : 2 \leq r \leq s\}$,

 $F_2 = \{K_{r} + \overline{K}_{s} : 2 \leq r \leq s\}$, etc.

- $\eta(G) = n - 3 \Rightarrow \lambda(G) = n - 3$ [converse false]

- If $D = 2$, then $\lambda(G) = \eta(G)$ [for $D \geq 3$, false]
• $\eta(G) = n - 1 \iff \lambda(G) = n - 1$

• $\lambda(G) = n - 1 \iff G = K_n \text{ or } G = K_{1,n-1}$

• $\lambda(G) = n - 2 \iff \eta(G) = n - 2$

• $\lambda(G) = n - 2 \iff G \in F_1 \cup \cdots \cup F_7$, where

 $F_1 = \{K_{r,s} : 2 \leq r \leq s\}$,

 $F_2 = \{K_r + \overline{K}_s : 2 \leq r \leq s\}$, etc.

• $\eta(G) = n - 3 \Rightarrow \lambda(G) = n - 3$ [converse false]

• If $D = 2$, then $\lambda(G) = \eta(G)$ [for $D \geq 3$, false]
• \(\eta(G) = n - 1 \iff \lambda(G) = n - 1 \)

• \(\lambda(G) = n - 1 \iff G = K_n \) or \(G = K_{1,n-1} \)

• \(\lambda(G) = n - 2 \iff \eta(G) = n - 2 \)

• \(\lambda(G) = n - 2 \iff G \in F_1 \cup \cdots \cup F_7 \), where
 \[F_1 = \{K_{r,s} : 2 \leq r \leq s\}, \]
 \[F_2 = \{K_r + \overline{K}_s : 2 \leq r \leq s\}, \text{ etc.} \]

• \(\eta(G) = n - 3 \Rightarrow \lambda(G) = n - 3 \) [converse false]

• If \(D = 2 \), then \(\lambda(G) = \eta(G) \) [for \(D \geq 3 \), false]
• \(\eta(G) = n - 1 \iff \lambda(G) = n - 1 \)

• \(\lambda(G) = n - 1 \iff G = K_n \) or \(G = K_{1,n-1} \)

• \(\lambda(G) = n - 2 \iff \eta(G) = n - 2 \)

• \(\lambda(G) = n - 2 \iff G \in F_1 \cup \cdots \cup F_7 \), where
 \(F_1 = \{ K_{r,s} : 2 \leq r \leq s \} \),
 \(F_2 = \{ K_r + \overline{K}_s : 2 \leq r \leq s \} \), etc.

• \(\eta(G) = n - 3 \implies \lambda(G) = n - 3 \) [converse false]

• If \(D = 2 \), then \(\lambda(G) = \eta(G) \) [for \(D \geq 3 \), false]
- $\eta(G) = n - 1 \iff \lambda(G) = n - 1$

- $\lambda(G) = n - 1 \iff G = K_n$ or $G = K_{1,n-1}$

- $\lambda(G) = n - 2 \iff \eta(G) = n - 2$

- $\lambda(G) = n - 2 \iff G \in F_1 \cup \cdots \cup F_7$, where
 - $F_1 = \{K_{r,s} : 2 \leq r \leq s\}$,
 - $F_2 = \{K_r + \overline{K}_s : 2 \leq r \leq s\}$, etc.

- $\eta(G) = n - 3 \implies \lambda(G) = n - 3$ [converse false]

- If $D = 2$, then $\lambda(G) = \eta(G)$ [for $D \geq 3$, false]
SOLVING $\eta = \lambda$

- $\eta(G) = n - 1 \iff \lambda(G) = n - 1$
- $\lambda(G) = n - 1 \iff G = K_n$ or $G = K_{1,n-1}$

- $\lambda(G) = n - 2 \iff \eta(G) = n - 2$

- $\lambda(G) = n - 2 \iff G \in F_1 \cup \cdots \cup F_7$, where
 $F_1 = \{K_{r,s} : 2 \leq r \leq s\},$
 $F_2 = \{K_r + \overline{K}_s : 2 \leq r \leq s\}$, etc.

- $\eta(G) = n - 3 \Rightarrow \lambda(G) = n - 3$ [converse false]

- If $D = 2$, then $\lambda(G) = \eta(G)$ [for $D \geq 3$, false]
\begin{itemize}
 \item \(\eta(G) = n - 1 \iff \lambda(G) = n - 1 \)
 \item \(\lambda(G) = n - 1 \iff G = K_n \) or \(G = K_{1, n-1} \)
 \item \(\lambda(G) = n - 2 \iff \eta(G) = n - 2 \)
 \item \(\lambda(G) = n - 2 \iff G \in F_1 \cup \cdots \cup F_7 \), where
 \begin{align*}
 F_1 &= \{ K_{r,s} : 2 \leq r \leq s \}, \\
 F_2 &= \{ K_r + \overline{K}_s : 2 \leq r \leq s \},
 \end{align*}
 etc.
 \item \(\eta(G) = n - 3 \implies \lambda(G) = n - 3 \) \([\text{converse false}]\)
 \item If \(D = 2 \), then \(\lambda(G) = \eta(G) \) \([\text{for } D \geq 3, \text{false}]\)
\end{itemize}
$n = 6, \ D = 3, \ n - 4 = 2 = \eta(G) < \lambda(G) = 3 = n - 3$
• $\eta(K_m \Box K_n) = \lambda(K_m \Box K_n)$, since $\text{diam}(K_m \Box K_n) = 2$.

• $\beta(K_m \Box K_n) \leq \eta(K_m \Box K_n) \leq \beta(K_m \Box K_n) + 1$.

• For $m, n \geq 2$, a dominating set S resolves $K_n \Box K_m$ iff
 - there is at most one empty row and at most one empty column;
 - there is at most one lonely vertex.

\implies If $2m - 1 < n$, then $\lambda(K_m \Box K_n) = \eta(K_m \Box K_n) = \beta(K_m \Box K_n) = n - 1$

\implies If $m \leq n \leq 2m - 1$, then

$$\lambda(K_n \Box K_m) = \begin{cases} \left\lfloor \frac{2}{3}(n + m - 1) \right\rfloor + 1 & \text{if } n + m = 3k + 2 \\ \left\lfloor \frac{2}{3}(n + m - 1) \right\rfloor & \text{otherwise} \end{cases}$$
• $\eta(K_m \square K_n) = \lambda(K_m \square K_n)$, since $\text{diam}(K_m \square K_n) = 2$.

• $\beta(K_m \square K_n) \leq \eta(K_m \square K_n) \leq \beta(K_m \square K_n) + 1$.

• For $m, n \geq 2$, a dominating set S resolves $K_n \square K_m$ iff
 1. there is at most one empty row and at most one empty column;
 2. there is at most one lonely vertex.

\implies If $2m - 1 < n$, then $\lambda(K_m \square K_n) = \eta(K_m \square K_n) = \beta(K_m \square K_n) = n - 1$

\implies If $m \leq n \leq 2m - 1$, then

$$\lambda(K_n \square K_m) = \begin{cases} \lfloor \frac{2}{3}(n + m - 1) \rfloor + 1 & \text{if } n + m = 3k + 2 \\ \lfloor \frac{2}{3}(n + m - 1) \rfloor & \text{otherwise} \end{cases}$$
• \(\eta(K_m \square K_n) = \lambda(K_m \square K_n) \), since \(\text{diam}(K_m \square K_n) = 2 \).

• \(\beta(K_m \square K_n) \leq \eta(K_m \square K_n) \leq \beta(K_m \square K_n) + 1 \).

• For \(m, n \geq 2 \), a dominating set \(S \) resolves \(K_n \square K_m \) iff
 1. there is at most one empty row and at most one empty column;
 2. there is at most one lonely vertex.

\[\implies \text{If } 2m - 1 < n, \text{ then } \lambda(K_m \square K_n) = \eta(K_m \square K_n) = \beta(K_m \square K_n) = n - 1 \]

\[\implies \text{If } m \leq n \leq 2m - 1, \text{ then } \lambda(K_n \square K_m) = \begin{cases} \left\lfloor \frac{2}{3}(n + m - 1) \right\rfloor + 1 & \text{if } n + m = 3k + 2 \\ \left\lfloor \frac{2}{3}(n + m - 1) \right\rfloor & \text{otherwise} \end{cases} \]
• $\eta(K_m \Box K_n) = \lambda(K_m \Box K_n)$, since $diam(K_m \Box K_n) = 2$.

• $\beta(K_m \Box K_n) \leq \eta(K_m \Box K_n) \leq \beta(K_m \Box K_n) + 1$.

• For $m, n \geq 2$, a dominating set S resolves $K_n \Box K_m$ iff
 1. there is at most one empty row and at most one empty column;
 2. there is at most one lonely vertex.

\implies If $2m - 1 < n$, then $\lambda(K_m \Box K_n) = \eta(K_m \Box K_n) = \beta(K_m \Box K_n) = n - 1$

\implies If $m \leq n \leq 2m - 1$, then

$$\lambda(K_n \Box K_m) = \left\{ \begin{array}{ll} \left\lfloor \frac{2}{3}(n + m - 1) \right\rfloor + 1 & \text{if } n + m = 3k + 2 \\ \left\lfloor \frac{2}{3}(n + m - 1) \right\rfloor & \text{otherwise} \end{array} \right.$$
• $\eta(K_m \square K_n) = \lambda(K_m \square K_n)$, since $\text{diam}(K_m \square K_n) = 2$.

• $\beta(K_m \square K_n) \leq \eta(K_m \square K_n) \leq \beta(K_m \square K_n) + 1$.

• For $m, n \geq 2$, a dominating set S resolves $K_n \square K_m$ iff
 1. there is at most one empty row and at most one empty column;
 2. there is at most one lonely vertex.

\implies If $2m - 1 < n$, then $\lambda(K_m \square K_n) = \eta(K_m \square K_n) = \beta(K_m \square K_n) = n - 1$

\implies If $m \leq n \leq 2m - 1$, then

$$\lambda(K_n \square K_m) = \begin{cases} \left\lfloor \frac{2}{3}(n + m - 1) \right\rfloor + 1 & \text{if } n + m = 3k + 2 \\ \left\lfloor \frac{2}{3}(n + m - 1) \right\rfloor & \text{otherwise} \end{cases}$$
• $\eta(K_m \Box K_n) = \lambda(K_m \Box K_n)$, since $\text{diam}(K_m \Box K_n) = 2$.

• $\beta(K_m \Box K_n) \leq \eta(K_m \Box K_n) \leq \beta(K_m \Box K_n) + 1$.

• For $m, n \geq 2$, a dominating set S resolves $K_n \Box K_m$ iff
 1. there is at most one empty row and at most one empty column;
 2. there is at most one lonely vertex.

\implies If $2m - 1 < n$, then $\lambda(K_m \Box K_n) = \eta(K_m \Box K_n) = \beta(K_m \Box K_n) = n - 1$

\implies If $m \leq n \leq 2m - 1$, then

$$\lambda(K_n \Box K_m) = \begin{cases} \left\lfloor \frac{2}{3}(n + m - 1) \right\rfloor + 1 & \text{if } n + m = 3k + 2 \\ \left\lfloor \frac{2}{3}(n + m - 1) \right\rfloor & \text{otherwise} \end{cases}$$