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Abstract. In this manuscript, we prove the Bernstein inequality and develop
the theory of holonomic D-modules for rings of invariants of finite groups in
characteristic zero, and for strongly F -regular finitely generated graded algebras
with FFRT in prime characteristic. In each of these cases, the ring itself, its
localizations, and its local cohomology modules are holonomic. We also show
that holonomic D-modules, in this context, have finite length and we prove
the existence of Bernstein–Sato polynomials in characteristic zero. We obtain
these results using a more general version of Bernstein filtrations.
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1. Introduction

Let R be a regular k-algebra, and DR|k its ring of k-linear differential operators,
where k is a field of characteristic zero. A fundamental theorem in the theory of
DR|k-modules is the Bernstein inequality, which establishes that the dimension
of every finitely generated DR|k-module is at least dim(R). Sato, Kawai, and
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2 BERNSTEIN’S INEQUALITY AND HOLONOMICITY

Kashiwara [SKK73] and Malgrange [Mal79] proved this result for holomorphic
functions. Gabber [Gab81] gave another proof that works in smooth cases such as
polynomial rings and formal power series rings over a field. Joseph (see [Cou95,
Theorem 9.4.2]) gave a simple proof for polynomial rings, considering the Bernstein
filtration on DR|k instead of the order filtration. More recently, Bavula [Bav09]
proved the Bernstein inequality for polynomial rings in positive characteristic.

Modules with minimal dimension are called holonomic, and are central to the
theory of DR|k-modules since they satisfy rather nice properties. Holonomic modules
have finite length and finite-dimensional de Rham cohomology [Kas75, vdE85].
Furthermore, holonomic modules play an important role in the Riemann–Hilbert
correspondence [Kas80, Meb80, Kas84, Meb84a, Meb84b]. In addition, holonomicity
can be characterized via homological properties [Bjö79].

The Bernstein inequality and the study of holonomic modules have been limited
to regular rings. We point out that Gabber [Gab81] proved the integrability of the
characteristic variety for the case of filtered rings whose associated graded rings are
commutative and Noetherian. In this setting, van den Essen [vdE86] considered
the notion of holonomicity, but to the best of our knowledge, this notion has only
been applied to smooth algebras when dealing with rings of differential operators.
More recently, Losev [Los17] showed a version of the Bernstein inequality using
representation theory of filtered algebras with commutative Noetherian associated
graded rings, whose spectra have finitely many symplectic leaves. In particular,
this theory applies to certain algebras in characteristic zero, but to the best of our
knowledge, it does not provide examples of DR|k-modules satisfying the Bernstein
inequality for a singular k-algebra R.

In this work we prove the Bernstein inequality and develop a theory of holonomic
modules for certain singular k-algebras. Specifically, we summarize our main results
in the following theorem, which is pieced together from various results throughout
the text.

Theorem A (See Corollaries 5.6 and 6.10). Let R be one of the following.

(a) A ring of invariants of the action of a finite group on a polynomial ring over a
field k of characteristic zero, or

(b) A strongly F -regular finitely generated graded algebra over a perfect field k of
positive characteristic with finite F -representation type (FFRT ).

Then any nonzero DR|k-module has dimension at least dim(R). In addition, any
nonzero DR|k-module of dimension dim(R) and finite multiplicity has finite length
in the category of DR|k-modules. In particular, any principal localization Rf and
any local cohomology module Hi

I(R) has dimension dim(R), and therefore has finite
length as a DR|k-module.

First, we build upon the work of Bavula [Bav09] on filtered k-algebras and filtered
modules. We consider his definition of dimension, which coincides with the usual
Gelfand–Kirillov dimension for finitely generated k-algebras, although these notions
are different in general. We also consider a version of multiplicity for filtered k-
algebras and modules that is convenient for our treatment of holonomic modules. A
key ingredient in Bavula’s work is a technical condition that we call linear simplicity
(see Definition 3.1), which gives a sufficient condition for the Bernstein inequality
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to hold, and to have a theory of holonomic modules (see Theorem 3.4). Our main
contribution is a proof in this setting establishing that holonomic modules have
finite length (see Theorem 3.8).

Let R be a finitely generated graded k-algebra, and DR|k its ring of k-linear
differential operators. In order to have a good theory of holonomic DR|k-modules
that extends the case of regular rings, we want DR|k to be linearly simple with
respect to an appropriate filtration, so that Bernstein’s inequality holds. Moreover,
we want the dimension of DR|k to be twice the dimension of R, and its multiplicity
to be finite and positive. If R satisfies all these properties, we call it a Bernstein
algebra. In this case, R is a holonomic DR|k-module, and the class of holonomic
DR|k-modules is closed under localization and taking local cohomology. We also
show that a certain module over R ⊗k k(s) is holonomic, and as a consequence,
we obtain the existence of the Bernstein–Sato polynomial for Bernstein algebras
in characteristic zero (see Corollaries 4.12 and 4.13). In Definition 4.15, we give a
generalization of the Bernstein filtration that works for the graded ring DR|k. The
difficult part when dealing with specific cases is to prove that DR|k is linearly simple
with respect to the generalized Bernstein filtration. Sufficient conditions to ensure
the remaining properties of a Bernstein algebra are given in terms of differential
signature [BJNB19] (see Theorem 4.32).

We note that in characteristic zero, there are graded hypersurfaces with rational
singularities that are not Bernstein algebras, and fail the conclusions of Theorem A;
see Examples 5.7 and 5.8. Likewise, in positive characteristic, there are graded
hypersurfaces that are strongly F -regular or have FFRT (but not both) that are not
Bernstein algebras, and again fail the conclusions of Theorem A; see Examples 6.11
and 6.12. Thus, strong hypotheses are necessary for a statement akin to Theorem A.

The main results of this work provide classes of singular rings that are Bernstein
algebras. First, we consider the case of a ring of invariants of a finite group G acting
linearly on a polynomial ring R over a field k of characteristic zero (see Corollary 5.6).
Moreover, we prove in Theorem 5.9 that a DRG|k-module is holonomic if and only if it
is a differential direct summand of a holonomic DR|k-module [ÀHNB17, AMHJ+21].

For our second class of Bernstein algebras, we focus on algebras over a field of
positive characteristic. Specifically, we work on rings with finite F -representation
type—FFRT for short—that were introduced by Smith and Van den Bergh [SVdB97].
Examples of rings with FFRT include complete regular rings, quotients of polynomial
rings by monomial ideals, normal monoid rings, affine cones of Grassmannians, and
graded direct summands of polynomial rings. In Corollary 6.10, we show that certain
rings with FFRT are Bernstein algebras.

In one of the first uses of D-modules in commutative algebra, Lyubeznik [Lyu93]
proved the finiteness of the set of associated primes of a local cohomology module
of a regular ring in characteristic zero. A key point of his argument is that local
cohomology modules of holonomic D-modules are themselves holonomic, and thus
have finite length as D-modules. The finiteness of sets of associated primes of
local cohomology modules has since been established for rings of invariants of finite
groups [NB12] and rings with FFRT [TT08, HNB17, DQ20]. These proofs, however,
did not use the theory of D-modules, though recently a new proof using D-module
theory was given for rings of invariants [ÀHNB17]. Theorem A gives another proof
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for the previously mentioned classes of rings via D-modules that resembles the one
given by Lyubeznik.

Acknowledgements. This project was initiated and developed during an American
Institute of Mathematics SQuaRE (Structured Quartet Research Ensemble) titled
Roots of Bernstein–Sato polynomials. We are grateful for AIM’s hospitality, and for
their support of this project.

2. Filtrations

In this section, we establish a number of key facts on filtrations and their numerical
invariants that we use throughout this work. Much, if not all, of the material in this
section is known [Bav09], with the possible exception of the discussion of multiplicity.
To keep the paper self-contained and to avoid unnecessary finiteness hypotheses, we
provide proofs for the claims made in this section.

Throughout this manuscript, k always denotes a field, which has arbitrary
characteristic unless otherwise stated. Within Sections 2 and 3, A denotes an
associative but not necessarily commutative k-algebra.

2.1. Filtrations, dimension, and multiplicity.

Definition 2.1. Throughout this paper, by a filtration F• on a k-algebra A we mean
an ascending, exhaustive filtration by finite-dimensional k-vector spaces, indexed by
the nonnegative integers, and such that F0 = k and F iF j ⊆ F i+j for each i, j ∈ N.
If F• is a filtration on A, we say that (A,F•) is a filtered k-algebra.

Given a filtered k-algebra (A,F•), and a left (respectively, right) A-module M ,
a filtration G• on M compatible with F• is an ascending, exhaustive filtration on
M by finite-dimensional k-vector spaces, indexed by the nonnegative integers, and
such that F iGj ⊆ Gi+j (respectively, GjF i ⊆ Gi+j) for every i and j in N. If G• is
a filtration on M compatible with F•, we say that (M,G•) is an (A,F•)-module.

Convention 2.2. If F• is a filtration on an algebra or module, we adopt the
convention that F i = 0 for each negative integer i.

Definition 2.3. Let G• be an ascending sequence of finite-dimensional k-vector
spaces. We define

Dim(G•) = inf
{
t ∈ R>0

∣∣ lim
i→∞

dimk Gi

it
= 0
}

= inf
{
t ∈ R>0

∣∣dimk Gi 6 it ∀ i� 0
}

= inf
{
t ∈ R>0

∣∣ ∃ C : dimk Gi 6 Cit ∀ i� 0
}
.

If d = Dim(G•) is finite, then the multiplicity of G• is the extended real number

e(G•) = lim sup
i→∞

dimk Gi

id
∈ R>0 ∪ {∞}.

By convention, if Dim(G•) is infinite, then we set e(G•) =∞.
If (A,G•) is a filtered k-algebra or (M,G•) is a left or right (A,F•)-module, then

we define the dimension (respectively, multiplicity) of (A,G•), or of (M,G•), as the
dimension (respectively, multiplicity) of G•.
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We note that the dimension of a filtered k-algebra or module may be infinite, or
may fail to be an integer, or even rational, if finite (see Proposition 2.7). Furthermore,
there are examples showing that the limit superior in the definition of multiplicity
cannot simply be replaced with a limit, as the limit may fail to exist (see [KLZ12,
Section 4]).
Definition 2.4. Let F• and G• be two filtrations on a k-algebra or module.

(i) We say that F• is shift dominated by G• if there exists j ∈ N>0 such that
F i ⊆ Gi+j for all i ∈ N.

(ii) We say that F• is linearly dominated by G• if there exists C ∈ N>0 such that
F i ⊆ GCi for all i ∈ N.

(iii) We say that F• and G• are shift equivalent if both F• is shift dominated by
G•, and G• is shift dominated by F•.

(iv) We say that F• and G• are linearly equivalent if both F• is linearly dominated
by G•, and G• is linearly dominated by F•.

Note that if F0 ⊆ G0 (e.g., when F• and G• are filtrations on a k-algebra) and
there exist positive integers C and j such that F i ⊆ GCi+j for all i ∈ N>0, then F•
is linearly dominated by G•. In particular, when F0 ⊆ G0, shift domination implies
linear domination. We also note that in condition (i) in Definition 2.4, we may
replace “for all i ∈ N” with “for all i� 0.” The same replacement can be made in
condition (ii), provided that F0 ⊆ G0.

Observe also that shift and linear domination are transitive, and that shift and
linear equivalence are equivalence relations.
Proposition 2.5. Let F• and G• be filtrations on a k-algebra or module. If F• is
linearly dominated by G•, then

(i) Dim(F•) 6 Dim(G•).

If F• is linearly dominated by G• and Dim(F•) = Dim(G•), then

(ii) e(G•) <∞ implies e(F•) <∞, and
(iii) e(G•) = 0 implies e(F•) = 0.

Finally, if F• is shift dominated by G• and Dim(F•) = Dim(G•), then

(iv) e(F•) 6 e(G•).

Proof. Fix C ∈ N>0 such that F i ⊆ GCi for all i ∈ N. Given t ∈ R>0, we have

lim sup
i→∞

dimk F i

it
6 lim sup

i→∞

dimk GCi

it

= Ct lim sup
i→∞

dimk GCi

(Ci)t 6 Ct lim sup
i→∞

dimk Gi

it
.

Parts (i), (ii), and (iii) then follow from the definitions.
For part (iv), if F• and G• have dimension d and finite multiplicity, and j ∈ N>0

is such that F i ⊆ Gi+j for all i ∈ N, then

e(F•) = lim sup
i→∞

dimk F i

id
6 lim sup

i→∞

dimk Gi+j

id
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= lim sup
i→∞

(i+ j)d

id
dimk Gi+j

(i+ j)d = lim sup
i→∞

dimk Gi

id
= e(G•). �

The following corollary follows immediately from Proposition 2.5.

Corollary 2.6. Let F• and G• be two filtrations on a k-algebra or module. If F•
and G• are linearly equivalent, then

(i) Dim(F•) = Dim(G•),
(ii) e(F•) <∞ if and only if e(G•) <∞, and
(iii) e(F•) > 0 if and only if e(G•) > 0.

If F• and G• are shift equivalent, then in addition we have

(iv) e(F•) = e(G•). �

We note that the dimension of a filtration on an algebra (or module) necessarily
depends on the choice of filtration, rather than solely on the algebra (or module).

Proposition 2.7. Let F• be a filtration on a k-algebra A, or on a module M , with
Dim(F•) = d ∈ R>0. Then, for every real number λ > d there exists a filtration G•
on A, or on M , such that Dim(G•) = λ.

Proof. Fix λ > d; set s = λ/d > 1 and define Gi = Fbisc. It is apparent that G•
is ascending, exhaustive, and finite dimensional, and G0 = F0, which equals k in
the algebra case. The fact that G• is compatible with multiplication follows from
the inequality bisc+ bjsc 6 b(i + j)sc in the algebra case, or from the inequality
i+ bjsc 6 b(i+ j)sc in the module case.

To compute the dimension of G•, note first that for every t > 0, if dimk F i 6 it for
all i� 0, then dimk Gi = dimk Fbi

sc 6 ist for all i� 0. Consequently, Dim(G•) 6
sDim(F•) = λ. For the reverse inequality, it suffices to show that for any t < d
and any N , there exists j > N such that dimk Gj > jst. Fix such t and N . As
t < d = Dim(F•), we can find i > Ns with dimk F i > it(1 + 1/N)st. Let j ∈ N be
such that (j − 1)s 6 i < js so that, in particular, j > N . We then have

dimk Gj > dimk F i > it(1 + 1/N)st > (j − 1)st(1 + 1/N)st > jst

as required. �

2.2. Finitely generated modules.

Definition 2.8. Let (A,F•) be a filtered k-algebra and M a finitely generated left
(or right) A-module. We say that a filtration G• on M is standard if there exists a
generating set v1, . . . , v` ofM such that Gi = F i{v1, . . . , v`} (or Gi = {v1, . . . , v`}F i)
for all i ∈ N. A filtration G• on M is a good filtration if it is shift equivalent to a
standard filtration.

We caution the reader that the term “standard filtration” is used for other related
notions in the literature; see Definition 2.12. We also point out that the notions of
standard filtration and of good filtration on a module are dependent on the choice
of the filtration F• on A.
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Proposition 2.9. Let (A,F•) be a filtered k-algebra, and M a finitely generated left
(or right) A-module. Let G• and H• be filtrations on M compatible with F•. If G•
is a good filtration, then G• is shift dominated by H•, and consequently Dim(G•) 6
Dim(H•), and e(G•) 6 e(H•) whenever these dimensions agree. Consequently, if
both G• and H• are good filtrations, then G• and H• are shift equivalent, Dim(G•) =
Dim(H•), and e(G•) = e(H•).

Proof. Without loss of generality, take M to be a left A-module. Since G• is shift
equivalent, and hence shift dominated, by a standard filtration, transitivity of shift
domination allows us to assume that G• is standard; say G• = F•{v1, . . . , v`}. If
j ∈ N>0 is such that {v1, . . . , v`} ⊆ Hj , then we have

Gi = F i{v1, . . . , v`} ⊆ F iHj ⊆ Hi+j

for each i ∈ N, so G• is shift dominated by H•. The remaining claims now follow
from Proposition 2.5 and Corollary 2.6. �

Definition 2.10. Let (A,F•) be a filtered k-algebra, and M a finitely generated
A-module. We define Dim(M,F•) := Dim(G•) and e(M,F•) := e(G•) for a good
filtration G• of M compatible with F•.

Note that by Proposition 2.9, the dimension and multiplicity of a finitely generated
module over a filtered k-algebra do not depend on the choice of the good filtration G•.
Our next result shows that both the dimension, and the positivity and finiteness of
the multiplicity depend only on the linear equivalence class of the filtration on A.

Proposition 2.11. Let A be a k-algebra with filtrations F•1 and F•2 , and M a
finitely generated left (or right) A-module. Let G•1 and G•2 be good filtrations on
M compatible, respectively, with F•1 and F•2 . If F•1 is linearly dominated by F•2 ,
then G•1 is linearly dominated by G•2 . Consequently, Dim(G•1 ) 6 Dim(G•2 ), and when
equality holds, if e(G•2 ) <∞ then e(G•1 ) <∞, and if e(G•2 ) = 0 then e(G•1 ) = 0.

Proof. Proposition 2.9 allows us to replace G•1 and G•2 by any good filtrations. Thus,
we may assume that G•1 and G•2 are standard filtrations corresponding to the same
generating set {v1, . . . , v`} ofM , in which case the first claim follows. The remaining
claims follow at once from Proposition 2.5. �

2.3. Finitely generated algebras.

Definition 2.12. Let A be a finitely generated k-algebra. We say that a filtration
F• on A is standard if there exists a generating set v1, . . . , v` of A such that
F1 = k{v1, . . . , v`} and for each i ∈ N>0, F i = (F1)i, the k-subspace generated by
monomials in v1, . . . , v` of degree 6 i.

The following proposition is the analogue of Proposition 2.9 for finitely generated
k-algebras, where the role of shift domination is now played by linear domination.

Proposition 2.13. Let A be a finitely generated k-algebra, with filtrations F• and
G•. If F• is a standard filtration, then F• is linearly dominated by G•, and thus
Dim(F•) 6 Dim(G•). If both F• and G• are standard filtrations, then F• and G•
are linearly equivalent, and consequently, Dim(F•) = Dim(G•), e(F•) <∞ if and
only if e(G•) <∞, and e(F•) > 0 if and only if e(G•) > 0.
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Proof. For the first claim, we fix generators v1, . . . , v` such that F1 = k{v1, . . . , v`}
and F i = (F1)i for all i ∈ N>0. Let C ∈ N>0 be such that {v1, . . . , v`} ⊆ GC , so
F1 ⊆ GC . Then for each i ∈ N>0 we have

F i = (F1)i ⊆ (GC)i ⊆ GCi.

The remaining claims now follow from Proposition 2.5 and Corollary 2.6. �

Let A be a finitely generated k-algebra, and F• a standard filtration on A. The
Gelfand–Kirillov dimension of A is GK(A) := Dim(F•), which does not depend
on the choice of the standard filtration F• by Proposition 2.13. For a non-finitely
generated k-algebra A, the Gelfand–Kirillov dimension is defined as

GK(A) := sup
{

GK(A′)
∣∣ A′ is a finitely generated k-subalgebra of A

}
.

2.4. Finitely generated commutative associated graded algebras. Consider
a filtered k-algebra (A,F•), and let gr(F•) =

⊕
i>0 F i/F i−1 be its associated

graded ring. Given an (A,F•)-module (M,G•), the associated graded module
gr(G•) =

⊕
i>0 Gi/Gi−1 is a gr(F•)-module.

In this subsection, we focus on the case where gr(F•) is a finitely generated
commutative k-algebra.

Proposition 2.14. Let (A,F•) be a filtered k-algebra. Suppose that the associated
graded ring gr(F•) is a finitely generated commutative k-algebra. Let M be a left
or right A-module. A filtration G• on M compatible with F• is a good filtration if
and only if gr(G•) is a finitely generated gr(F•)-module. Furthermore, any lift of a
generating set for gr(G•) is a generating set for M .

Proof. Without loss of generality, we suppose M is a left A-module. Assume
first that G• is a standard filtration on M , that is, G• = F•{v1, . . . , v`} for some
generating set v1, . . . , v` of M . Let u ∈ Gi/Gi−1 be a nonzero homogeneous element
of gr(G•), which is the class of u ∈ GirGi−1. Since u =

∑`
j=1 ajvj for some aj ∈ F i,

the associated graded module gr(G•) is generated as a gr(F•)-module by the classes
of the vj . Any good filtration G̃• is shift equivalent to a standard filtration, so
using [vdE86, Lemma 1.12] we conclude that gr(G̃•) is also a finitely generated
gr(F•)-module.

Conversely, suppose gr(G•) is generated by homogeneous elements u1, . . . , us as
a gr(F•)-module, and let uj ∈ Gnj r Gnj−1 be a lift of uj , for each j. Thus, any
nonzero homogeneous element u ∈ Gi/Gi−1 can be written in the form u =

∑s
j=1 ajuj

with aj ∈ F i−nj , and

u− (a1u1 + · · ·+ asus) =: x(1) ∈ Gi−1.

Applying the same argument to x(1), we can find a(1)
j ∈ F i−nj−1, for j = 1, . . . s,

such that x(1) − (a(1)
1 u1 + · · ·+ a

(1)
s us) =: x(2) ∈ Gi−2, and thus

u =
(
a1 + a

(1)
1
)
u1 + · · ·+

(
as + a(1)

s

)
us + x(2).

Repeating this process we eventually end up with some x(j) = 0, and thus

Gi = F i−n1u1 + · · ·+ F i−nsus
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showing that G• is shift equivalent to the standard filtration F•{u1, . . . , us}. This
construction also shows that any lift of a generating set for gr(G•) is a generating
set for M . �

Proposition 2.15. Let (A,F•) be a filtered k-algebra. Suppose that the associated
graded ring gr(F•) is a finitely generated commutative k-algebra. If M is a finitely
generated A-module, then Dim(M,F•) is an integer, and e(M,F•) is a positive
rational number.

Proof. Let G• be a good filtration for M . Then gr(G•) is a finitely generated
graded gr(F•)-module by Proposition 2.14. By the theory of Hilbert functions on
commutative finitely generated graded k-algebras, dimk Gi =

∑i
j=0 dimk(gr(G•)j)

agrees with a quasipolynomial function of i with rational coefficients, for i� 0, and
both claims follow. �

3. Bernstein’s inequality and holonomic modules

In this section we recall the Bernstein inequality for what we call linearly simple
algebras. The ideas behind this class of algebras can be found in Bavula’s work
[Bav09, Theorem 3.1]. We rephrase his work for our purposes in the first part of
Theorem 3.4, and include a proof for the convenience of the reader. The second part
of Theorem 3.4 concerns multiplicities of filtered modules, which was not treated in
Bavula’s work in the generality needed in this manuscript.

Definition 3.1. A filtered k-algebra (A,F•) is C-linearly simple for some C ∈ N>0
if for each i ∈ N and each δ ∈ F i r {0},

1 ∈ FCi δFCi.

We say that (A,F•) is linearly simple if it is C-linearly simple for some C ∈ N>0.

Remark 3.2. Linear simplicity of a filtered k-algebra depends only on the linear
equivalence class of the filtration. Indeed, suppose F• and G• are linearly equivalent
filtrations on a k-algebra A, with F i ⊆ GKi and Gi ⊆ FLi for each i ∈ N. If (A,F•)
is C-linearly simple, then one easily verifies that (A,G•) is KLC-linearly simple.

The following key result implicitly appears in Bavula’s work [Bav09, Proof of
Theorem 3.1]. We single it out because we use it to show new properties for
holonomic modules in the generality we need.

Lemma 3.3. Let (A,F•) be a filtered k-algebra, and (M,G•) a left (A,F•)-module.
Suppose that (A,F•) is C-linearly simple. Let Ψ : F i → Homk(G(C+1)i,G(C+2)i) be
defined by δ 7→ ψδ, where ψδ(v) = δv. If Gi 6= 0, then Ψ is injective. The analogous
result holds for right modules as well.

Proof. We prove the contrapositive: Suppose that there exists δ ∈ F ir{0} such that
ψδ = 0. Then δFCiGi ⊆ δG(C+1)i = 0, and thus δFCiGi = 0. Since 1 ∈ FCiδFCi,
we have Gi ⊆ FCiδFCiGi = 0, and therefore Gi = 0. �

Theorem 3.4 (Bernstein Inequality [Bav09, Theorem 3.1]). Let (A,F•) be a filtered
k-algebra with Dim(F•) <∞, and (M,G•) a nontrivial left or right (A,F•)-module.
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Suppose that (A,F•) is C-linearly simple. Then,

Dim(G•) > 1
2 Dim(F•).

Moreover, if θ := Dim(G•) = 1
2 Dim(F•), then

e(G•) >
√

e(F•)
(C + 1)θ/2(C + 2)θ/2

.

Proof. The first claim holds if Dim(G•) is infinite, so suppose that is not the case.
Let t > θ := Dim(G•). For all sufficiently large i we have dimk Gi 6 it by the
definition of dimension, as well as Gi 6= 0 by the nontriviality of M . Lemma 3.3
then shows that, for such i,

dimk F i 6 ((C + 1)i)t((C + 2)i)t = (C + 1)t(C + 2)ti2t,
and it follows that Dim(F•) 6 2t. Since this holds for all t > θ, we conclude that
1
2 Dim(F•) 6 θ = Dim(G•).

Now assume that θ = Dim(G•) = 1
2 Dim(F•). Invoking Lemma 3.3 one more

time, we have

e(F•) = lim sup
i→∞

dimk F i

i2θ
6 lim sup

i→∞

dimk G(C+1)i · dimk G(C+2)i

i2θ

6

(
lim sup
i→∞

(C + 1)θ dimk G(C+1)i

((C + 1)i)θ

)(
lim sup
i→∞

(C + 2)θ dimk G(C+2)i

((C + 2)i)θ

)
6 (C + 1)θ(C + 2)θ

(
lim sup
i→∞

dimk Gi

iθ

)2

= (C + 1)θ(C + 2)θ e(G•)2,

and the claimed inequality follows. �

Definition 3.5. Let (A,F•) be a linearly simple filtered k-algebra such that
dim(F•) <∞ and 0 < e(F•) <∞. A nonzero A-module is holonomic if it admits a
filtration G• of dimension 1

2 Dim(F•) and with finite multiplicity; the zero module
is also holonomic by convention.

We shall see in Theorem 3.8 that a holonomic module has finite length, so in
particular it must be finitely generated. We also point out that there are A-modules
that admit filtrations of dimension 1

2 Dim(F•) but are not holonomic [Bav09, p. 224].

Proposition 3.6. If (A,F•) is a linearly simple filtered k-algebra with finite di-
mension, and positive and finite multiplicity, then the following hold:

(i) Every submodule and quotient of a holonomic A-module is holonomic.
(ii) Every finite direct sum of holonomic A-modules is holonomic.

Proof. (i) Let M be a nonzero holonomic A-module, and let G• be a filtration
on M of dimension 1

2 Dim(F•) and finite multiplicity. For a nonzero proper
submodule N of M , N ∩ G• is a filtration on N with dimk(N ∩ Gi) 6 dimk Gi,
so Dim(N ∩ G•) 6 Dim(G•) = 1

2 Dim(F•), and if equality holds, then the
multiplicity is finite. But equality holds by Theorem 3.4, so N is holonomic.
We show that the quotient M/N is holonomic in similar fashion, using the
filtration (G• +N)/N .
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(ii) This reduces to the case of two modules, say M1 and M2, with filtrations G•1
and G•2 of dimension 1

2 Dim(F•) and finite multiplicity. Then G•1 ⊕ G•2 is a
filtration on M1 ⊕M2 of dimension 1

2 Dim(F•) and finite multiplicity. �

Remark 3.7. We recall that an extension of two holonomic A-modules might not
be holonomic [KLZ12, Section 3]. This implies that multiplicity is not additive, nor
subadditive. Furthermore, even for a holonomic A-module with a standard filtration,
the limit superior in the definition of multiplicity cannot be changed to a plain limit,
as the sequence in the definition may fail to converge [KLZ12, Section 4].

It is known that a holonomic module over the ring of differential operators on
a polynomial ring has finite length [Bav09, Theorem 9.6]. We now show this for a
more general class of algebras.

Theorem 3.8. Let (A,F•) be a C-linearly simple filtered k-algebra with finite
dimension and positive finite multiplicity. If M is a holonomic A-module, then M
has finite length as an A-module. Furthermore,

lengthAM 6
e(G•)2(C + 1)θ(C + 2)θ

e(F•)
for any filtration G• on M of dimension θ := 1

2 Dim(F•) and finite multiplicity.

Proof. Let 0 = M0 $M1 $ · · · $Mt = M be a chain of submodules of M , which
we may assume is a nontrivial A-module. Given a filtration G• on M of dimension
θ := 1

2 Dim(F•) and finite multiplicity, let G•j be the filtration on Mj/Mj−1 given by
G ij = (Gi ∩Mj +Mj−1)/Mj−1. We note that, because G ij ∼= (Gi ∩Mj)/(Gi ∩Mj−1),
the sum

∑t
j=1 dimk G

i

j telescopes to dimk Gi for each i. By Lemma 3.3,

dimk F i 6 dimk G
(C+1)i
j dimk G

(C+2)i
j

for every j and all sufficiently large i. Adding up over j = 1, . . . , t, we obtain

tdimk F i 6
t∑

j=1

(
dimk G

(C+1)i
j dimk G

(C+2)i
j

)

6

( t∑
j=1

dimk G
(C+1)i
j

)( t∑
j=1

dimk G
(C+2)i
j

)
= dimk G(C+1)i dimk G(C+2)i.

Dividing by i2θ and taking limit superior yields

t e(F•) 6 lim sup
i→∞

dimk G(C+1)i dimk G(C+2)i

i2θ

6

(
lim sup
i→∞

dimk G(C+1)i

iθ

)(
lim sup
i→∞

dimk G(C+2)i

iθ

)
= (C + 1)θ(C + 2)θ

(
lim sup
i→∞

dimk G(C+1)i

((C + 1)i)θ

)(
lim sup
i→∞

dimk G(C+2)i

((C + 2)i)θ

)
6 (C + 1)θ(C + 2)θ e(G•)2.

We conclude that
t 6

e(G•)2(C + 1)θ(C + 2)θ

e(F•)
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which proves our two claims. �

Remark 3.9. Theorem 3.8 shows in particular that any holonomic module is finitely
generated, so the notion of good filtration applies, and adopting the notation of
that theorem, we have

lengthAM 6
e(M,F•)2(C + 1)θ(C + 2)θ

e(F•) .

Proposition 3.10. Let (A,F•) be a linearly simple filtered k-algebra with nonzero
finite dimension and multiplicity. Then any holonomic A-module is cyclic.

Proof. This follows essentially from the classic proof for the Weyl algebra [Cou95,
Theorem 10.2.5]. Note that the same proof works in this context without the left
Noetherian hypothesis on the ring, as M has finite length and A is not an Artinian
module over itself. �

4. Rings of differential operators and Bernstein algebras

From this section onward, we direct our focus to rings of differential operators
on commutative k-algebras. After recalling some basic terminology, we take a look
at local cohomology modules from the standpoint of D-module theory, and use
the machinery developed in the previous sections to determine sufficient conditions
under which local cohomology modules are holonomic—which in particular implies
the finiteness of the sets of associated primes of these modules. Narrowing our
focus to rings of differential operators on commutative finitely generated graded
k-algebras, we introduce a class of filtrations on those rings that generalize the
classic Bernstein filtration on the Weyl algebra. We conclude by introducing a class
of algebras over which one can develop a nice theory of holonomic D-modules.

4.1. Rings of differential operators.

Generalities. Let R be a commutative k-algebra, and consider the ring of k-linear
endomorphisms Endk(R). The k-linear differential operators of order 6 i, where i is
a nonnegative integer, are defined inductively as follows: A differential operator of
order 0 is simply the multiplication by an element of R. If i > 0, then a differential
operator of order 6 i is a k-linear map δ : R → R such that for every r ∈ R, the
commutator [δ, r] := δ ◦ r − r ◦ δ is a differential operator of order 6 i− 1, where
we consider r : R → R as the multiplication by r. Equivalently, a k-linear map
δ : R → R is a differential operator of order 6 i if for every r0, . . . , ri ∈ R the
(i+ 1)-fold commutator [· · · [[δ, r0], r1], . . . , ri] is zero. We say that δ ∈ Endk(R) is a
differential operator of order i, and write ord(δ) = i, if δ is a differential operator of
order 6 i, but not of order < i.

Remark 4.1. For later use, we note that if R is generated as a k-algebra by a set Σ,
then to verify that δ ∈ Endk(R) is a differential operator of order 6 i, it suffices
to verify that [δ, r] is a differential operator of order 6 i− 1 for all r ∈ Σ, or that
[· · · [[δ, r0], r1], . . . , ri] = 0 for all r0, . . . , ri ∈ Σ.
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The set consisting of all k-linear differential operators on R of order 6 i is a
k-subspace of Endk(R), which we denote by Di

R|k. Differential operators of all
orders form a ring

DR|k :=
⋃
i∈N

Di
R|k ⊆ Endk(R).

The chain of k-vector spaces D0
R|k ⊆ D

1
R|k ⊆ D

2
R|k ⊆ · · · is called the order filtration

on DR|k, though we caution the reader that this is not a filtration in the sense of
Definition 2.1, since these are generally not finite-dimensional k-vector spaces and
D0
R|k
∼= R 6∼= k. Despite that, we occasionally extend some terminology introduced

for filtrations to the order filtration—specifically, we say that a filtration F• on
DR|k is linearly dominated by the order filtration if there exists C ∈ N>0 such that
F i ⊆ DCi

R|k for every i ∈ N.

Differential operators in positive characteristic. Turning to positive characteristic,
suppose now that R is a commutative algebra over a perfect field k of characteristic
p > 0. Assume that R is F -finite, that is, R is finitely generated as an Rpe -module
for some (equivalently, all) e > 0, where Rpe is the subring of R consisting of all
pe-th powers of its elements. Then

DR|k =
⋃
e∈N

D
(e)
R|k

where D(e)
R|k := EndRpe (R) consists of the differential operators of level e [Smi87,

Theorem 2.7] (see also [Yek92, Theorem 1.4.9]).
If R is reduced, we may consider the ring R1/pe = {r1/pe | r ∈ R} consisting of

the pe-th roots of the elements of R, and identify D(e)
R|k with EndR(R1/pe) via the

map δ 7→ δ1/pe , where

(4.1) δ1/pe

(r1/pe

) = δ(r)1/pe

.

We note that Dpe−1
R|k ⊆ D(e)

R|k, and so

(4.2) Di
R|k ⊆ D

(dlogp(i+1)e)
R|k

and if R is generated by n elements as a k-algebra, then

(4.3) D
(e)
R|k ⊆ D

n(pe−1)
R|k .

Both of these facts are established in the work of Smith [Smi87, Theorem 2.7].

Differential operators on polynomial rings. If S = k[x1, . . . , xn] is a polynomial ring
over a field k of characteristic zero, then DS|k coincides with the Weyl algebra
S〈∂1, . . . , ∂n〉, where ∂i = ∂

∂xi
are the partial derivatives. A k-linear differential

operator on S can be written, in its unique normal form, as δ =
∑
α,β aαβx

α∂β ,
where α, β ∈ Nn, all but finitely many of the coefficients aαβ ∈ k are zero, and we
adopt the multi-index notation xα := xα1

1 · · ·xαn
n , ∂β := ∂β1

1 · · · ∂βn
n .

The order filtration in this case is given by

Di
S|k =

{∑
α,β

aαβx
α∂β : |β| 6 i

}
,
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where |β| = β1 + · · ·+ βn. Note that the Di
S|k are not finite-dimensional k-vector

spaces. The main example of a finite-dimensional filtration on DS|k is the Bernstein
filtration B•S given by

BiS =
{∑
α,β

aαβx
α∂β : |α|+ |β| 6 i

}
,

which we shall study in greater generality in Section 4.4.

Remark 4.2. In the terminology used by Smith [Smi01] and Boldoni [Bol13], the
order filtration and the Bernstein filtration are filtrations associated to the weight
vectors (0,1) ∈ Z2n and (1,1) ∈ Z2n, respectively. More generally one may consider
filtrations associated to weight vectors (u, v) ∈ Z2n.

If S = k[x1, . . . , xn] is a polynomial ring with coefficients in a perfect field k of
characteristic p > 0, then

DS|k = S

〈
1
pe!∂

pe

i

∣∣ i = 1, . . . , n, e ∈ N

〉
where 1

pe!∂
pe

i is the operator that maps xα1
1 · · ·xαn

n 7→
(
αi

pe

)
xα1

1 · · ·x
αi−pe

i · · ·xαn
n (so,

in particular, xp
e

i 7→ 1).

Differential operators on finitely generated algebras. Returning to arbitrary charac-
teristic, we now consider differential operators on finitely generated algebras. Let S
be a polynomial ring over a field k of arbitrary characteristic, and R = S/I for some
ideal I ⊆ S. The ring of k-linear differential operators on R has been described in
terms of the k-linear differential operators on S [MR87, Theorem 15.5.13] (see also
[Mil86, MM18]). Namely, we have

(4.4) DR|k ∼=
{δ ∈ DS|k : δ(I) ⊆ I}

IDS|k
.

The order of the differential operators is preserved under the previous isomorphism;
thus the order filtration on DR|k is given by

Di
R|k
∼=
{δ ∈ Di

S|k | δ(I) ⊆ I}
IDi

S|k
.

Differential operators on graded algebras. When discussing commutative graded
algebras, we shall adopt the following convention.

Convention 4.3. Throughout this paper, by a commutative graded k-algebra we
mean a positively graded commutative ring R =

⊕
i∈N Ri with R0 = k, that is

finitely generated as a k-algebra.

If R is a commutative graded k-algebra, the ring of differential operators DR|k
naturally inherits a Z-grading that extends the grading on R, where we declare a
differential operator δ : R→ R to be homogeneous of degree d if δ(Ri) ⊆ Ri+d for
each i.

If S is a standard graded polynomial ring, then under the previous grading, the
partial derivatives ∂i are homogeneous of degree −1. More generally, if we consider S
as a graded ring with deg(xi) = wi, then DS|k is a graded ring with deg(∂i) = −wi,
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and deg
( 1
pe!∂

pe

i

)
= −pewi when k is a field of positive characteristic p. As a

consequence, if δ ∈ Di
S|k, then deg(δ) > −iw, where w = max{wi}. By (4.4), if I

is a homogeneous ideal of S and R = S/I, then DR|k is a graded algebra, again
satisfying deg(δ) > −iw for every δ ∈ Di

R|k.

4.2. Čech and local cohomology as D-modules. A commutative k-algebra R
has a natural structure of a left DR|k-module. In general, given a DR|k-module M
and an element f ∈ R, the localization Mf is also a left DR|k-module. We define
the action of a differential operator δ of order zero by δ( vft ) = δ(v)

ft . Assuming the
action has been defined for differential operators of order less than n, for δ ∈ Dn

R|k
we define

δ

(
v

f t

)
=
δ(v)− [δ, f t]( vft )

f t
.

Note that this well defined, since [δ, f t] has order at most n − 1. With this
DR|k-module structure on Mf , the localization map M → Mf is a morphism of
DR|k-modules.

The Čech complex ofM with respect to a sequence of elements f = f1, . . . , f` ∈ R
is defined by

Č•(f ;M) : 0→M →
⊕
i

Mfi
→
⊕
i,j

Mfifj
→ · · · →Mf1···f`

→ 0

where the maps on every summand are localization maps up to a sign. The Čech
cohomology modules of M with respect to the sequence f are defined by

Hj
f (M) = Hj(Č•(f ;M)).

If g is another sequence of elements of R such that (f) = (g) =: I, then Hj
f (M) =

Hj
g(M) for each j, which justifies our denoting this module simply by Hj

I (M).

The Čech cohomology modules Hj
I (M) inherit a DR|k-module structure from

their construction, and agree with the local cohomology modules of M with support
in I whenever R is a Noetherian ring.

We show in this section that holonomicity is preserved by localization and Čech
cohomology.

Lemma 4.4. Let R be a commutative k-algebra. Let f ∈ R and δ ∈ DR|k. Set
δ(0) = δ, and for each positive integer i define δ(i) ∈ DR|k inductively by δ(i) =
[δ(i−1), f ]. Then for each j ∈ Z we have the following identities in DRf |k:

δf j =
ord(δ)∑
i=0

(
j

i

)
f j−iδ(i) and f jδ =

ord(δ)∑
i=0

(−1)i
(
j

i

)
δ(i)f j−i,

where
(
j
i

)
= j·(j−1)···(j−i+1)

i! .

Proof. The proofs of the two identities are similar, so we prove only the first one.
We first prove it for j > 0 by induction on j, observing that the identity holds
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trivially for j = 0. For j > 0, using our induction hypothesis on δf j−1 we obtain

δf j = δf j−1f =
∑
i>0

(
j − 1
i

)
f j−1−iδ(i)f

=
∑
i>0

(
j − 1
i

)
f j−1−i(fδ(i) + δ(i+1))

=
∑
i>0

(
j − 1
i

)
f j−iδ(i) +

∑
i>0

(
j − 1
i

)
f j−1−iδ(i+1)

=
∑
i>0

(
j − 1
i

)
f j−iδ(i) +

∑
i>0

(
j − 1
i− 1

)
f j−iδ(i)

=
∑
i>0

(
j

i

)
f j−iδ(i).

We now prove the first identity for j 6 0, using induction on ord(δ)− j, observing
that the identity holds trivially when j = 0 or ord(δ) = 0. If j < 0, we have

δf j = f−1fδf j = f−1(δf − δ(1))f j = f−1δf j+1 − f−1δ(1)f j ,

and applying our induction hypothesis to both δf j+1 and δ(1)f j we see that

δf j = f−1 ·
∑
i>0

(
j + 1
i

)
f j+1−iδ(i) − f−1 ·

∑
i>0

(
j

i

)
f j−iδ(i+1)

=
∑
i>0

(
j + 1
i

)
f j−iδ(i) −

∑
i>0

(
j

i− 1

)
f j−iδ(i)

=
∑
i>0

(
j

i

)
f j−iδ(i). �

Lemma 4.5. Let R be a commutative k-algebra. Let F• be a filtration on DR|k
that is linearly dominated by the order filtration. Let M be a left DR|k-module with
a filtration G• that is compatible with F•. Suppose that G• has finite dimension θ
and finite multiplicity. Then for any f ∈ R, there exists a filtration G̃• on Mf that
is compatible with F•, has dimension at most θ, and if its dimension equals θ, then
its multiplicity is finite.

Proof. Given f ∈ R, choose a such that f ∈ Fa; fix C such that F i ⊆ DCi
R|k for

all i. Set G̃ j := 1
fCj Gj(Ca+1). Then G̃• is a finite-dimensional, ascending, exhaustive

filtration on Mf , and the claims about the dimension and multiplicity of G̃• follow
from the fact that dimk G̃ j 6 dimk Gj(Ca+1) for each j.

We need to verify that this filtration is compatible with F•. Using the notation
of Lemma 4.4, if the order of δ is less than or equal to t, we get

f j+tδf−j = δf t −
(
j + t

1

)
δ(1)f t−1 + · · ·+ (−1)t

(
j + t

t

)
δ(t)

as an equality in DRf |k; in particular, this operator restricts to an operator in DR|k.
If δ ∈ F i, then δ has order at most Ci and δ(k) ∈ F i+ak for all k, so the previous
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equation shows that fCj+Ciδf−Cj ∈ F i(Ca+1). We then have

δ · G̃ j = δ · 1
fCj
Gj(Ca+1) ⊆ 1

fCj+Ci
F i(Ca+1)Gj(Ca+1)

⊆ 1
fC(i+j)G

(i+j)(Ca+1) = G̃ i+j

as required. �

Theorem 4.6. Let R be a commutative k-algebra. Let F• be a filtration on DR|k
that is linearly dominated by the order filtration. Suppose that (DR|k,F•) is linearly
simple with finite dimension and finite positive multiplicity. If M is a holonomic
DR|k-module, then the following hold.

(i) Mf is holonomic for every f ∈ R.
(ii) Hj

I (M) is holonomic for every finitely generated ideal I ⊆ R and j ∈ N.

Proof. The claim for a localization of M follows immediately from Lemma 4.5.
Finite direct sums of localizations of M are therefore holonomic DR|k-modules by
Proposition 3.6(ii). Thus, the kernel of any map in the Čech complex is holonomic
by Proposition 3.6(i), and since each Hj

I (M) is a quotient of one of these kernels, it
is holonomic, again by Proposition 3.6(i). �

We now proceed to show that the previous result and Theorem 3.8 imply that the
Čech cohomology modules of a holonomic D-module have finite sets of associated
primes. Toward that end, we first show that simple D-modules have at most one
associated prime.

Lemma 4.7. Let R be a commutative k-algebra. If M is a simple DR|k-module,
then M has at most one associated prime.

Proof. This follows from [Bjö79, Lemmas 3.3.16 and 3.3.17], which we reproduce here
for the reader’s convenience. Given a simple left DR|k-module M , let u ∈M r {0},
so that M = DR|ku. We claim that p :=

√
AnnR(u) is prime and independent of

the choice of u. From this, it follows easily that p is the only possible associated
prime of M (though M could potentially fail to have associated primes).

To verify that p does not depend on the choice of u, let v be another nonzero
element of M . Then there exists δ ∈ DR|k such that v = δu. Suppose f ∈ R is such
that f iu = 0 for some i. If δ has order j, then Lemma 4.4 tells us that f i+jδ ∈DR|kf

i,
and consequently, f i+jv = 0. This shows that

√
AnnR(u) ⊆

√
AnnR(v), and

switching the roles of u and v we get the reverse containment.
To verify that p is prime, let f, g ∈ R and suppose that fg ∈ p, but g /∈ p. Thus,

(fg)iu = 0 for some i, but v := giu 6= 0, and it follows that f ∈
√

AnnR(v) = p.
Lastly, note that p is proper, since M is nontrivial. �

Proposition 4.8. Let R be a commutative k-algebra. Let F• be a filtration on
DR|k that is linearly dominated by the order filtration. Suppose that (DR|k,F•)
is linearly simple with finite dimension and positive finite multiplicity. If M is a
holonomic DR|k-module, then AssRHi

I(M) is a finite set for every finitely generated
ideal I ⊆ R and i ∈ N.
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Proof. If M is a holonomic DR|k-module, then so is Hi
I(M) by Theorem 4.6(ii).

Theorem 3.8 then shows that Hi
I(M) has finite length as a DR|k-module, so there

exists an ascending chain

0 = M0 ⊆M1 ⊆ · · · ⊆M` = Hi
I(M)

of DR|k-modules such that each quotient Mj/Mj−1 is simple. We conclude that
AssRHi

I(M) is contained in
⋃`
j=1 AssRMj/Mj−1, a finite set by Lemma 4.7. �

As a side note, we point out that a prime ideal that is minimal over the annihilator
of an element of a module is called a weakly associated prime of the module [Bou07,
p. 341, Exercise 17]. In Lemma 4.7 we actually showed that simple D-modules have
a unique weakly associated prime, while in Proposition 4.8 we showed that the Čech
cohomology modules of a holonomic D-module have finitely many weakly associated
primes.

4.3. Holonomicity of the module Rf [s]fs. Let R be a commutative algebra over
a field k and f a nonzero element of R. Another D-module of classical importance
in the smooth case is the DR|k[s]-module Rf [s]fs, where s is an indeterminate and
fs is a formal symbol. This module is characterized by the property that for any
integer t, any δ ∈ DR|k[s], and any a(s)fs ∈ Rf [s]fs, the equality

(δ • a(s)fs)
∣∣
s7→t = δ

∣∣
s7→t(a(t)f t)

holds, where (−)|s7→t denotes specialization of the indeterminate s to the integer t.
Over a field k of characteristic zero, any finitely generated or complete local k-

algebra admits a unique such module up to isomorphism [AMHJ+21, Theorem 2.12].
Note that this module is denoted by MR[fs] in loc. cit.

We first give a more concrete description of this module. For δ ∈ DR|k[s], we
define the order of δ to be min{i ∈ N | δ ∈ Di

R|k[s]}.

Lemma 4.9. Let R be a finitely generated commutative algebra over a field k of
characteristic zero, and f a nonzero element of R. For δ ∈ DR|k[s], set δ(0) = δ,
and for each positive integer i define δ(i) ∈ DR|k[s] inductively by δ(i) = [δ(i−1), f ].
Then the action of DR|k[s] on Rf [s]fs is given by the rule

δ • a(s)fs =
ord(δ)∑
i=0

(
s

i

)
f−iδ(i)(a(s))fs,

where
(
s
i

)
is the polynomial s·(s−1)···(s−i+1)

i! .

Proof. First we show that this rule yields a module action. Let Θ : DR|k → DRf |k[s]
be given by the rule

Θ(δ) =
ord(δ)∑
i=0

(
s

i

)
f−iδ(i).

We claim that this is a ring homomorphism. For this, it suffices to show that Θ
respects multiplication. To see this, first observe that by a straightforward induction,
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for any α, β ∈ DR|k we have

(αβ)(i) =
i∑

j=0

(
i

j

)
α(j)β(i−j).

Then

Θ(αβ) =
ord(αβ)∑
i=0

(
s

i

)
f−i(αβ)(i)

=
ord(αβ)∑
i=0

(
s

i

)
f−i

i∑
j=0

(
i

j

)
α(j)β(i−j)

=
∑
j,k>0

(
s

j + k

)(
j + k

j

)
f−j−kα(j)β(k)

=
∑
j,k>0

(
s

k

)(
s− k
j

)
f−j−kα(j)β(k).(4.5)

On the other hand,

Θ(α)Θ(β) =

ord(α)∑
i=0

(
s

i

)
f−iα(i)

ord(β)∑
j=0

(
s

j

)
f−jβ(j)


=
∑
i,j>0

(
s

i

)(
s

j

)
f−i

(
α(i)f−j

)
β(j),

and applying Lemma 4.4 to α(i)f−j we see that

Θ(α)Θ(β) =
∑

i,j,k>0

(
s

i

)(
s

j

)(
−j
k

)
f−i−j−kα(i+k)β(j).

Grouping the summands according to the value of l := i+ k, this can be rewritten
as

Θ(α)Θ(β) =
∑
j,l>0

 ∑
i,k>0
i+k=l

(
s

i

)(
−j
k

)(s
j

)
f−l−jα(l)β(j)

where the sum in parentheses is a Vandermonde convolution that adds up to
(
s−j
l

)
,

so this expression indeed equals (4.5). Thus Θ is a homomorphism. We can extend
Θ to DR|k[s] → DRf |k[s] by setting Θ(s) = s; we use the same name Θ for this
extension.

Now note that there is a DRf |k[s]-action ♣ on Rf [s]fs given by taking the
standard action of DRf |k on Rf and extending in such a way that s commutes
with every operator. The action defined in the statement agrees with the action
δ • a(s)fs := Θ(δ) ♣ a(s)fs. It follows that this is a module action.

Next, given a(s)fs ∈ Rf [s]fs, δ ∈ DR|k[s], and t ∈ Z, we have

(δ • a(s)fs)
∣∣
s7→t =

ord(δ)∑
i=0

(
s

i

)
f−iδ(i)(a(s))fs

∣∣∣∣∣
s7→t
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=
ord(δ)∑
i=0

(
t

i

)
f t−i

(
δ
∣∣
s7→t

)(i)(a(t))

= (δ
∣∣
s7→tf

t)(a(t))
= δ
∣∣
s 7→t(a(t)f t).

We conclude that the module with the stated action is isomorphic to Rf [s]fs

[AMHJ+21, Theorem 2.12]. �

We will also use the following, which is well known to the experts (see for instance
[Kun02, Proposition II.3.13]).

Lemma 4.10. Let k be a field, R a finitely generated commutative k-algebra, and
s an indeterminate. Write R(s) for R ⊗k k(s). For every i ∈ N, there is an
isomorphism Di

R(s)|k(s)
∼= Di

R|k ⊗k k(s). �

Theorem 4.11. Let R be a commutative algebra over a field k of characteristic
zero, and f a nonzero element of R. Let F• be a filtration on DR|k that is linearly
dominated by the order filtration. Suppose that (DR|k,F•) is linearly simple with
finite dimension and finite positive multiplicity. Set F̃ i = k(s)⊗kF i for all i. If R is
holonomic as a DR|k-module, then Rf (s)fs is a holonomic (DR(s)|k(s), F̃ •)-module.

Proof. First, by Lemma 4.10, we see that F̃ • is a filtration of DR(s)|k(s). As
dimk F i = dimk(s) F̃ i, we have

Dim(DR(s)|k(s), F̃ •) = Dim(DR|k,F•) and e(DR(s)|k(s), F̃ •) = e(DR|k,F•).

The linear simplicity of (DR(s)|k(s), F̃ •) also follows from that of (DR|k,F•), with
the same constant.

Choose a such that f ∈ Fa; fix C such that F i ⊆ DCi
R|k for all i. Let G• be a

filtration on R compatible with F• of dimension 1
2 Dim(F•) and finite multiplicity.

Consider the filtration G̃• on Rf (s) given by

G̃ j = k(s)⊗k
1
fCj
Gj(aC+1).

Let δ ∈ F̃ i, so that ord(δ) 6 Ci. Using Lemmas 4.4 and 4.9, we see that

δ •
(
G̃ jfs

)
⊆

(
Ci∑
k=0

f−kδ(k)G̃ j
)

fs

⊆

(
Ci∑
k=0

Ci−k∑
l=0

f−k−l−Cjδ(k+l)fCj G̃ j
)

fs

⊆

(
Ci∑
k=0

f−C(i+j)δ(k)fCj G̃ j
)

fs.

Now observe, as in the proof of Lemma 4.5, that δ(k) ∈ F̃ i+ak for every k, so each δ(k)

in the last sum lies in F̃ i(aC+1) = k(s)⊗k F i(aC+1). As fCj G̃ j = k(s)⊗k Gj(aC+1),
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the compatibility of G• with F• allows us to conclude that

δ •
(
G̃ jfs

)
⊆ k(s)⊗k

1
fC(i+j)G

(i+j)(aC+1)fs = G̃ i+jfs.

Thus, G̃•fs is a filtration of Rf (s)fs compatible with F̃ •. As in Theorem 3.8, one
can compute the lengths and see that Rf (s)fs is holonomic. �

Corollary 4.12. Let R be a finitely generated commutative algebra over a field k
of characteristic zero. Let F• be a filtration on DR|k that is linearly dominated by
the order filtration. Suppose that (DR|k,F•) is linearly simple with finite dimension
and finite positive multiplicity. If R is holonomic as a DR|k-module, then for every
nonzero element f ∈ R, Rf (s)fs has finite length as a DR(s)|k(s)-module. �

As in the classical case of smooth k-algebras [Ber72, SS72], we can also deduce
the existence of Bernstein–Sato polynomials in this singular setting. Namely, for
every f ∈ R, there exist δ ∈ DR|K[s] and a nonzero polynomial b(s) ∈ K[s] such that
the following functional equation is satisfied:

δ • ffs = b(s)fs.

The Bernstein–Sato polynomial associated to f is the unique monic polynomial
of smallest degree satisfying such functional equation. See [AMHJ+21] for more
insight on the Bernstein–Sato theory in singular k-algebras, and the recent survey
[ÀMJNB] for more information on the role of this polynomial in algebraic geometry
and commutative algebra.

Corollary 4.13. Let R be a finitely generated commutative algebra over a field k of
characteristic zero. Let F• be a filtration on DR|k that is linearly dominated by the
order filtration. Suppose that (DR|k,F•) is linearly simple with finite dimension and
finite positive multiplicity. If R is holonomic as a DR|k-module, then every nonzero
element f ∈ R admits a Bernstein–Sato polynomial. �

4.4. Generalized Bernstein filtrations. The aim of this subsection is to extend
the Bernstein filtration beyond the polynomial ring case. We assume the following:

Setup 4.14. Let k be a field, and R a commutative graded k-algebra, as in
Convention 4.3. Set m =

⊕
i>0Ri, n = dimk m/m

2, and w = max{t ∈ N | [m/m2]t 6=
0}. We fix a polynomial ring S = k[x1, . . . , xn] over k, a grading on S with
deg xi = wi ∈ N>0, and a homogeneous ideal I ⊆ S such that R ∼= S/I as graded
rings. We observe that w = max{w1, . . . , wn}.

Definition 4.15. Let R be as in Setup 4.14, and a a real number greater than w.
The generalized Bernstein filtration B•a,R on DR|k with slope a is given by

Bia,R := k · {δ ∈ DR|k homogeneous | deg(δ) + a ord(δ) 6 i}.
If the slope is clear from the context, or irrelevant, then we simply write B•R.

Example 4.16. Let S be a standard graded polynomial ring over a field of charac-
teristic zero. Then the generalized Bernstein filtration with slope 2 is just the usual
Bernstein filtration on the Weyl algebra. If S = k[x1, . . . , xn] is a positively graded
polynomial ring with deg(xi) = wi, we may interpret the generalized Bernstein filtra-
tion with integral slope a, in the context of Remark 4.2, as the filtration associated
to the weight vector (w, a− w) := (w1, . . . , wn, a− w1, . . . , a− wn) ∈ Z2n.
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Lemma 4.17. If R is as in Setup 4.14 and B•a,R is a generalized Bernstein filtration
on DR|k, then the following hold.

(i) dimk Bia,R is finite for every i.
(ii) There exists ε > 0 such that deg(δ) + (a− ε) ord(δ) > 0 for all homogeneous

δ ∈ DR|k r k.

Proof. By explicit computation, this holds for a polynomial ring. It then follows for
R from the fact that a differential operator on a quotient of a polynomial ring is
the image of a differential operator on the polynomial ring. �

Proposition 4.18. If R is as in Setup 4.14, then every generalized Bernstein
filtration on DR|k is a k-algebra filtration in the sense of Definition 2.1.

Proof. The generalized Bernstein filtration B•a,R satisfies Bia,RB
j
a,R ⊆ B

i+j
a,R for each

i and j because ord(δ1δ2) 6 ord(δ1) + ord(δ2) and deg(δ1δ2) 6 deg(δ1) + deg(δ2) for
any homogeneous operators δ1, δ2 ∈DR|k. This filtration is ascending, and it is finite
dimensional by Lemma 4.17(i). It is exhaustive because any homogeneous operator
δ ∈ DR|k lies in Bia,R for i = ddeg(δ) + a ord(δ)e. Finally, if δ is a homogeneous
element of B0

a,R, then deg(δ) + a ord(δ) 6 0, so Lemma 4.17(ii) tells us that δ ∈ k.
Thus, B0

a,R ⊆ k, and since the reverse inclusion is obvious, equality holds. �

Proposition 4.19. If R is as in Setup 4.14 and B•R is a generalized Bernstein
filtration on DR|k, then B•R is linearly dominated by the order filtration.

Proof. Suppose B•R has slope a. By Lemma 4.17(ii) we have some ε > 0 such that
deg(δ) + (a− ε) ord(δ) > 0 for every homogeneous operator δ not in k. Set C = d1/εe.
Then, for δ homogeneous in BiR r k we have ε ord(δ) < deg(δ) + a ord(δ) 6 i, so
ord(δ) < Ci, from which it follows that BiR ⊆ DCi

R|k. �

Next, we show that all generalized Bernstein filtrations on DR|k are linearly
equivalent.

Proposition 4.20. If R is as in Setup 4.14, then any two generalized Bernstein
filtrations B•a,R and B•b,R on DR|k are linearly equivalent.

Proof. If a 6 b, choose an integer C such that b 6 C(a − w). Then we have
Bib,R ⊆ Bia,R and Bia,R ⊆ BCib,R for all i. �

The following is an immediate consequence of Remark 3.2 and Proposition 4.20.

Proposition 4.21. If R is as in Setup 4.14, and B•a,R and B•b,R are generalized
Bernstein filtrations on DR|k, then (DR|k,B•a,R) is linearly simple if and only if
(DR|k,B•b,R) is linearly simple. �

Other consequences of Proposition 4.20—that the dimension, and the positivity
and finiteness of the multiplicity of a Bernstein filtration are all independent of the
slope—are explored in the next subsection. Coming back to the case of a polynomial
ring S = k[x1, . . . , xn] over a field k of characteristic zero, we now show that DS|k
with a generalized Bernstein filtration is linearly simple.
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Proposition 4.22. Let S be a positively graded polynomial ring over a field k
of characteristic zero. If B•S is a generalized Bernstein filtration on DS|k, then
(DS|k,B•S) is linearly simple; that is, there exists a positive integer C such that for
every i ∈ N and every nonzero δ ∈ BiS, we have 1 ∈ BCiS · δ · BCiS .

Proof. Suppose B•S has slope a, which we may assume is an integer, by Propo-
sition 4.21. Suppose that S = k[x1, . . . , xn] and deg(xj) = −deg(∂j) = wj for
each j, so that xj ∈ B

wj

S and ∂j ∈ B
a−wj

S . We shall verify that the claim holds
for C = max{wj , a − wj}. This is true when i = 0, so suppose that i > 0
and δ ∈ BiS r {0}. Let εj denote the j-th standard basis vector of Zn. The
identity [xα∂β , ∂j ] = −αjxα−εj∂β shows that, as long as the normal form of δ
contains a monomial xα∂β with αj 6= 0 for some j, the commutator [δ, ∂j ] is a
nonzero element of Bi−wj

S . An inductive argument then allows us to assume that
1 ∈ BC(i−wj)

S [δ, ∂j ]B
C(i−wj)
S . But [δ, ∂j ] lies in B

a−wj

S · δ · Ba−wj

S , so we conclude that

1 ∈ BC(i−wj)
S Ba−wj

S · δ · Ba−wj

S BC(i−wj)
S ⊆ BCiS · δ · BCiS

where the last containment follows from the inequalities C > a− wj and wj > 1.
If the normal form of δ contains a monomial ∂β with βj 6= 0 for some j, we

mimic the previous argument using, instead, the identity [∂β , xj ] = βj∂
β−εj . This

time around, we use the inequalities C > wj and a − wj > 1, the latter being a
consequence of our assumption that a ∈ N and a > w.

Finally, if neither condition is satisfied, then δ ∈ kr{0}, and the result follows. �

We conclude this subsection by showing that the associated graded ring of a
generalized Bernstein filtration on a polynomial ring is itself a polynomial ring.

Proposition 4.23. Let S = k[x1, . . . , xn] be a positively graded polynomial ring
over a field k of characteristic zero. If B•S is a generalized Bernstein filtration on
DS|k with an integral slope, then the associated graded ring gr(B•S) is a polynomial
ring in 2n variables, and in particular, is commutative.

Proof. Let a ∈ N be the slope of B•S , and assume that deg(xj) = −deg(∂j) = wj ,
for each j. As in Example 4.16, B•S is the filtration associated to the weight vector
(w, a−w) ∈ Z2n. Since wj + (a−wj) > 0 for all j, the associated graded ring gr(B•S)
is a polynomial ring in 2n variables [Smi01, Proposition 2.2, Example 2.4]. �

4.5. Bernstein algebras. We retain the hypotheses of Setup 4.14. In order to
have a good theory of holonomic DR|k-modules generalizing what is known in the
regular case, we would like not only to have Bernstein’s inequality, but also to have
the dimension of DR|k be twice the dimension of R. We note first that dimension
for the ring of differential operators is not well defined in general.

Example 4.24. Let k = Fp and R = k[x1, . . . , xd]. Note that DR|k is not finitely
generated, so the notion of standard filtration for DR|k as a k-algebra as in Def-
inition 2.12 does not apply. If we set F i =

[
D

(`i)
R|k
]
6i

where `i = blogp(logp(i))c,
then one verifies easily that F• is a filtration in the sense of Definition 2.1 and
that Dim(F•) = d. Proposition 2.7 then tells us that for any λ > d, there exists a
filtration on DR|k with dimension λ.
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However, the generalized Bernstein filtrations yield a well-defined notion of
dimension for the ring of differential operators, and finitely generated DR|k-modules,
as the following result shows.

Proposition 4.25. If R is a commutative graded k-algebra, as in Setup 4.14, and
B•a,R and B•b,R are generalized Bernstein filtrations on DR|k, then

(i) Dim(B•a,R) = Dim(B•b,R),
(ii) e(B•a,R) <∞ if and only if e(B•b,R) <∞, and
(iii) e(B•a,R) > 0 if and only if e(B•b,R) > 0.

Moreover, if M is a finitely generated left or right DR|k-module, then, in the notation
of Definition 2.10,

(iv) Dim(M,B•a,R) = Dim(M,B•b,R),
(v) e(M,B•a,R) <∞ if and only if e(M,B•b,R) <∞, and
(vi) e(M,B•a,R) > 0 if and only if e(M,B•b,R) > 0.

Proof. This follows from Corollary 2.6 and Propositions 2.11 and 4.20. �

Definition 4.26. Let R be as in Setup 4.14, and M a finitely generated DR|k-
module. Then dim(DR|k) := Dim(B•R) and dim(M) := Dim(M,B•R), where B•R is a
generalized Bernstein filtration on DR|k.

Proposition 4.25 ensures that these definitions do not depend on the choice of
the generalized Bernstein filtration.

The class of algebras for which we have a good theory of holonomic DR|k-modules
is the following.

Definition 4.27. Let R be as in Setup 4.14, and B•R a generalized Bernstein
filtration on DR|k. We say that R is a Bernstein algebra if

(i) (DR|k,B•R) is linearly simple,
(ii) Dim(B•R) = 2 dim(R), and
(iii) 0 < e(B•R) <∞.

Note that Propositions 4.21 and 4.25 show that conditions (i)–(iii) in the previous
definition do not depend on the choice of the slope for B•R.

We give sufficient conditions for a commutative graded k-algebra to be a Bernstein
algebra in terms of the differential signature introduced by Brenner and the third
and fourth authors of this manuscript [BJNB19].

Definition 4.28 ([DDSG+18, BJNB19]). Let R be a commutative graded k-algebra
of dimension d, with maximal homogeneous ideal m.

(i) For each positive integer i, the i-th differential power of m is the ideal

m〈i〉 =
{
f ∈ R | δ(f) ∈ m for all δ ∈ Di−1

R|k
}
.

(ii) The differential signature of R is the real number

sdiff(R) = lim sup
i→∞

d! · dimk R/m
〈i〉

id
.
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Remark 4.29. Let G be a finite group that acts linearly on a polynomial ring
R over a field k of characteristic zero. Then the differential signature of the ring
of invariants RG is positive [BJNB19, Theorem 6.15]. Moreover, the differential
signature of a strongly F -regular k-algebra is also positive [BJNB19, Theorem 5.17].

The next result presents a perfect pairing between a certain quotient of Di−1
R|k

and R/m〈i〉. This was implicitly introduced in previous work regarding convergence
of differential signature [BJNB19, Section 8].

Lemma 4.30 ([DNB20, Lemma 3.4]). If R is a commutative graded k-algebra with
homogeneous maximal ideal m, and

JR|k = {δ ∈ DR|k | δ(R) ⊆ m},
then there exists a non-degenerate k-bilinear function

Di−1
R|k/

(
JR|k ∩Di−1

R|k
)
×R/m〈i〉 → R/m

defined by (δ, r) 7→ δ(r). �

Lemma 4.31. Let R be as in Setup 4.14, and B•R a generalized Bernstein filtration
on DR|k. If G• is the DR|k-module filtration on R given by Gi = BiR · 1 ⊆ R, then
Dim(G•) = dim(R), and e(G•) = e(R), which is finite and positive.

Proof. As Gi = BiR · 1 = [R]6i, the result follows from the theory of Hilbert functions
for commutative finitely generated graded k-algebras. �

Theorem 4.32. Let R be as in Setup 4.14, and B•R a generalized Bernstein filtration
on DR|k. If sdiff(R) > 0 and (DR|k,B•R) is linearly simple, then R is a Bernstein
algebra. In particular, R, its localizations Rf for f ∈ R, and its local cohomology
modules Hj

I (R) for I ⊆ R are all holonomic DR|k-modules. Likewise, if k has
characteristic zero, then Rf (s)fs is a holonomic DR(s)|k(s)-module for any nonzero
element f ∈ R.

Proof. For each positive integer i, set αi = dimk R/m
〈i〉. By Lemma 4.30, there exist

δ1, . . . , δαi ∈ Di−1
R|k and f1, . . . , fαi ∈ R homogeneous such that δj(fk) = 0 if j 6= k,

and δj(fj) = 1. In particular, this implies that δ1, . . . , δαi
are linearly independent

over R. Let a be the slope of B•R, and d = dim(R). Noting that deg(δj) 6 0 for
each j, we see that [R]6i{δ1, . . . , δαi

} ⊆ B(a+1)i
R , and thus

lim sup
i→∞

dimk BiR
i2d

> lim sup
i→∞

dimk B(a+1)i
R

((a+ 1)i)2d > lim sup
i→∞

dimk([R]6i{δ1, . . . , δαi
})

((a+ 1)i)2d .

The linear independence of the δj over R implies that dimk([R]6i{δ1, . . . , δαi
}) =

αi dimk[R]6i, so

lim sup
i→∞

dimk BiR
i2d

> lim sup
i→∞

αi dimk[R]6i
((a+ 1)i)2d

= 1
(a+ 1)2d · lim sup

i→∞

αi
id
· lim
i→∞

dimk[R]6i
id

= 1
(a+ 1)2d(d!)2 · s

diff(R) e(R).

Since the last quantity is positive, this shows that Dim(B•R) > 2d.
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To prove the reverse inequality, let G• be as in Lemma 4.31. Then G• is a
filtration on the DR|k-module R compatible with B•R, of dimension d = dim(R), so
Bernstein’s inequality (Theorem 3.4) tells us that Dim(B•R) 6 2d.

Having established that Dim(B•R) = 2d, the calculation displayed above also
shows that e(B•R) is positive, whereas Theorem 3.4 tells us that if (DR|k,B•R) is
C-linearly simple, then

e(B•R) 6 (C + 1)d(C + 2)d e(G•)2

= (C + 1)d(C + 2)d e(R)2 <∞.

The claims about holonomicity follow from Theorems 4.6 and 4.11, Proposition 4.19,
and Lemma 4.31. �

In the final two sections of this paper, we shall use Theorem 4.32 to introduce
two interesting classes of Bernstein algebras.

5. Rings of invariants of finite groups in characteristic zero

Let R be a polynomial ring over a field k of characteristic zero, and G a finite
group acting linearly on R. The goal of this section is to prove that the ring of
invariants RG is a Bernstein algebra. In particular, Bernstein’s inequality is satisfied,
and the dimension of DRG|k is twice the dimension of RG. We also relate holonomic
modules over R and over RG.

5.1. Bernstein inequality for rings of invariants. If R and G are as in the
preceding paragraph, the action of G on R induces a degree and order-preserving
action onDR|k, defined as follows: for each g ∈G and δ ∈DR|k, we define g ·δ ∈DR|k
by

(g · δ)(r) := g · δ(g−1 · r).
It is easy to verify that if δ ∈ (DR|k)G, then δ maps RG into itself, so we have a
well-defined map

(5.1) (DR|k)G → DRG|k

given by restriction. Note that as G is finite, this map is injective [Sch95, Theo-
rem 6.3(1)] (see also [Tra06, Theorem 2] for an elementary proof).

For our applications, we need the restriction map (5.1) to be not merely injective,
but surjective as well, to allow us to relate generalized Bernstein filtrations on DR|k
and on DRG|k. This is made possible by the following result.

Lemma 5.1. Let G be a finite group that acts linearly on a polynomial ring R over
a field k. Assume that |G| is nonzero in k. Then there exists a normal subgroup
H E G such that RH is a polynomial ring (that may not be standard graded), and
such that

(
Di
RH |k

)G/H ∼= Di
RG|k under the natural restriction map for every i.

Proof. We identify R with the ring of polynomial functions on a k-vector space V .
Let H 6 G be the subgroup generated by all elements g in G such that the rank
of id−g on V is one; such elements are called pseudoreflections in the literature.
The subgroup H is normal, and RH is a polynomial ring by the Shephard–Todd
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Theorem [ST54] (see also [NS02, Theorem 7.1.4] for a modern proof, in arbitrary
characteristic).

The inclusion map RG → RH is étale in codimension one. This is well known to
experts, but we include an argument for convenience of the reader. Since the étale
locus is preserved by base change, we may assume that k is algebraically closed. Let
g1, . . . , gt ∈ G be a set of representatives for G/H r {H}. Let X ⊆ V be the union
of the fixed spaces of g1, . . . , gt. Note that X has codimension at least two in V .
It suffices to show that for any maximal ideal m of R that corresponds to a point
v ∈ V rX, the inclusion map RGm∩RG → RHm∩RH is étale. To this end, we note that
the stabilizer of v in G is contained in H. Then, by [Kem02, Proposition 1.1], the
inclusion map induces an isomorphism on the completions R̂Gm∩RG

∼=−→ R̂Hm∩RH ,
and the claim follows.

Thus, the restriction map

Di
RH |k → Di

RG|k
(
RG, RH

)
,

where Di
RG|k

(
RG, RH

)
denotes the differential operators from RG to RH as RG-

modules, is an isomorphism for all i [BJNB19, Proof of Proposition 6.4]. Restricting
to G/H invariants on both sides yields the desired isomorphism. �

The case of the previous lemma where G contains no pseudoreflections is a
theorem of Kantor [Kan77, Chapitre III, Théorème 4].

With the notation of Lemma 5.1, we have RG =
(
RH
)G/H , where RH is a

polynomial ring and the action of G/H on RH , although not necessarily linear, fixes
k and is degree preserving. Lemma 5.1 allows us to work in the following setting.

Setup 5.2. Let R = k[x1, . . . , xn] be a polynomial ring over a field k of characteristic
zero, with an arbitrary positive grading. Let G be a finite group that acts on R
by degree-preserving k-linear automorphisms, and suppose that DRG|k

∼= (DR|k)G
under the natural restriction map (5.1). Henceforth we freely identify DRG|k with
(DR|k)G. Let B•R and B•RG be generalized Bernstein filtrations on DR|k and DRG|k
with the same integral slope. Then under the aforementioned identification we have

(5.2) BiRG = (BiR)G = BiR ∩DRG|k for each i.

Lemma 5.3. In the context of Setup 5.2, there exists a natural injective ring
homomorphism gr(B•RG) → gr(B•R). This is a module-finite map of commutative
rings, and gr(B•RG) is a finitely generated k-algebra of dimension 2 dim(RG).

Proof. We are identifying DRG|k with (DR|k)G ⊆ DR|k; under this identification,
(5.2) is telling us that B•RG is the filtration on DRG|k induced by B•R. Thus, we
have a natural injective map gr(B•RG) → gr(B•R), which gives an isomorphism
gr(B•RG) ∼= gr(B•R)G. Proposition 4.23 shows that gr(B•R) is a polynomial ring of
dimension 2 dim(R) = 2 dim(RG), so the remaining claims follow from basic invariant
theory of finitely generated commutative k-algebras. �

Lemma 5.4. Under Setup 5.2, DR|k is a finitely generated right DRG|k-module.
Moreover, there exist finitely many elements γ1, . . . , γ` ∈DR|k and a positive integer v
such that BiR ⊆ γ1 · Bi+vRG + · · ·+ γ` · Bi+vRG for every i ∈ N.
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Proof. By Lemma 5.3 and Proposition 2.14, B•R is a good filtration on DR|k as a
right (DRG|k,B•RG)-module. Thus, DR|k is finitely generated as a right module over
DRG|k, and B•R is shift equivalent to a standard filtration {γ1, . . . , γ`}B•RG . �

Our main technical result in this section is the following.

Theorem 5.5. Let G be a finite group that acts linearly on a polynomial ring R
over a field k of characteristic zero. If B•RG is a generalized Bernstein filtration on
DRG|k, then (DRG|k,B•RG) is linearly simple.

Proof. Lemma 5.1 allows us to work under Setup 5.2. Fix a finite set Σ of generators
for RG as a k-algebra, and choose d so that Σ ⊆ BdRG . Choose C ∈ N>0 such that
for each i ∈ N we have BiRG ⊆ DCi

RG|k, as in Proposition 4.19, and 1 ∈ BCiR · δ · BCiR
for all δ ∈ BiR r {0}, as in Proposition 4.22. Fix γ1, . . . , γ` ∈ DR|k and v ∈ N>0
with BiR ⊆ γ1 · Bi+vRG + · · ·+ γ` · Bi+vRG for all i, as in Lemma 5.4, and note that, by
possibly increasing v, we may assume that v > ord(γj) and γj ∈ BvR for all j.

We wish to show that there exists K ∈ N>0 such that for each i ∈ N and each
nonzero δ ∈ BiRG , we have 1 ∈ BKiRG · δ · BKiRG . Note, however, that since B0

RG = k,
this claim holds for i = 0 with any K, so we shall focus on the case of a positive i.

Fix a positive integer i and a nonzero element δ ∈ BiRG , and let m = ord(δ). By
Remark 4.1, there exists a nonzero m-fold commutator [· · · [[δ, r1], r2], . . . , rm] with
r1, . . . , rm ∈ Σ ⊆ BdRG . Let f denote this iterated commutator; then f ∈ RG r {0}
and f ∈ BmdRG · δ · BmdRG . Since m 6 Ci by our choice of C, we have

(5.3) f ∈ BCdiRG · δ · BCdiRG .

For j ∈ {1, . . . , `}, write γ(0)
j = γj and recursively define γ(k+1)

j = [γ(k)
j , f ]. Note

that γ(v)
j = 0 by our choice of v, and Lemma 4.4 tells us that we can write

(5.4) fvγj = γjf
v + c1γ

(1)
j fv−1 + · · ·+ cv−1γ

(v−1)
j f

for some integers c1, . . . , cv−1. Since (5.3) shows that f ∈ B3Cdi
R , and γj ∈ BvR by

our choice of v, we have γ(k)
j ∈ B3Cdki+v

R for each k. Setting α = 3Cdv, (5.4) yields

(5.5) fvγj ∈ Bαi+vR · f.

As fv is a nonzero element of BαiR , our choice of C implies that 1 ∈ BCαiR ·fv · BCαiR .
Writing BCαiR ⊆ γ1 · BCαi+vRG + · · · + γ` · BCαi+vRG and using (5.5) we see that 1 ∈
B(C+1)αi+v
R · f · BCαi+v

RG , so setting β = (C + 1)αv we see that

(5.6) 1 ∈ BβiR · f · B
βi
RG .

Applying a Reynolds operator, we shall be able to replace the BβiR in (5.6) with
Bβi
RG . Indeed, the map ρ : DR|k → (DR|k)G = DRG|k given by δ 7→ 1

|G|
∑
g∈G g · δ

maps BiR into (BiR)G = BiRG by (5.2). This is a map of right DRG|k-modules,
so applying ρ to an equation expressing the containment in (5.6) we find that
1 ∈ Bβi

RG · f · BβiRG . To wrap up the proof, we invoke (5.3) to conclude that

1 ∈ Bβi
RG · BCdiRG · δ · BCdiRG · BβiRG ⊆ B(β+Cd)i

RG · δ · B(β+Cd)i
RG

and stress that β + Cd depends neither on i nor on δ. �
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Corollary 5.6. Let G be a finite group that acts linearly on a polynomial ring R
over a field k of characteristic zero. Then the ring of invariants RG is a Bernstein
k-algebra. In particular, every DRG|k-module satisfies Bernstein inequality with
respect to any generalized Bernstein filtration. Furthermore, RG, its localizations RGf
for f ∈ RG, and its local cohomology modules Hj

I (RG) for I ⊆ RG are all holonomic
DRG|k-modules, and thus have finite length as DRG|k-modules. Likewise, for any
nonzero element f ∈ RG, RGf (s)fs is a holonomic DRG(s)|k(s)-module, and thus has
finite length.

Proof. This follows from Theorems 4.32 and 5.5, using the fact that the differential
signature of RG is positive [BJNB19, Theorem 6.15]. �

We end this subsection with a couple of examples to illustrate that the main
result of this section does not hold in the setting of rational singularities, even for
hypersurfaces.

Example 5.7. Let k be a field of characteristic zero, and

R = k[w, x, y, z]
(w3 + x3 + y3 + z3) .

This is a standard graded hypersurface domain with rational singularities for which
DR|k has no elements of negative degree [Mal20, Theorem 1.2]. Consequently,
(DR|k,B•R) is not linearly simple, and thus R is not a Bernstein algebra. Moreover,
the maximal ideal (w, x, y, z) is a proper nontrivial DR|k-submodule of R, whence
R is not a simple DR|k-module. For this ring, the residue field R/(w, x, y, z) ∼= k is
a DR|k-module; any filtration on this module has dimension zero.

Example 5.8. Let k be a field of characteristic zero, and

S = k[s, t, u, v, w, x, y, z]
(su2x2 + sv2y2 + tuxvy + tw2z2) .

This is a standard graded hypersurface domain with rational singularities that has a
local cohomology module with infinitely many associated primes [SS04, Theorem 5.1],
and hence not a Bernstein algebra by Proposition 4.8.

5.2. Holonomicity and differential direct summands. Let R be a polynomial
ring over a field k of characteristic zero and let G be a finite group acting linearly
on R. The ring of invariants RG is then a direct summand of R. Namely, the
inclusion RG ↪→ R has a splitting β : R → RG given by the Reynolds operator.
This is one of the main examples in the theory of differential direct summands
[ÀHNB17, AMHJ+21]. We briefly recall the basics in our setting and refer to
loc. cit. for more insight.

First, notice that for any δ ∈ DR|k, the map β ◦ δ|RG : RG → RG is an element
of DRG|k. That is, we have the following diagram:

RG

��

� � // R

δ

��
RG R

βoo
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We say that a DRG|k-moduleM is a differential direct summand of a DR|k-module
N if M ⊆ N and there exists an RG-linear splitting Θ: N →M , called a differential
splitting, such that

Θ(δ • v) = (β ◦ δ|RG) • v
for every δ ∈ DR|k and v ∈M , where the action on the left-hand side is the DR|k-
action, considering v as an element of N , and the action on the right-hand side
is the DRG|k-action. Among the properties that these modules satisfy we have
lengthDRG|k

(M) 6 lengthDR|k
(N) [ÀHNB17, Proposition 3.4]. In particular, any

differential direct summand of a holonomic DR|k-module has finite length.
The main examples of differential direct summands of holonomic modules are

the rings RG ⊆ R themselves, the localizations RGf ⊆ Rf at elements f ∈ RG, and
the local cohomology modules Hi

I(RG) ⊆ Hi
IR(R) at ideals I ⊆ RG.

The goal of this subsection is to prove that the holonomic DRG|k-modules are
precisely the differential direct summands of holonomic DR|k-modules.

Theorem 5.9. Let G be a finite group acting linearly on a polynomial ring R over a
field k of characteristic zero, and suppose that G contains no pseudoreflections. Then
a DRG|k-module M is holonomic if and only if it is a differential direct summand
of a holonomic DR|k-module with respect to the splitting β : R→ RG given by the
Reynolds operator.

Proof. As in Setup 5.2, we can identify DRG|k with (DR|k)G ⊆ DR|k, and choose
generalized Bernstein filtrations so that B•RG = B•R ∩DRG|k. Let M be a holonomic
left DRG|k-module, and G• a good filtration on M compatible with B•RG . As
in Lemma 5.4, take γ1, . . . , γ` ∈ DR|k and a positive integer v such that BiR ⊆
γ1 · Bi+vRG + · · ·+ γ` · Bi+vRG for all i. By possibly replacing v with a larger value, we
may assume that BiR · γt ⊆ γ1 · Bi+vRG + · · ·+ γ` · Bi+vRG for each i and t.

Let N = DR|k ⊗DRG|k
M , and for each i ∈ N let Hi be the k-subspace of N

spanned by {γ1 ⊗ Gvi, . . . , γ` ⊗ Gvi}. Then H• is finite dimensional, ascending, and,
as the γt generate DR|k over DRG|k, exhaustive. Note that if m ∈ Gvj and i is
positive, then

BiR(γt ⊗m) ⊆
∑̀
k=1

γkBi+vRG ⊗m =
∑̀
k=1

γk ⊗ Bi+vRG m ⊆
∑̀
k=1

γk ⊗ Gvi+vj

which shows that BiRHj ⊆ Hi+j . The same holds for i = 0, since B0
R = k. Thus,

H• is a filtration compatible with B•R. It follows easily from the fact that M is
holonomic that H• has dimension dim(R) and finite multiplicity, so N is holonomic.

Now we check that M is a differential direct summand of N . The averaging map
ρ : DR|k → (DR|k)G given by δ 7→ 1

|G|
∑
g∈G g · δ induces a DRG|k-linear splitting Θ

of the natural map M → N ; in particular, M injects into N . As (β ◦ δ)|RG = ρ(δ)
for each δ ∈ DR|k, the maps β and Θ induce a differential direct summand structure.

For the converse, let M be a differential direct summand of N with respect to β
and some Θ. It follows from (5.2) that BiRG = ρ(BiR), so any element of BiRG can be
realized as (β ◦ δ)|RG for some δ ∈ BiRG . It then follows from the differential direct
summand condition that the image under Θ of a good filtration for N is compatible
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with the generalized Bernstein filtration B•RG on DRG|k, and has dimension at most
dim(RG) and finite multiplicity. �

6. Strongly F -regular finitely generated graded algebras with FFRT

In this section, we focus on commutative rings of prime characteristic, more
precisely on the class of rings with finite F -representation type, introduced by Smith
and Van den Bergh [SVdB97]. We prove that if such a ring is strongly F -regular,
then it is a Bernstein algebra, and thus Bernstein’s inequality is satisfied, and the
dimension of DR|k is twice the dimension of R.

To discuss finite F -representation type, we need a class of rings for which the
analogue of the Krull–Schmidt Theorem holds, and over which the Frobenius map
is finite. Throughout this section we work in the following setting.

Setup 6.1. Let k be a perfect field of prime characteristic p, and R a commutative
graded k-algebra, as in Convention 4.3, that is a domain. Set m =

⊕
i>0Ri,

n = dimk m/m
2, and w = max{t ∈ N | [m/m2]t 6= 0}.

In the remarks that follow we introduce a suitable category of modules to work
with, and make some considerations about the structure of rings of endomorphisms
of such modules—especially concerning maximal homogeneous two-sided ideals.

Remark 6.2 (A Krull–Schmidt category). If R is as in Setup 6.1, then the cat-
egory C of finitely generated Q-graded R-modules and homogeneous homomor-
phisms is a Krull–Schmidt category—that is, every nonzero object in C can be
expressed uniquely, up to order and isomorphism, as a direct sum of indecom-
posable objects. Indeed, given objects M and N in C, suppose M is generated
by homogeneous elements of degrees d1, . . . , dm, and let us denote the k-vector
space of homogeneous homomorphisms M → N by HomR(M,N)0. The map
HomR(M,N)0 →

⊕m
i=1 Homk(Mdi

, Ndi
) given by restriction is an injective k-linear

map; its codomain is a finite-dimensional k-vector space, and thus so is its domain,
HomR(M,N)0. This implies that C is a Krull–Schmidt category [Ati56, Corollary
to Lemma 3, Theorem 1].

Remark 6.3 (On the structure of rings of endomorphisms). For every Q-graded R-
module M , the module of (not necessarily graded) R-endomorphisms Λ = EndR(M)
is a ring with unity, which is usually not commutative. If M is finitely gener-
ated, then Λ is a Q-graded ring, with the decomposition Λ =

⊕
i∈Q Λi, where

Λi = EndR(M)i consists of the graded endomorphisms of degree i for each i ∈ Q
[NVO82, Corollary I.2.11]. If, in addition, M is indecomposable in the category C
of Remark 6.2, then the degree 0 component Λ0 = EndR(M)0 is a local ring, that is,
the set of all nonunits is a two-sided ideal, which is necessarily the unique maximal
(right, left, and two-sided) ideal of Λ0 [Ati56, Lemma 7]. This, in turn, implies that
Λ has a unique maximal homogeneous (left, right, and two-sided) ideal—namely,
the ideal generated by all the homogeneous nonunits, or equivalently, the set of all
elements whose homogeneous components are all nonunits [Li12, Theorem 2.5].

If N ∼= Mα, where M is indecomposable in C, then EndR(N) can be identified
with EndR(M)α×α, the ring of α × α matrices with entries in EndR(M). Since
all homogeneous two-sided ideals of EndR(M)α×α are of the form Aα×α, for A
a homogeneous two-sided ideal of EndR(M), it follows that EndR(N) also has a



32 BERNSTEIN’S INEQUALITY AND HOLONOMICITY

unique maximal homogeneous two-sided ideal, namely the set of all matrices whose
entries decompose as sums of homogeneous nonunits.

Note that if N ′ is also a direct sum of α copies of M , but with rational degree
shifts applied to the various summands, then EndR(N ′) agrees with EndR(N) as an
ungraded ring, but their gradings may differ by shifts in the off-diagonal entries. The
endomorphism ring EndR(N ′) again has a unique maximal homogeneous two-sided
ideal—in fact the same one as EndR(N), but with possible changes in the grading.

Generalizing further, suppose now that

N = Mα1
1 ⊕ · · · ⊕M

α`

`

where M1, . . . ,M` are indecomposable in C, and Mi is not graded-isomorphic to
Mj(d) for any d ∈ Q and i 6= j. An endomorphism φ ∈ EndR(N) can be viewed as
a block matrix (φij)16i,j6`, where φij ∈ HomR(Mj ,Mi)αi×αj . The endomorphism
ring EndR(N) has ` maximal homogeneous two-sided ideals, N1, . . . ,N`, where
each Nk consists of all (φij) such that every homogeneous component of every entry
of φkk is a nonunit. Although this appears to be a well-known fact to the specialists,
for lack of an appropriate reference, we provide the proof below, in Proposition 6.4.
Once again, the considerations just made are unaffected by degree shifts in the
various components of N .

Proposition 6.4. Suppose N = Mα1
1 ⊕ · · · ⊕ Mα`

` , as in Remark 6.3. As in
that remark, we view the endomorphisms of N as block matrices (φij)16i,j6`, with
φij ∈ HomR(Mj ,Mi)αi×αj . For each k = 1, . . . , `, let nk be the unique maximal
homogeneous two-sided ideal of End(Mk)αk×αk , and let Nk be the subset of EndR(N)
consisting of block matrices (φij) with φkk ∈ nk (that is, every homogeneous compo-
nent of every entry of φkk is a nonunit). Then N1, . . . ,N` are all of the maximal
homogeneous two-sided ideals of EndR(N).

Proof. We first show that N1 is a homogeneous two-sided ideal. We have that N1 is
a Q-graded additive subgroup of EndR(N), and the multiplicative properties of an
ideal can thus be verified using homogeneous elements. Take homogeneous elements
Φ = (φij) ∈ N1 and Ψ = (ψij) ∈ EndR(N), and suppose ΦΨ /∈ N1, so the upper left
block of that product,

∑`
k=1 φ1kψk1, does not lie in n1. As φ11 ∈ n1, this implies

that φ1kψk1 /∈ n1 for some k ∈ {2, . . . , `}. This, in turn, implies that there are
entries δ : Mk →M1 in φ1k, and γ : M1 →Mk in ψk1, such that u := δγ : M1 →M1
is a unit. Thus, γ is injective, and u−1δ is a splitting of γ. As Mk is indecomposable,
γ must be surjective as well—but this contradicts our assumption that M1 is not
graded-isomorphic to Mk(d) for any d ∈ Q. This shows that ΦΨ ∈ N1, and the
proofs that ΨΦ ∈ N1, and that the other Nk are homogeneous two-sided ideals,
follow similar steps.

We now show that each proper homogeneous two-sided ideal A is contained in
some Nk. For each k = 1, . . . , `, let ak be the image of A under the projection
EndR(N)� EndR(Mk)αk×αk , and note that ak is a homogeneous two-sided ideal
of EndR(Mk)αk×αk . If ak is not proper, then A contains an element Φ = (φij)
where φkk = 1, the identity of EndR(Mk)αk×αk . Multiplying Φ on both sides by
the element Ψk = (ψij) ∈ EndR(N) with ψkk = 1 and zeros elsewhere, we see that
Ψk itself lies in A. If none of the ak were proper, this reasoning would show that A
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contains
∑`
k=1 Ψk, the identity of EndR(N), contradicting its properness. Thus, ak

is proper for some k, whence ak ⊆ nk and A ⊆ Nk. �

Next, we recall definitions that involve the structure of rings regarding the
Frobenius homomorphism. To this end, note that the ring of pe-th roots R1/pe is a
Q-graded (in fact, 1

pe N-graded) R-module, with (R1/pe)i/pe = (Ri)1/pe , and under
this grading the inclusion R ↪→ R1/pe is homogeneous. Note also that, because R is
a finitely generated commutative algebra over a perfect field, R is F -finite, that is,
R1/pe is a finitely generated R-module.

Definition 6.5 ([SVdB97, Definition 3.1.1]). Let R be as in Setup 6.1. The ring
R has finite F -representation type, FFRT for short, if there exists a finite set
of indecomposable finitely generated Q-graded R-modules, M1, . . . ,M`, such that
R1/pe is isomorphic to a direct sum of finitely many copies of the Mi, with possible
rational degree shifts, for every e ∈ N.

Rings of finite F -representation type include invariant rings of linearly reductive
groups, simple hypersurface singularities, and the homogeneous coordinate ring of
Gr(2, n) [SVdB97, RŠVdB19a, RŠVdB19b].

Definition 6.6. Let R be as in Setup 6.1. The splitting ideals of R are defined by
Ie(R) = {r ∈ R | ϕ(r1/pe

) ∈ m for each ϕ ∈ HomR(R1/pe

, R)}
for each e ∈ N. The ring R is F -pure if Ie(R) 6= R for some (equivalently, all) e > 1,
and strongly F -regular if

⋂
e∈N Ie(R) = 0.

We point out that these definitions for F -purity and strong F -regularity are not
the usual ones found in the literature. Hochster and Roberts [HR76] were the first
to study F -purity, while the notion of strong F -regularity was originally defined
by Hochster and Huneke [HH89]. The splitting ideals Ie(R) first appeared in the
work of Aberbach and Enescu [AE05] and Yao [Yao06], although in a different
formulation; our formulation appears in the work of Tucker [Tuc12].

The following result was proved by Polstra and Tucker in the case of complete
local rings, and extends to our setting through localization and completion at m.

Lemma 6.7 ([PT18, Lemma 5.2, second proof of Theorem 5.1]). Let R be as in
Setup 6.1. If R is strongly F -regular, then there exists a ∈ N such that

Ia+e(R) ⊆ mp
e

for all e ∈ N. �

Toward the proof of the main technical result in this section, Theorem 6.9, it is
convenient to isolate the following elementary lemma.

Lemma 6.8. Let A be a Z-graded ring, not necessarily commutative, with Ai = 0 for
all i� 0. Let δ be a nonzero element of A, and let δ̄ be its homogeneous component
of largest degree. Suppose Aδ̄A = A. Then every nonzero homogeneous element γ
of A can be expressed as a sum of elements of the form αδβ, where α, β ∈ A are
homogeneous and deg(αδ̄β) 6 deg(γ). In particular, AδA = A as well.

Proof. We use induction on the degree of γ, noting that the base of induction
holds (vacuously) because of our assumption on A. Let γ ∈ A be a nonzero
homogeneous element, and suppose the claim holds for like elements of smaller
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degree. Since Aδ̄A = A, we can write γ =
∑r
i=1 αiδ̄βi for some αi, βi ∈ A. By

expanding and comparing homogeneous components, we may assume that αi and βi
are homogeneous and deg(αiδ̄βi) = deg(γ) for each i. Now write δ = δ̄+ δ1 + · · ·+ δs,
where each δj is homogeneous with deg(δj) < deg(δ̄). Then

γ =
r∑
i=1

αiδβi −
r∑
i=1

s∑
j=1

αiδjβi

where each nonzero term in the double sum is homogeneous of degree less than
deg(γ), so applying the induction hypothesis to those terms gives us the result. �

We are now ready to prove the main result in this section.

Theorem 6.9. Let R be as in Setup 6.1, and suppose that R is strongly F -regular
with FFRT. If B•R is a generalized Bernstein filtration on DR|k, then (DR|k,B•R) is
linearly simple.

Proof. Recall from Setup 6.1 that n= dimk m/m
2 and w = max{t ∈ N | [m/m2]t 6= 0}.

Proposition 4.21 allows us to assume that the slope of B•R is 2w. Fix Z ∈ N>0
such that BiR ⊆ DZi

R|k for each i, as in Proposition 4.19, and a ∈ N>0 such that
Ia+e(R) ⊆ mp

e for every e ∈ N, as in Lemma 6.7.
As R has FFRT, there exist finitely generated Q-graded R-modules M1, . . . ,M`

that are indecomposable in the category C of Remark 6.2, with Mi not graded-
isomorphic to Mj(d) for any i 6= j and d ∈ Q, and such that each R1/pe is a
direct sum of copies of the Mi, with possible rational degree shifts, and every
Mi is a direct summand of some R1/pei , again with a possible degree shift. Set
b = max{e1, . . . , e`}. As R is strongly F -regular, it is in particular F -split, so each
R1/pei is an R-direct summand of R1/pb , and the decomposition of R1/pb as a direct
sum of indecomposable Q-graded R-modules contains all the Mi, up to degree shift,
by the Krull–Schmidt Theorem.

Let i ∈ N and δ ∈ BiR r {0}. We wish to show the existence of C ∈ N>0,
independent of i or δ, such that 1 ∈ BCiR · δ · BCiR . As in the proof of Theorem 5.5,
we assume that i > 0.

Let δ̄ be the homogeneous component of δ of largest degree. Then δ̄ ∈ BiR ⊆ DZi
R|k,

and hence −wZi 6 deg(δ̄) 6 i. Because R can be generated by elements of degree
at most w, the nonzero operator δ̄ must act nontrivially on degree 6 w ord(δ̄),
that is, there exists f ∈ R homogeneous with deg(f) 6 w ord(δ̄) 6 wZi such that
g := δ̄(f) 6= 0. We note that deg(g) = deg(f) + deg(δ̄) 6 wZi+ i. In particular, f
and g are not in m(wZ+2)i, and thus if we set c = dlogp((wZ + 2)i)e, we see that
f and g do not lie in Ia+c(R) ⊆ mp

c . Equivalently, f1/pb and g1/pb do not lie in
Ia+c(R1/pb), and putting e = a+ b+ c, we deduce that R1/pb

f1/pe and R1/pb

g1/pe

are free direct summands of R1/pe .
As DZi

R|k ⊆ D
(c)
R|k by (4.2), δ̄ is Rpc-linear, and the map δ̄ 1/pe : R1/pe → R1/pe

defined as in (4.1) is R1/pa+b -linear, and thus R-linear. This map induces a bijection
between the free summands R1/pb

f1/pe and R1/pb

g1/pe . Given our choice of b, and
viewing δ̄ 1/pe as a block matrix as in Remark 6.3, it follows that for each j, the
block of δ̄ 1/pe with entries in EndR(Mj) must contain at least one (homogeneous)
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unit. This shows that δ̄ 1/pe does not lie in any maximal homogeneous two-sided
ideal of EndR(R1/pe). Equivalently, δ̄ does not lie in any maximal homogeneous
two-sided ideal of EndRpe (R) = D

(e)
R|k, and hence the two-sided homogeneous ideal

it generates must be the unit ideal, that is,

D
(e)
R|k · δ̄ ·D

(e)
R|k = D

(e)
R|k.

Since D(e)
R|k ⊆ Dnpe

R|k by (4.3), D(e)
R|k is zero in degree < −wnpe. Lemma 6.8 then

shows the existence of αj , βj ∈ D(e)
R|k homogeneous with deg(αj δ̄βj) 6 0 such that

(6.1) 1 =
m∑
j=1

αjδβj .

Recalling that c = dlogp((wZ + 2)i)e and e = a+ b+ c, we now observe that

D
(e)
R|k ⊆ D

npe

R|k ⊆ D
npa+b+1(wZ+2)i
R|k

and set Y = npa+b+1(wZ + 2). The αj and βj lie in DY i
R|k, so their degrees are

bounded below by −wY i. As deg(αj δ̄βj) 6 0, we see that
deg(αj) 6 −deg(δ̄)− deg(βj) 6 wZi+ wY i

and so
deg(αj) + 2w ord(αj) 6 wZi+ wY i+ 2wY i.

We have just shown that αj ∈ BCiR , where C = w(Z + 3Y ). Likewise, βj ∈ BCiR , and
(6.1) tells us that 1 ∈ BCiR · δ · BCiR , which concludes the proof. �

Corollary 6.10. Let R be as in Setup 6.1, and suppose that R is strongly F -regular
with FFRT. Then R is a Bernstein algebra. In particular, every DR|k-module
satisfies Bernstein inequality with respect to any generalized Bernstein filtration.
Furthermore, R, its localizations Rf for f ∈ R, and its local cohomology modules
Hj
I (R) for I ⊆ R are holonomic DR|k-modules, and hence have finite length as

DR|k-modules.

Proof. This follows from Theorems 4.32 and 6.9, using the fact that the differential
signature of a strongly F -regular k-algebra is positive [BJNB19, Theorem 5.17]. �

We end with a couple of examples to demonstrate the necessity of the hypotheses.

Example 6.11. Let k be a field of positive characteristic, and R = k[x, y]
(xy) . Then

R has FFRT, but is not strongly F -regular. The ring R is not a Bernstein algebra
since (DR|k,B•R) is not linearly simple; moreover, R is not a simple DR|k-module.
For this ring, the residue field R/(x, y) ∼= k is a DR|k-module; any filtration on this
module has dimension zero.

Example 6.12. Let k be a field of positive characteristic, and

S = k[s, t, u, v, w, x, y, z]
(su2x2 + sv2y2 + tuxvy + tw2z2) .

This is a strongly F -regular standard graded domain that has a local cohomology
module with infinitely many associated primes [SS04, Theorem 5.1], and hence, S is
not a Bernstein algebra by Proposition 4.8.
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