
A NOTE ON BERNSTEIN-SATO IDEALS

JOSEP ÀLVAREZ MONTANER

Abstract. We define the Bernstein-Sato ideal associated to a tuple of ideals and we
relate it to the jumping points of the corresponding mixed multiplier ideals.

1. Introduction

Let R be either the polynomial ring C[x1, . . . , xn] over the complex numbers or the
ring C{x1, . . . , xn} of convergent power series in the neighbourhood of the origin, or
any other point. The multiplier ideals of a elementf or an ideal a in R are a family of
nested ideals that play a prominent role in birational geometry (see Lazarsfeld’s book
[Laz04]). Associated to these ideals we have a set of invariants, the jumping numbers, that
are intimately related to other invariants of singularities. For instance, Ein, Lazarsfeld,
Smith and Varolin [ELSV04] and independently Budur and Saito [BS05], proved that the
negatives of the jumping numbers of f in the interval (0, 1) are roots of the Bernstein-Sato
polynomial of f . Budur, Mustaţă and Saito [BMS06] extended the classical theory of
Bernstein-Sato polynomials to the case of ideals and also proved that the jumping numbers
of an ideal a in the interval (0, 1) are roots of the Bernstein-Sato polynomial of a.

There is a natural extension of the theory of multiplier ideals to the context of tuples
of germs F := f1, . . . , f` or tuples of ideals aaa := a1, . . . , a` in R. The main differences
that we encounter in this setting is that, whereas the multiplier ideals come with the set
of associated jumping numbers, the mixed multiplier ideals come with a set of jumping
walls. On the other side of the story we have the notion of Bernstein-Sato ideal associated
to a tuple of germs F given by Sabbah [Sab87]. In the case of a tuple of plane curves,
Cassou-Noguès and Libgober [CNL11] related the Bernstein-Sato ideal with the so-called
faces of quasi-adjunction which is a set of invariants equivalent to the jumping walls.

The aim of this short note is to fill out the theory introducing the notion of Bernstein-
Sato ideal associated to a tuple ideals aaa := a1, . . . , a`. To such purpose we are going
to follow the approach given by Mustaţă [Mus19] where he relates the Bernstein-Sato
polynomial of a single ideal a =

(
f1, . . . , fr

)
to the reduced Bernstein-Sato polynomial of

g = f1y1 + · · ·+ fryr, where the yj’s are new variables. Finally, we show in Theorem 3.11
that the negative of the jumping points of the mixed multiplier ideals of the tuple aaa that
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are in the open ball of radius one centered at the origin belong to the zero locus of the
Bernstein-Sato ideal of aaa.

The theory of Bernstein-Sato polynomials and its relations with other invariants such
as the multiplier ideals is vast and rich. In this note we tried to introduce only the
essential concepts that we needed so we recommend those who are not that familiar with
these topics to take a look at the surveys of Budur [Bud15], Granger [Gra10] or Jeffries,
Núñez-Betancourt and the author [ÀJNB21] for further insight.

Acknowledgements: We would like to thank Guillem Blanco, Jack Jeffries and Luis
Núñez-Betancourt for many helpful conversations regarding this work.

2. Bernstein-Sato ideal of a tuple of ideals

Let R be either C[x1, . . . , xn] or C{x1, . . . , xn} and denote m = (x1, . . . , xn) the (ho-
mogeneous) maximal ideal. Let aaa := a1, . . . , a` be a tuple of ideals in R. For each ideal
described by a set of generators ai =

(
fi,1, . . . , fi,ri

)
we consider gi = fi,1yi,1 + · · ·+ fi,riyi,ri

where the yi,j ’s are new variables. In particular we get a tuple G := g1, . . . , g` in the ring A
that will be either C[x1, . . . , xn, y1,1, . . . , y`,r` ] or C{x1, . . . , xn, y1,1, . . . , y`,r`}. In the sequel,
d := n+ r1 + · · ·+ r` will denote the number of variables in A.

Associated to R or A we have the corresponding ring of differential operators
DR = R〈∂1, . . . , ∂n〉 , DA = A〈∂1, . . . , ∂n, ∂1,1, . . . , ∂`,r`〉

where ∂i (resp. ∂i,j) is the partial derivative with respect to xi (resp. yi,j). That is, DR

(resp. DA) is the C-subalgebra of EndC(R) (resp. EndC(A)) generated by the ring and the
partial derivatives.
Definition 2.1. The Bernstein-Sato ideal of the tuple G is the ideal BG ⊆ C[s1, . . . , s`]
generated by all the polynomials b(s1, . . . , s`) satisfying the Bernstein-Sato functional
equation

δ(s1, . . . , s`)gs1+1
1 · · · gs`+1

` = b(s1, . . . , s`)gs1
1 · · · g

s`
`

where δ(s1, . . . , s`) ∈ DA[s1, . . . , s`] and b(s1, . . . , s`) ∈ C[s1, . . . , s`].

Sabbah [Sab87] proved that BG 6= 0 in the convergent power series case. The proof of
BG 6= 0 in the polynomial ring case is completely analogous to the classical case of a single
element. Indeed, it is enough to consider the local case.
Remark 2.2. Briançon and Maisonobe showed in [BM02] that

B
C[x]
G =

⋂
p∈Cd

B
C{x−p}
G

where BC[x]
G denotes the Bernstein-Sato ideal of a tuple G over the polynomial ring and

B
C{x−p}
G is the Bernstein-Sato ideal of G in the convergent power series around a point

p ∈ Cd.
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Now, since the gi are pairwise without common factors, we have

BG ⊆
(

(s1 + 1) · · · (s` + 1)
)
.

(see [May97, BM99] for details).

Definition 2.3. The reduced Bernstein-Sato ideal of the tuple G is the ideal B̃G ⊆
C[s1, . . . , s`] generated by the polynomials

b(s1, . . . , s`)
(s1 + 1) · · · (s` + 1) ,

with b(s1, . . . , s`) ∈ BG.

Following the approach given by Mustaţă [Mus19] for the case of a single ideal, we
consider the following:

Definition 2.4. Let aaa = a1, . . . , a` be a tuple of ideals in OX,O and let G := g1, . . . , g` be
its associated tuple of hypersurfaces. We define the Bernstein-Sato ideal of aaa as

Baaa := B̃G ⊆ C[s1, . . . , s`]

Our next result shows that Baaa does not depend on the generators of the ideals a1, . . . , a`
and thus it is an invariant of the tuple aaa.

Theorem 2.5. Let aaa := a1, . . . , a` be a tuple of ideals and, for each ideal, consider two
different sets of generators ai =

(
fi,1, . . . , fi,ri

)
and ai =

(
f ′i,1, . . . , f

′
i,si

)
. Consider the

tuple G = g1, . . . , g` with gi = fi,1yi,1 + · · · + fi,riyi,ri and the tuple G′ = g′1, . . . , g
′
` with

g′i = f ′i,1y
′
i,1 + · · ·+ f ′i,siy

′
i,si

. Then B̃G = B̃G′ .

Proof. Without loss of generality we may assume that, for each ideal ai, the set of
generators f ′i,1, . . . , f ′i,si is just fi,1, . . . , fi,ri , hi for a given hi ∈ ai. Let z1, . . . , zri such that
hi = z1fi,1 + · · ·+ zrifi,ri . Then we have

g′i = fi,1y
′
i,1 + · · ·+ fi,riy

′
i,ri

+ hiy
′
i,ri+1

= fi,1y
′
i,1 + · · ·+ fi,riy

′
i,ri

+ (z1fi,1 + · · ·+ zrifi,ri)y′i,ri+1

= f1(y′i,1 + z1y
′
i,ri+1) + · · ·+ f`(y′i,ri + zriy

′
i,ri+1).

After a change of variables yi,j 7→ y′i,j + zjy
′
i,ri+1, this polynomial becomes gi. Since

Bernstein-Sato ideals do not change by change of variables, we conclude that BG = BG′

and the result follows. �

3. Mixed multiplier ideals

Let π : X ′ −→ X be a common log-resolution of a tuple of ideals aaa = a1, . . . , a` in R.
Namely, π is a birational morphism such that

· X ′ is smooth,
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· ai · OX′ = OX′ (−Fi) for some effective Cartier divisor Fi, i = 1, . . . , `,
· ∑`

i=1 Fi + E is a divisor with simple normal crossings where E = Exc (π) is the
exceptional locus.

The divisors Fi = ∑
j ei,jEj are integral divisors in X ′ which can be decomposed into

their exceptional and affine part according to the support, i.e. Fi = F exc
i + F aff

i where

F exc
i =

s∑
j=1

ei,jEj and F aff
i =

t∑
j=s+1

ei,jEj.

Whenever ai is an m-primary ideal, the divisor Fi is just supported on the exceptional
locus. i.e. Fi = F exc

i . We will also consider the relative canonical divisor

Kπ =
s∑
i=1

kjEj

which is a divisor in X ′ supported on the exceptional locus E defined by the Jacobian
determinant of the morphism π.

Definition 3.1. The mixed multiplier ideal associated to a tuple aaa = a1, . . . , a` of ideals
in R and a point λλλ = (λ1, . . . , λ`) ∈ R`>0 is defined as

J (aaaλ) := J (aλ1
1 · · · a

λ`
` ) = π∗OX′ (dKπ − λ1F1 − · · · − λ`F`e)

In the classical case of a single ideal we have the notion of jumping numbers associated
to the sequence of multiplier ideals. The corresponding notion in the context of mixed
multiplier ideals is more involved.

Definition 3.2. Let aaa = a1, . . . , a` be a tuple of ideals in R. Then, for each λλλ ∈ R`>0, we
define:

· The region of λλλ: Raaa (λλλ) =
{
λ′λ′λ′ ∈ R`>0

∣∣∣ J (aaaλ′λ′λ′) ⊇ J (aaaλλλ)
}
.

· The constancy region of λλλ: Caaa (λλλ) =
{
λ′λ′λ′ ∈ R`>0

∣∣∣ J (aaaλ′λ′λ′) = J (aaaλλλ)
}
.

The boundaries of these regions is where we have a strict inclusion of ideals. Therefore
we may define:

Definition 3.3. Let aaa = a1, . . . , a` be a tuple of ideals in R. The jumping wall associated
to λλλ ∈ R`>0 is the boundary of the region Raaa(λλλ).

In particular, we will be interested in the points of these jumping walls. In the sequel,
Bε(λλλ) stands for the open ball of radius ε centered at a point λλλ ∈ R`.

Definition 3.4. Let aaa = a1, . . . , a` be a tuple of ideals in R. We say that λλλ ∈ R`>0 is
a jumping point of aaa if J (aaaλ′λ′λ′) ! J (aaaλλλ) for all λ′λ′λ′ ∈ {λλλ − R`>0} ∩ Bε(λλλ) and ε > 0 small
enough.
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From the definition of mixed multiplier ideals we have that the jumping points λλλ ∈ R`>0
must lie on hyperplanes of the form Hj : e1,jz1 + · · ·+ e`,jz` = kj + νj for j = 1, . . . , s and
νj ∈ Z>0.

For λ ∈ (0, 1) we have J (aλ) = J (gλα) where a =
(
f1, . . . , fr

)
is a single ideal in R and

gα = α1f1 + · · ·+ αrfr ∈ R with αi ∈ C is a general element (see [Laz04, Prop. 9.2.28]).
As a consequence of a more general result of Mustaţă and Popa given in [MP20, Theorem
2.5] we also have a relation between J (aλ) and the multiplier ideal of the associated
hypersurface g = f1y1 + · · ·+ fryr in A.
Definition 3.5. Let J =

(
Q1(y), . . . , Qs(y)

)
be an ideal in A. Then, Coeff(J ) ⊆ R is

the ideal generated by
{Q1(α), . . . , Qs(α) | α ∈ Cr}

The result of Mustaţă and Popa in the form that we need is the following
Proposition 3.6. Let a =

(
f1, . . . , fr

)
be an ideal in R and let g = f1y1 + · · ·+ fryr be

the associated hypersurface in A. Then, for any λ ∈ Q ∩ (0, 1) we have

J (aλ) = Coeff
(
J (gλ)

)
In particular, the set of jumping numbers in the interval (0, 1) of a and g coincide.

The mixed multiplier ideals version of this result follows immediately from the following
observation.
Remark 3.7. Consider a ray through the origin L : (0, . . . , 0) + µ(α1, . . . , α`) where the
αi’s are positive integers.

2

1

Then, the jumping points of a tuple aaa = a1, . . . , a` lying on L are the jumping numbers of
the ideal aα1

1 · · · aα``
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Corollary 3.8. Let aaa = a1, . . . , a` be a tuple of ideals in R, G := g1, . . . , g` its associated
tuple of hypersurfaces and consider λλλ ∈ Q`

>0 with Euclidean norm ‖ λλλ ‖< 1. Then, λλλ is a
jumping point of aaa if and only if it is a jumping point of G.

Proof. After Remark 3.7 we may assume that we have a single ideal a =
(
f1, . . . , fr

)
so

its associated hypersurface is g = f1y1 + · · ·+ fryr. The result then follows from 3.6. �

In order to prove the main result of this section we will need the analytic definition of
mixed multiplier ideal associated to a tuple G = g1, . . . , g`.
Definition 3.9. Let G = g1, . . . , g` be a tuple in A. Let Bε(O) be a closed ball of radius ε
and center the origin O ∈ Cd. The mixed multiplier ideal (at the origin O) of G associated
with λλλ ∈ Q`

>0 is

J (gλ1
1 · · · g

λ`
` )O =

{
h ∈ A

∣∣∣ ∃ ε� 1 such that
∫
Bε(O)

|h|2

|g1|2λ1 · · · |g`|2λ`
dxdydx̄dȳ <∞

}
.

Remark 3.10. As in the case of Bernstein-Sato ideals it is enough to consider this local
case since we have

J (gλ1
1 · · · g

λ`
` ) = ∩p∈CdJ (gλ1

1 · · · g
λ`
` )p.

If it is clear from the context we will omit the subscript referring to the point.
Theorem 3.11. Let aaa = a1, . . . , a` be a tuple of ideals in R. Let λλλ ∈ Q`

>0 be a jumping
point of aaa with Euclidean norm ‖ λλλ ‖< 1. Then −λλλ ∈ Z(Baaa).

Proof. Let λλλ ∈ Q`
>0 be a jumping point of the tuple G = g1, . . . , g` associated to aaa with

‖ λλλ ‖< 1 and take h ∈ J (fλλλ′)rJ (fλλλ) with λλλ′ ∈ {λλλ−R`>0}∩Bε(λλλ) for ε > 0 small enough.
Therefore

|h|2

|g1|2λ
′
1 · · · |g`|2λ

′
`

is integrable but when we take the limit ε→ 0 we end up with
|h|2

|g1|2λ1 · · · |g`|2λ`
that is not integrable. Set d = n+ r1 + · · ·+ r` and consider the complex zeta function∫

Cd
|g1|2s1 · · · |g`|2s`ϕ(x, y, x̄, ȳ)dxdydx̄dȳ,

where s1, . . . , s` are indeterminate variables and ϕ(x, x̄) ∈ C∞c (Cd) is a test function,
i.e. an infinitely many times differentiable function with compact support. Moreover
ϕ has holomorphic and antiholomorphic part. For any b(s1, . . . , s`) ∈ BG we have a
Bernstein-Sato functional equation

δ(s1, . . . , s`)gs1+1
1 · · · gs`+1

` = b(s1, . . . , s`)gs1
1 · · · g

s`
`

Therefore
b2(s1, . . . , s`)

∫
Cd
ϕ(x, y, x̄, ȳ)|g1|2s1 · · · |g`|2s`dxdydx̄dȳ =
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=
∫

Cd
δ̄∗δ∗(s1, . . . , s`)

(
ϕ(x, y, x̄, ȳ)

)
|g1|2(s1+1) · · · |g`|2(s`+1)dxdydx̄dȳ.

where δ̄∗ and δ∗ denote the conjugate and the adjoint differential operators associated to
δ. Notice that |h|2ϕ(x, x̄) is still a test function so

b2(s1, . . . , s`)
∫

Cd
|h|2ϕ(x, y, x̄, ȳ)|g1|2s1 · · · |g`|2s`dxdydx̄dȳ =

=
∫

Cd
δ̄∗δ∗(s1, . . . , s`)

(
|h|2ϕ(x, y, x̄, ȳ)

)
|g1|2(s1+1) · · · |g`|2(s`+1)dxdydx̄dȳ.

Now we take a test function ϕ which is zero outside the ball Bε(O) and identically one on
a smaller ball Bε′(O) ⊆ Bε(O) and thus we get

b2(s1, . . . , s`)
∫
Bε′ (O)

|h|2|g1|2s1 · · · |g`|2s`dxdydx̄dȳ =

=
∫
Bε′ (p)

δ̄∗δ∗(s1, . . . , s`))
(
|h|2

)
|g1|2(s1+1) · · · |g`|2(s`+1)dxdydx̄dȳ.

Taking s = −(λ′1, . . . , λ′`) we get

b2(−λ′1, . . . ,−λ′`)
∫
Bε′ (O)

|h|2

|g1|2λ
′
1 · · · |g`|2λ

′
`
dxdydx̄dȳ =

=
∫
Bε′ (O)

δ̄∗δ∗(−λ′1, . . . ,−λ′`)
(
|h|2

)
|g1|2(1−λ′

1) · · · |g`|2(1−λ′
`)dxdydx̄dȳ

but the right-hand side is uniformly bounded for all ε > 0. Thus we have

b2(−λ′1, . . . ,−λ′`)
∫
Bε′ (O)

|h|2

|g1|2λ
′
1 · · · |g`|2λ

′
`

dxdydx̄dȳ ≤M <∞

for some positive number M that depends on h. Then, by the monotone convergence
theorem we have to have b2(−λ1, . . . ,−λ`) = 0 and thus −λλλ ∈ Z(B̃G) = Z(Ba). �
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