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Abstract. We describe the shape of the Lyubeznik table of either rings in positive characteristic
or Stanley-Reisner rings in any characteristic when they satisfy Serre’s condition Sr or they are
Cohen-Macaulay in a given codimension, condition denoted by CMr. Moreover we show that these
results are sharp.

1. Introduction

Let (R,m) be a regular local ring containing a field K and set A = R/I, where I is an ideal of R.
It has been long known that some vanishing results on local cohomology modules behave similarly
in either the case where K is a field of positive characteristic or I is a squarefree monomial ideal
in any characteristic. The main reason behind this fact is that the Frobenius morphism in positive
characteristic is flat by the celebrated Kunz theorem and, applying it to our ideal I recursively gives
us a cofinal system of ideals with respect to the system given by the usual powers which describe
these local cohomology modules. For squarefree monomial ideals we have a similar flat morphism,
raising to the second power of any element, that plays the same role. This point of view has already
been successfully used by Singh and Walther [SW07] and Àlvarez Montaner [AM15].

The first interesting result in this approach is that we only have one local cohomology different
from zero when A is Cohen-Macaulay in both cases. This has consequences on the Lyubeznik
numbers of A introduced in [Lyu93]. Indeed, using an spectral sequence argument one may check
that the Lyubeznik table of A is trivial. This still holds true replacing the Cohen-Macaulay property
for sequentially Cohen-Macaulay [AM15]. We point out that these results are no longer true when
A is Cohen-Macaulay containing a field of characteristic zero. Take for example the ideal generated
by the 2× 2 minors of a generic 2× 3 matrix.

In this note we continue this study of Lyubeznik numbers of A in either the case where K is a
field of positive characteristic or I is a squarefree monomial ideal in any characteristic. The main
results are Theorems 3.3 and 3.4 where we describe the shape of the Lyubeznik table of A when
we relax the Cohen-Macaulay condition on A to Serre’s condition Sr or being Cohen-Macaulay in
codimension r, condition denoted by CMr.

A priori, there is no reason for thinking that the results we obtain are sharp but this is indeed the
case as shown in Example 4.2. Finally we highlight that, using the breakthrough results obtained
by Conca and Varbaro [CV20], one may compute some apparently complicated Lyubeznik tables
in positive characteristic in the event that the ring A has a squarefree Gröbner deformation.

2. Lyubeznik numbers

Let (R,m) be a regular local ring containing a field K and I an ideal of R. Some finiteness
properties of local cohomology modules Hr

I (R) where proved by Huneke and Sharp [HS93] when
the field K has positive characteristic and Lyubeznik [Lyu93] in the characteristic zero case. In
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particular, they proved that Bass numbers of these local cohomology modules are finite. Relying
on this fact, Lyubeznik [Lyu93] introduced a set of numerical invariants of local rings containing a
field as follows:

Theorem/Definition 2.1. Let A be a local ring containing a field K, so that its completion Â

admits a surjective ring homomorphism R
π // //Â from a regular local ring (R,m) of dimension n

and set I := ker(π). Then, the Bass numbers

λp,i(A) := µp(m, H
n−i
I (R)) = µ0(m, H

p
m(Hn−i

I (R)))

depend only on A, i and p, but neither on R nor on π.

We refer to these invariants as Lyubeznik numbers and they are known to satisfy the following
properties: λp,i(A) = 0 if i > d, λp,i(A) = 0 if p > i and λd,d(A) 6= 0, where d = dimA. Therefore
we can collect them in the so-called Lyubeznik table:

Λ(A) =

 λ0,0 · · · λ0,d
. . .

...
λd,d


We say that the Lyubeznik table is trivial if λd,d(A) = 1 and λp,i(A) = 0 for p and i different

from d. The highest Lyubeznik number λd,d(A) has a nice interpretation in terms of the dual graph
Γ1(A), also known as Hochster-Huneke graph, associated to Spec(A).

Definition 2.1. Let A be a ring of dimension d and let t be an integer such that 0 ≤ t ≤ d. We
define the graph Γt(A) as a simple graph whose vertices are the minimal primes of A and there is
an edge between p and q distinct minimal primes if and only if ht(p + q) ≤ t.

Zhang [Zha07, Main Thm.] gave the following characterization.

Proposition 2.2. Let A be a complete local ring with separably closed residue field. Then:

λd,d(A) = #Γ1(A)

Remark 2.3. More generally λd,d(A) = #Γ1(B) where B =
̂̂
Ash is the completion of the strict

henselianization of the completion of A.

We point out that Kawasaki already proved in [Kaw02, Thm.2] that the highest Lyubeznik
number λd,d of a Cohen-Macaulay ring (or even S2) is always one. Other Lyubeznik numbers can
be described from the graphs Γt(A) as shown by Walther [Wal01, Prop.2.3] and Núñez-Betancourt,
Spiroff and Witt [NnBSW19, Thm.5.4]. Moreover, Walther describe the possible Lyubeznik tables
for d ≤ 2 (see also [RWZ22] for other small dimensional cases).

Proposition 2.4. Let A be an equidimensional complete local ring of dimension ≥ 3 with separably
closed residue field. Then

(i) λ0,1(A) = #Γd−1(A)− 1.
(ii) λ1,2(A) = #Γd−2(A)−#Γd−1(A).
(iii) λi,i+1(A) ≥ #Γd−i−1(A)−#Γd−i(A) for 1 ≤ i ≤ d− 2.

3. Lyubeznik tables of Sr and CMr rings

Throughout this section we will always assume that (R,m) is a regular local ring and A is a
complete local ring containing a field that admits a presentation A = R/I where I ⊆ R is an
ideal. We will study the Lyubeznik table when we relax the Cohen-Macaulay condition on the ring
A. The classical way of doing so is by means of Serre’s conditions. Another way is by asking for
being Cohen-Macaulay up to some codimension. This notion has been considered by Miller, Novik
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and Schwarz [MNS11] for squarefree monomial ideals and further developed, in the case that A is
equidimensional, in [HYZN12, HYZN12, PPTY22]. We point out that A is equidimensional if it
satisfies Sr with r ≥ 2 (see [Sch79]) and we will only consider the equidimensional case in this work.

Definition 3.1. We say:

(i) A satisfies Serre’s condition Sr if

depth A ≥ min{r, dimAp},
for all p ∈ Spec(R).

(ii) A satisfies the condition CMr if it is equidimensional and it is Cohen-Macaulay in codi-
mension r, that is Ap is Cohen-Macaulay for all p ∈ Spec(R) with htp ≤ d− r.

Both the Sr and CMr conditions can be characterized in terms of the deficiency modules

Ki
A := Extn−iR (A,R).

The following result can be found in the the work of Schenzel [Sch82, Lem. 3.2.1] (see also [CV20,
Rem. 2.9]). For the squarefree monomial ideals case one may consult [PPTY22].

Proposition 3.2. We have:

(i) A is Sr, r ≥ 2, if and only if dimKi
A ≤ i− r for all 1 ≤ i ≤ d.

(ii) A is CMr if and only if dimKi
A ≤ r for all 1 ≤ i ≤ d.

Next we present the main results of the paper where the shape of the Lyubeznik tables is given
in terms of the Sr and the CMr conditions.

Theorem 3.3. Assume that r ≥ 2 and:

• A is Sr and contains a field of positive characteristic.
• A is Sr and I is a squarefree monomial ideal.

Then, the Lyubeznik table of A satisfies λi,i = λi,i+1 = · · · = λi,i+(r−1) = 0, for i ∈ {0, . . . , d− 1}.

Proof. If A contains a field of positive characteristic, then Huneke and Sharp [HS93, Cor. 2.3] proved
that Ass (Hn−i

I (R)) ⊆ Ass (Ki
A), and thus dim (Hn−i

I (R)) ≤ dim (Ki
A). In the squarefree monomial

ideal case, Yanagawa [Yan01, Thm. 2.11] proved that the straight module Hn−i
I (R) is equivalent to

the squarefree module Ki
A. In particular this gives the equality dim (Hn−i

I (R)) = dim (Ki
A) [Yan01,

Lem. 2.8].

Now assume in both cases that A is Sr and thus we have dim (Ki
A) ≤ i − r and consequently

dim (Hn−i
I (R)) ≤ i− r for all 1 ≤ i ≤ d. Then the result follows from the inequality

idR (Hn−i
I (R)) ≤ dim (Hn−i

I (R))

proved in [HS93, Cor. 3.9] and [Lyu93, Thm. 3.4]. �

Theorem 3.4. Assume that:

• A is CMr and contains a field of positive characteristic.
• A is CMr and I is a squarefree monomial ideal.

Then the Lyubeznik table of A satisfies λp,i = 0, ∀p ≥ r and i ∈ {0, . . . , d− 1}.

Proof. The proof is analogous to the proof of Theorem 3.3 but in the present case we have
dim (Ki

A) ≤ r and thus dim (Hn−i
I (R)) ≤ r for all 1 ≤ i ≤ d. �

Remark 3.5. Under the hypothesis of Theorem 3.4, assume that A is CM1 and thus the only
possible non-zero row of the Lyubeznik table is the 0-th row. Then, the Lyubeznik numbers of A
satisfy λd,d = λ0,1 + 1 and λp,d = λ0,d−p+1 for all p ∈ {2, . . . , d− 1} (see [GLS98, BB05]).
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Using Grothendieck’s spectral sequence

Ep,n−i2 = Hp
m(Hn−i

I (R)) =⇒ Hp+n−i
m (R)

we can give a similar result for the CM2 case.

Corollary 3.6. Assume that:

• A is CM2 and contains a field of positive characteristic.
• A is CM2 and I is a squarefree monomial ideal.

Then the Lyubeznik numbers of A satisfy λd,d = λ0,1 +λ1,2 + 1, λ2,d = λ0,d−1 and λp,d = λ0,d−p+1 +
λ1,d−p+2 for all p ∈ {3, . . . , d− 1}.

Proof. Under the CM2 condition, the only possibly non-zero terms of Grothendieck spectral se-
quence are placed at the dot spots in the following diagram:

p

n− i

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

Evidently λ0,0 = 0 by Grothendieck’s vanishing theorem. Since A is equidimensional we have
λ0,1 = 0 and we also notice that λ0,d = λ1,d = 0.

The only possible non-zero differentials at each Ej-page, j ≥ 2, of the spectral sequence are:

dj : E0,n−j+1
j −→ Ej,n−dj and dj : E1,n−j+1

j −→ Ej+1,n−d
j

By the general theory of spectral sequences, there exist filtrations 0 ⊆ F rn ⊆ · · · ⊆ F r0 ⊆ Hr
m(R)

for all r, such that the consecutive quotients are F ri /F
r
i+1 = Ei,r−i∞ . Then, taking into account that

Hr
m(R) = 0 for all r 6= n, we have first:

• 0 = E0,n−d+1
∞ = E0,n−d+1

3 = ker
(
d2 : E0,n−d+1

2 −→ E2,n−d
2

)
• 0 = E2,n−d

∞ = E2,n−d
3 = E2,n−d

2 /Im
(
d2 : E0,n−d+1

2 −→ E2,n−d
2

)
and thus λ2,d = λ0,d−1. For the next subdiagonal in the diagram we have, in the third page:

• E0,n−d+2
3 = E0,n−d+2

2

• 0 = E1,n−d+1
∞ = E0,n−d+1

3 = ker
(
d2 : E1,n−d+1

2 −→ E3,n−d
2

)
• E3,n−d

3 = E3,n−d
2 /Im

(
d2 : E1,n−d+1

2 −→ E3,n−d
2

)
and in the fourth page:

• 0 = E0,n−d+2
∞ = E0,n−d+2

4 = ker
(
d3 : E0,n−d+2

3 −→ E3,n−d
3

)
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• 0 = E2,n−d
∞ = E2,n−d

4 = E2,n−d
3 /Im

(
d3 : E0,n−d+2

3 −→ E3,n−d
3

)
Therefore λ3,d = λ0,d−2 + λ1,d−1 and analogously we get λp,d = λ0,d−p+1 + λ1,d−p+2 for all p ∈
{4, . . . , d − 1}. For the last case we only have to put into the picture the fact that Hn

m(R) is
isomorphic to the injective hull of the residue field which accounts for the +1 in the formula
λd,d = λ0,1 + λ1,2 + 1.

�

4. Squarefree monomial ideals

A way to interpret Lyubeznik numbers for the case of squarefree monomial ideals is in terms
of the linear strands of the free resolution of the Alexander dual of the ideal. This approach was
given by Àlvarez Montaner and Vahidi [AMV14] (see also [AMY18]) and we will briefly recall it
here. Throughout this section we let R = K[x1, . . . , xn] be a polynomial ring with coefficients in
a field K. Bass numbers behave well with respect to localization and completion so there is no
inconvenience in working in this setting.

Let I∨ be the Alexander dual of a squarefree monomial ideal I ⊆ R. Its minimal Z-graded free
resolution is an exact sequence of free Z-graded R-modules:

L•(I∨) : 0 // Lm
dm // · · · // L1

d1 // L0
// I∨ // 0

where the j-th term is of the form

Lj =
⊕
`∈Z

R(−`)βj,`(I∨),

and the matrices of the morphisms dj : Lj −→ Lj−1 do not contain invertible elements. The
Z-graded Betti numbers of I∨ are the invariants βj,`(I

∨). Given an integer r, the r-linear strand of
L•(I∨) is the complex:

L<r>• (I∨) : 0 // L<r>n−r
d<r>
n−r // · · · // L<r>1

d<r>
1 // L<r>0

// 0 ,

where

L<r>j = R(−j − r)βj,j+r(I
∨),

and the differentials d<r>j : L<r>j −→ L<r>j−1 are the corresponding components of dj .

We point out that these differentials can be described using the so-called monomial matrices
introduced by Miller [Mil00]. These are matrices with scalar entries that keep track of the degrees
of the generators of the summands in the source and the target. Now we construct a complex of
K-vector spaces

F<r>• (I∨)∗ : 0 Kβn−r,n(I∨)︸ ︷︷ ︸
deg 0

oo · · ·oo Kβ1,1+r(I∨)︸ ︷︷ ︸
degn−r−1

oo Kβ0,r(I∨)︸ ︷︷ ︸
degn−r

oo 0oo

where the morphisms are given by the transpose of the corresponding monomial matrices and thus
we reverse the indices of the complex. Then, the Lyubeznik numbers are described by means of
the homology groups of these complexes (see [AMV14, Cor. 4.2]).

Theorem 4.1. Let I∨ be the Alexander dual of a squarefree monomial ideal I ⊆ R. Then

λp,n−r(R/I) = dimKHp(F<r>• (I∨)∗).
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It has been shown in [HSFYZN18], [VZN19], [PPTY22] that the Sr and CMr properties on the
ring R/I provide conditions on the vanishing of Betti numbers of the Alexander dual ideals I∨

and consequently the shape of the corresponding Betti table. In particular it describes the linear
strands of the free resolution. To compute Lyubeznik numbers we have to take a step further and
consider the homology of these linear strands so, a priori, it may seem that the results in Theorems
3.3 and 3.4 are not sharp. The following example show that indeed the results are sharp.

Example 4.2. Let I = (x1, x2, x3, x4, x5) ∩ (x1, x2, x3, y4, y5) ∩ (y1, y2, y3, y4, y5) be an ideal in
K[x1, . . . , x5, y1, . . . , y5]. The minimal free resolution of its Alexander dual ideal is

L•(I∨) : 0 // R(−7)⊕R(−8) // R(−5) // I∨ // 0

and thus I∨ has three linear strands. Then, the Lyubeznik table is

Λ(R/I) =


0 0 0 0 0 0

0 0 0 0 0
0 1 0 0

0 1 0
0 0

3


The ideal I can be interpreted as the edge ideal of a graph G(3, 2) obtained from a Cohen-Macaulay
bipartite graph G. Then it is CM4 by using [HSFYZN18, Thm. 4.5].

5. Squarefree initial ideals

Let R = K[x1, . . . , xn] be a polynomial ring with coefficients in a field K. Assume that R is
equipped with a Zm-graded structure such that deg(xi) ∈ Zm≥0. It has been know for a while that
some homological invariants behave well with respect to Gröbner deformations. In a breakthrough
paper, Conca and Varbaro [CV20, Thm. 1.3] proved that for a Zm-graded ideal I ⊆ R such that
the initial ideal in(I) with respect to some term order is squarefree, then

dimKH
i
m(R/I)α = dimKH

i
m(R/in(I))α

for all i ∈ Z≥0 and all α ∈ Zm. Therefore, extremal Betti numbers, depth and Castelnuovo-
Mumford regularity of R/I and R/in(I) coincide. Classes of ideals satisfying this condition are
ASL ideals, Cartwright-Sturmfels ideals and Knutson ideals (see [CV20] for details).

For our purposes we point out the following result [CV20, Cor. 2.11]

Proposition 5.1. Let R = K[x1, . . . , xn] be a polynomial ring over a field. Let I ⊆ R be a pure
homogeneous ideal of codimension ≥ 2 such that the initial ideal in(I) with respect to some term
order is squarefree. Then:

(i) R/I is Sr, r ≥ 2, if and only if R/in(I) is Sr.
(ii) R/I is CMr if and only if R/in(I) is CMr.

It has been proved in [ALNnBRM22, Thm. 3.4] that the graphs Γt(R/I), and consequently some
Lyubeznik numbers, also behave well with respect to Gröbner deformations.

Proposition 5.2. Let R = K[x1, . . . , xn] be a polynomial ring over a field. Let I ⊆ R be a pure
homogeneous ideal of codimension ≥ 2 such that the initial ideal in(I) with respect to some term
order is squarefree. Then,

#Γt(R/I) = #Γt(R/in(I)).
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Corollary 5.3. Let R = K[x1, . . . , xn] be a polynomial ring over a field. Let I ⊆ R be a pure
homogeneous ideal of codimension ≥ 2 such that the initial ideal in(I) with respect to some term
order is squarefree. Then,

λd,d(R/I) = λd,d(R/in(I)), λ0,1(R/I) = λ0,1(R/in(I)) and λ1,2(R/I) = λ1,2(R/in(I)).

In positive characteristic, Nadi and Varbaro [NV20, Cor. 2.5] proved the following inequality
between the Lyubeznik numbers of R/I and those of R/in(I).

Proposition 5.4. Let R = K[x1, . . . , xn] be a polynomial ring over a field of positive characteristic.
Let I ⊆ R be an homogeneous ideal such that the initial ideal in(I) with respect to some term order
is a squarefree monomial ideal. Then λp,i(R/I) ≤ λp,i(R/in(I)).

It is quite common that the Lyubeznik table of a monomial ideal is trivial and thus the following
easy consequence becomes relevant.

Corollary 5.5. Let R = K[x1, . . . , xn] be a polynomial ring over a field of positive characteristic.
Let I ⊆ R be an homogeneous ideal such that the initial ideal in(I) with respect to some term order
is a squarefree monomial ideal. If the Lyubeznik table of R/in(I) is trivial then the Lyubeznik table
of R/I is trivial as well.

For instance, we can compute the Lyubeznik table of the following example (see [CV20, Ex.
3.2]).

Example 5.6. Let R = K[x1, . . . , x5] be a polynomial ring over a field of positive characteristic.
Let I be the homogeneous ideal given by the 2× 2-minors of the matrix(

x24 + xa5 x3 x2
x1 x24 xb3 − x2

)
with deg(x4) = a,deg(x1) = deg(x3) = 1,deg(x2) = b and deg(x5) = 2. On the other hand,

in(I) = (x1x3, x1x2, x2x3)

where we consider the lex term order and thus the Lyubeznik table of R/I is trivial in any charac-
teristic.

Binomial edge ideals satisfy that their generic initial ideals are squarefree [CDNG18, Thm. 2.1].

Example 5.7. Let R = K[x1, . . . , x6, y1, . . . , y6] be a polynomial ring over a field of positive char-
acteristic. Let JC6 ⊆ R be the binomial edge ideal associated to the 6-cycle C6 and gin(JC6) its
generic initial ideal. Namely, we have:

JC6 = (x1y2 − x2y1, x1y6 − x6y1, x2y3 − x3y2,−x3y4 + x4y3, x4y5 − x5y4, x5y6 − x6y5)
gin(JC6) =(x5x6, x4x5, x3x4, x2x3, x1x6, x1x2, x4x6y5, x3x5y4, x2x6y1, x2x4y3, x1x5y6, x1x3y2,

x3x6y4y5, x3x6y1y2, x2x5y3y4, x2x5y1y6, x1x4y5y6, x1x4y2y3, x4x6y1y2y3, x3x5y1y2y6,

x2x6y3y4y5, x2x4y1y5y6, x1x5y2y3y4, x1x3y4y5y6)

The Lyubeznik table of R/gin(JC6) is trivial in any characteristic and thus the Lyubeznik table
of R/JC6 is trivial as well.
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Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona 08028; and Centre de Recerca
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