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Abstract. We develop a theory of Bernstein-Sato polynomials for meromorphic func-
tions. As a first application we study the poles of Archimedian local zeta functions
for meromorphic germs. We also present a theory of multiplier ideals for meromorphic
functions from the analytic and algebraic point of view. It is also shown that the jump-
ing numbers of these multiplier ideals are related with the roots of the Bernstein-Sato
polynomials.
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1. Introduction

The theory of Bernstein-Sato polynomials was introduced independently by Bernstein
[Ber72] to study the analytic continuation of the Archimedean zeta function and Sato
[SS72] in the context of prehomogeneous vector spaces. Rapidly, Bernstein-Sato polyno-
mials became an indispensable tool to study invariants of singularities of holomorphic or
regular functions. In particular, the roots of the Bernstein-Sato polynomials are related to
many other invariants such as poles of zeta functions, eigenvalues of the monodromy of the
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Milnor fiber, jumping numbers of multiplier ideals, spectral numbers and F-thresholds,
among others.

The aim of this paper is to develop a theory of Bernstein-Sato polynomials for the case
of meromorphic functions, and to relate it to other invariants of such functions. This is in-
spired in previous work that has been done for singularities of meromorphic functions. For
instance, Arnold proposed the study of singularities of meromorphic functions and began
its classification [Arn98]. He remarked that even simple examples provide new interest-
ing phenomena. Gussein-Zade, Luengo, and Melle [GZLMH98, GZLMH99a, GZLMH99b,
GZLMH01] pursued a systematic research of the topology and monodromy of germs of
complex meromorphic functions (see also works by Tibar and Siersma [Tib02, ST04],
Bodin, Pichon, and Seade [BP07, PS08, BPS09]), and by Raibaut [Rai12, Rai13] studied
motivic zeta functions and motivic Milnor fibers for meromorphic germs, also consid-
ered by Libgober, Maxim, and the second author [GVLM16, GVLM18]. Zúñiga-Galindo
and the third author treated p-adic zeta functions for Laurent polynomials [LCZG13].
Lemahieu and the second author treated the case of topological zeta functions of mero-
morphic germs, and proved a generalization of the monodromy conjecture in the two
variable case [GVL14]. Veys and Zúñiga-Galindo [VZG17] investigated meromorphic con-
tinuation and poles of zeta functions and oscillatory integrals for meromorphic functions
defined over local fields of characteristic zero (see also [LC17, BGZG18, BG20]). Nguyen
and Takeuchi [NT19] introduced meromorphic nearby cycle functors, and studied some of
its applications to the monodromy of meromorphic germs.

In this paper, we prove the existence of meromorphic Bernstein-Sato polynomials for
differentiably admissible K-algebras, which is a class of rings including polynomial and
power series rings over K and rings of holomorphic functions in a neighbourhood of the
origin in C among other cases (see Section 2 for an overview).

Theorem A (Theorem 4.5). Let R be a differentiably admissible K-algebra. Let f, g ∈ R
be nonzero elements. There exists b(s) ∈ K[s] \ {0} and δ(s) ∈ DR|K[s] such that

δ(s)
f

g

(
f

g

)s

= b(s)

(
f

g

)s

.

More generally, we define a family of Bernstein-Sato polynomials bαf/g(s) indexed by
α ∈ R≥0 in Proposition 4.2. We also provide a more elementary proof of the functional
equation for meromorphic functions of polynomial rings in Theorem 3.2. In the case of
holomorphic functions we provide a version of Kashiwara’s proof of the rationality of
the roots of the Bernstein-Sato polynomial [Kas77] and the refinement given by Lichtin
[Lic89].

Theorem B (Theorem 4.14, Corollary 4.15). Let f, g ∈ R be nonzero holomorphic func-
tions and α ∈ R≥0. The roots of bαf/g(s) are negative rational numbers. Moreover, they
are contained in the set {

ki + 1 + `

Nf/g,i

; ` ≥ 0, i ∈ I0

}
,

where the integers Nf/g,i and ki are extracted from the numerical data of a log resolution
of f/g.

As an application, we study meromorphic continuation of Archimedean local zeta func-
tions of meromorphic germs, extending the ideas of Bernstein [Ber72] in the classical case.
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Our approach is complementary to the one done by Veys and Zúñiga-Galindo [VZG17],
where they used resolution of singularities following the ideas of Bernstein and Gel’fand
[BG69] and Atiyah [Ati70].

Theorem C (Theorem 5.4). Let f and g be nonzero holomorphic functions and take
α = lct0 g. The local zeta function Zφ(s, f/g) has a meromorphic continuation to the
whole complex plane C, and its poles are contained in the set{

ζ − kα ; k ∈ Z≥0

}
ζ root of bα

f/g
(s)

⋃{
kα− ξ ; k ∈ Z≥0

}
ξ root of bα

g/f
(s)
.

In particular, the poles of Zφ(s, f/g) are rational numbers.

Finally, we study multiplier ideals of meromorphic functions from the analytic and
algebraic point of view.

Theorem D. Let f and g be nonzero holomorphic functions. Then:
• (Theorem 6.6) The set of jumping numbers of f/g is a set of rational numbers
with no accumulation points.
• (Theorem 6.7) Let λ be a jumping number of f/g such that λ ∈ (1 − lct0(g), 1].
Then, −λ is a root of the Bernstein-Sato polynomial of f/g.

We also provide a weaker version of Skoda’s Theorem.

Proposition A. Let f and g be nonzero holomorphic functions. Then:

• (Proposition 6.5) J ((f
g
)λ+`) = (f

`

g`
(J (f

g
)λ))

⋂
R for every ` ∈ N. In particular, if

λ+ 1 is a jumping number, then λ is a jumping number.
• (Lemma 7.5) For every λ ∈ R>0, we have J (fλ) ⊆ J ((f

g
)λ). In addition, we have

J ((f
g
)n) = (fn) for every n ∈ Z>0.

Takeuchi has developed independently a theory of Bernstein-Sato polynomials for mero-
morphic functions [Tak21]. Both approaches differ slightly (see Remark 4.8) but comple-
ment each other. Takeuchi is interested in the relation between the roots of the Bernstein-
Sato polynomial and the eigenvalues of the Milnor monodromies. Meanwhile, we pay
attention to the meromorphic continuation of the Archimedean local zeta function and
multiplier ideals.

2. Background

2.1. Rings of differential operators and its modules. We start by recalling the basics
on the theory of rings of differential operators as introduced by Grothendieck [Gro67,
§16.8].

Definition 2.1. Let R be a Noetherian ring containing a field of characteristic zero K.
The ring of K-linear differential operators of R is the subring DR|K ⊆ HomK(R,R), whose
elements are defined inductively as follows.

• Differential operators of order zero are defined by the multiplication by elements
of R, and so, D0

R|K
∼= R.

• An element δ ∈ HomZ(R,R) is an operator of order less than or equal to n if
[δ, r] = δr − rδ is an operator of order less than or equal to n− 1.
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We denote by Dn
R|K the set of all differential operators of order less than or equal to n.

We have a filtration D0
R|K ⊆ D1

R|K ⊆ · · · such that Dm
R|KD

n
R|K ⊆ Dm+n

R|K . We denote this
filtration by D•R|K. The ring of differential operators is defined as

DR|K =
⋃
n∈N

Dn
R|K.

We note that in general D1
R|K
∼= DerR|K

⊕
R, but DR|K is not always generated as

R-algebra by derivations.

2.2. Holonomic D-modules for polynomial rings.

Definition 2.2. Let R = C[x1, . . . , xd]. We define the Bernstein filtration of R, B•R|C by

BiR|C = C{xαδβ ; |α|+ |β| ≤ i}.
We note that

• dimC BiR|C =
(
n+i
i

)
<∞,

• DR|C =
⋃
i∈N BiR|C, and

• BnR|CB
j
R|C = BjR|C.

We observe that grB•
R|C

(DR|C) is a commutative ring isomorphic to C[x1, . . . , xd, y1, . . . , yd].

Definition 2.3. Given a left (right) DR|C-module, M , we say that a filtration Γ• of
C-vector spaces is B•R|C-compatible if

• dimC Γi <∞,
• M =

⋃
i∈N Γi,

• BiR|CΓj ⊆ Γj (ΓjBiR|C ⊆ Γj).
We say that Γ• is a good filtration if grΓ•(M) is finitely generated as a grB•

R|C
(DR|C)-

module.

If Γ• is a good filtration for M , we have that dimC Γn is a polynomial function on n of
degree equal to the Krull dimension of grΓ•(M) by Hilbert-Samuel theory. This degree
does not depend of the choice of such good filtration, and it is called dimDR|C(M). We
note that every finitely generated DR|C-module has a good filtration.

Theorem 2.4 (Bernstein’s Inequality). LetM be a finitely generated DR|C-module. Then,

d ≤ dimDR|C(M) ≤ 2d.

Definition 2.5. A DR|C-module M , is holonomic if either M = 0 or dimDR|C(M) = d.

We observe that a DR|C-module M , with a good filtration Γ• is holonomic if and only
if there exists a polynomial q in one variable of degree d, such that dimC Γn ≤ q(n). We
recall that every holonomic DR|C has finite length.

2.3. Rings differentiably admissible. We now introduce a family of K-algebras whose
rings of differential operators satisfy good properties.

Definition 2.6. Let K be a field of characteristic zero. Let R be a Noetherian regular
K-algebra of dimension d. We say that R is differentiably admissible if

(1) dim(Rm) = d for every maximal ideal m ⊆ R,
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(2) R/m is an algebraic extension of K for every maximal ideal m ⊆ R, and
(3) DerR|K is a projective R-module of rank d such that the natural map

Rm ⊗R DerR|K → DerRm|K

is an isomorphism.

This class of algebras were introduced by the third-named author [NB13] to obtain the
existence of the Bernstein-Sato polynomial for algebras that do not have global coordi-
nates. This later case was already studied by Narváez Macarro and Mebkhout [MNM91].
Examples of differentiably admissible algebras include polynomial rings over K, power
series rings over K, the ring of convergent power series in a neighborhood of the ori-
gin over C, Tate and Dwork-Monsky-Washnitzer K-algebras [MNM91], the localization
of complete regular rings of mixed characteristic at the uniformizer [NB13, Lyu00], and
the localization of complete local domains of equal-characteristic zero at certain elements
[Put18].

Theorem 2.7 ([NB13, Section 2]). Let K be a field of characteristic zero. Let R be a
differentiably admissible K-algebra of dimension d. Then,

(1) Dn
R|K = (DerR|K +R)n, and

(2) DR|K ∼= R〈DerA|K〉.
(3) DR|K is left and right Noetherian;
(4) grD•

R|K
(DR|K) is a regular ring of pure graded dimension 2d;

(5) gl. dim(DR|K) = d.
In particular, DR|K is an R-algebra of differentiable type with the order filtration.

Theorem 2.8 ([NB13, Section 2]). Let K be a field of characteristic zero, and K(s) =
Frac(K[s]). Let R be a differentiably admissible K-algebra of dimension d, and R(s) =
R ⊗K K(s). Then, D(s) = DR|K ⊗K K(s) is a R(s)-algebra of differentiable type with the
order filtration.

Definition 2.9. Let A be an R-algebra with 1. By a filtration F • = {F i}i∈N on A we
mean an ascending filtration of finitely generated R-modules F i such that A =

⋃
i∈N F

i

and F iF j ⊆ F i+j. In this case we say that (A,F •) is filtered. We say that a left A-module
M with a filtration Γ• = {Γi}i∈N is F •-compatible if

(1) Γi is finitely generated,
(2) M =

⋃
i∈N Γi,

(3) F iΓj ⊆ Γj.
We say that Γ• is a good filtration if grΓ•(M) is finitely generated as a grF •(A)-module.
We also consider the analogue definitions for right A-modules.

Definition 2.10. We say that a filtered R-algebra (A,F •) is an algebra of differentiable
type if grF •(A) is a commutative Noetherian ring with 1 which is regular with pure graded
dimension.

Remark 2.11. Let A be an R-algebra of differentiable type. We note that every two
good filtrations, Γ• and Γ̃•, of M are shift cofinal. Specifically, there exists a ∈ N such
that

Γi−a ⊆ Γ̃i ⊆ Γi+a.

Furthermore, M is finitely generated as A-module if and only if M has a good filtration.
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Definition 2.12. Let A be a filteredR-algebra, andM be a left A-module. The dimension
of M is defined by

dimA(M) = dimgrF• (A) grΓ•(M),

where Γ• is a good filtration of M .

Definition 2.13. Let A be an algebra of differentiable type. Let M 6= 0 be a finitely
generated A-module. We define

gradeA(M) = inf{j | ExtjA(M,A) 6= 0}.

We note that gradeA(M) ≤ gl. dim(A) = dim(A)− gl. dim(A).

Proposition 2.14 ([Bjö79, Chapter 2., Theorem 7.1]). Let A be an algebra of differen-
tiable type, and let M 6= 0 be a finitely generated A-module. Then,

dimA(M) + gradeA(M) = dim(A).

In particular, dimA(M) ≥ dim(A)− gl. dim(A).

Definition 2.15. Let A be a K-algebra of differentiable type. Let M be a finitely gener-
ated left (right) A-module. We say that M is in the left (right) Bernstein class if either
M = 0 or dimA(M) = dim(A)− gl. dim(A).

This class of Bernstein modules is an analogue of the class of holonomic modules. In par-
ticular, it is closed under submodules, quotients, extensions, and localizations [MNM91,
Proposition 1.2.7]).

Let A be a K-algebra of diferentiable type and global dimension d, and M be a finitely
generated A-module. If M is in the Bernstein class of A, then ExtiA(M,A) 6= 0 if and
only if i = d [Bjö79]. Then, the functor that sends M to ExtdA(M,A) is an exact con-
travariant functor that interchanges the left and the right Bernstein class. Furthermore,
M ∼= ExtdA(ExtdA(M,A), A) for modules in the Bernstein class. Since A is left and right
Noetherian, the modules in the Bernstein class are both Noetherian and Artinian. We
conclude that the modules in the Bernstein class have finite length as A-modules [MNM91,
Proposition 1.2.5])

2.4. Log-resolution of meromorphic functions. Let R be a differentiably admissible
K-algebra. Given nonzero elements f, g ∈ R we are interested in the function f/g. Most
likely f, g : (Cn, 0) −→ (C, 0) are germs of holomorphic functions and we refer to f/g :
(Cn, 0) −→ (C, 0) as a germ of a meromorphic function. Taking local coordinates we will
assume f, g ∈ R = C{x1, . . . , xn}. Recall that f/g and f ′/g′ define the same germ if there
exist a unit u ∈ OCn,0 such that f = uf ′ and g = ug′.

Definition 2.16. Let X be a n-dimensional smooth analytic manifold, U a neighborhood
of 0 ∈ Cn and π : X → U a proper analytic map. We say that π is log resolution of the
meromorphic germ f/g if:

• π is a log resolution of the hypersurface H = {f|U = 0} ∪ {g|U = 0}, i.e. π is an
isomorphism outside a proper analytic subspace in U ;
• there is a normal crossing divisor F on X such that π−1(H) = OX(−F );
• the lifting f̃/g̃ = (f/g) ◦ π = f◦π

g◦π defines a holomorphic map f̃/g̃ : X → P1.
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One can obtain a log resolution π of f/g from a log resolution π′ of f · g by blowing up
along the intersections of irreducible components of π′−1{f · g = 0} until the irreducible
components of the strict transform in π−1{f = 0} and π−1{g = 0} are separated by a
dicritical component, i.e. an exceptional divisor E of π for which (f̃/g̃)|E : E → P1 is a
surjective map.

Let {Ei}i∈I be the irreducible components of F . We denote the relative canonical
divisor, defined by the Jacobian determinant of π, as the divisor

Kπ =
∑

kiEi.

We also denote the strict transforms of f and g as

f̃ = π∗f =
∑

Nf,iEi, g̃ = π∗g =
∑

Ng,iEi.

Moreover, we define
Nf/g,i = Nf,i −Ng,i.

Notice that Ei is a dicritical component if and only if Nf/g,i = 0. It is then natural to
associate with the meromorphic germ f/g the divisor

F̃ =
∑
i∈I

Nf/g,iEi.

For i ∈ I we write i ∈ I0 if Nf,i > Ng,i, i ∈ I∞ if Ng,i > Nf,i, and i ∈ Id if Nfi = Ng,i. We
have the decomposition F̃ = F̃0 + F̃∞ + F̃d where

F̃0 =
∑
i∈I0

Nf/g,iEi, F̃∞ =
∑
i∈I∞

Nf/g,iEi, and F̃d =
∑
i∈Id

Nf/g,iEi,

with F̃d = 0 by definition.

Remark 2.17. Around a given point p ∈ X we may consider a local system of coordinates
(z1, . . . , zn) such that the components Ei containing p are given by the equations zi = 0.
Assume that p ∈ Ei, for i = 1, . . . ,m, then we have the local equations:

f̃ = uz
Nf,1
1 · · · zNf,rm , and g̃ = vz

Ng,1
1 · · · zNg ,rm ,

where u, v ∈ OX,p are units. Moreover, the local equations of the relative canonical divisor
are

ω̃ = π∗(dx1 ∧ · · · ∧ dxn) = w(zk11 · · · zkmm ) dz1 ∧ · · · ∧ dzn,
where w ∈ OX,p is a unit as well. Furthermore, applying some extra blow-ups if necessary,
we may assume that either f̃ divides g̃ or the other way around, so we have either

f̃

g̃
=
u

v
z
Nf/g,1
1 · · · zNf/g,mm or

f̃

g̃
=
u

v

1

z
|Nf/g,1|
1 · · · z|Nf/g,m|m

.

3. Meromorphic Bernstein-Sato polynomial for polynomial rings

Our first goal is to introduce the theory of Bernstein-Sato polynomials for quotients of
polynomials. We single out this case for the convenience of the reader since it follows the
same lines of reasoning as in the classical case.
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Definition 3.1. Let f, g ∈ R = C[x1, . . . , xd] be nonzero elements. We set Mf/g =

Rfg

(
f
g

)s
. This free module has an structure of DR|C[s]-modulo given by

∂ · h

fagb

(
f

g

)s

= ∂

(
h

fagb

)(
f

g

)s

+ s
h

fa+1gb−1
∂

(
f

g

)(
f

g

)s

.

where ∂ is a C-linear derivative on R.

Theorem 3.2. Let f, g ∈ R = C[x1, . . . , xd] be a nonzero elements. There exists b(s) ∈
C[s] \ {0} and δ(s) ∈ DR|C[s] such that

δ(s)
f

g

(
f

g

)s

= b(s)

(
f

g

)s

.

Proof. Let R(s) = R ⊗C[s] C(s) and D(s) = DR(s)|C(s), where C(s) denotes the fraction
field of C[s]. Let M = Mf/g ⊗C[s] C(s). We claim that M is a holonomic D(s)-module.
Let θ = deg(f) + deg(g). We set a filtration of finite dimensional C-vector spaces.

Γn =
1

fngn

{
h

(
f

g

)s

| deg(h) ≤ (θ + 1)n

}
.

We have that xiΓn ⊆ Γn+1. We now observe that ∂iΓn ⊆ Γn+1. Given h
fngn

(
f
g

)s
∈ Γn, we

have that

∂i
h

fngn

(
f

g

)s

=
fngnδi(h)− nhfn−1gn−1∂i(fg)

f 2ng2n

(
f

g

)s

+
sh

fn+1gn−1

(
gδi(f)− fδi(g)

g2

)(
f

g

)s

=
fgδi(h)− nh∂i(fg)

fn+1gn+1

(
f

g

)s

+
sh(gδi(f)− fδi(g))

fn+1gn+1

(
f

g

)s

.

By considering the degrees of the polynomials appearing in the numerators, we have that
∂iΓ

n ⊆ Γn+1. Then, Γ• is a filtration compatible with the Bernstein filtration. We observe
that dimC(s) Γn ≤ dimC[R]≤(θ+1)n, where the latter is a polynomial on n of degree d. Then,
M is a holonomic D(s)-module.

Since M is holonomic, it has finite length, and the sequence of D(s)-submodules

D(s)
1

fg

(
f

g

)s

⊇ D(s)
1

f 2g

(
f

g

)s

⊇ D(s)
1

f 3g

(
f

g

)s

⊇ . . .

stabilizes. There exists m ∈ N such that

D(s)
1

fm−1g

(
f

g

)s

= D(s)
1

fmg

(
f

g

)s

.

Thus, there exists δ(s) ∈ D(s) such that

δ(s)

(
1

fm−1g

)(
f

g

)s

=

(
1

fmg

)(
f

g

)s

.

Then, there exists b(s) ∈ C[s] \ {0} such that δ̃(s) = b(s)δ(s) ∈ DR|C[s]. Hence,

(3.0.1) δ̃(s)

(
1

fm−1g

)(
f

g

)s

= b(s)
1

fmg

(
f

g

)s

.
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We have an isomorphism of DR[s]|C[s]-modules ψ : Mf/g →Mf/g defined by

p(s)h

fαgβ

(
f

g

)s

7→ p(s−m)h

fα+mgβ−m

(
f

g

)s

.

After applying ψ to Equation 3.0.1, we obtain that

δ̃(s−m)
f

g

(
f

g

)s

= b(s−m)
1

g

(
f

g

)s

.

Finally multiplying by g, we obtain the desired equation. �

4. Meromorphic Bernstein-Sato polynomial for differentibly admissible
algebras

In this Section we will generalize the Bernstein-Sato theory to the case of differentibly
admissible algebras. As in the polynomial case, the functional equation takes place in the
following module.

Definition 4.1. Let R be a differentiably admissible K-algebra. Let f, g ∈ R be nonzero
elements, take α ∈ R≥0 and set M α

f/g[s] = Rfg[s]
fs

gs+α . This free module has an structure
of DR|K[s]-module given by

∂ · h(s)

fagb
f s

gs+α
= ∂

(
h(s)

fagb

)
f s

gs+α
+ s

∂(f)h(s)

fa+1gb
f s

gs+α
− (s+ α)

h(s)∂(g)

fagb+1

f s

gs+α
,

where ∂ is a K-linear derivative on R. If α = 0, we just write Mf/g[s] = Rfg[s]
(

f
g

)s
.

Proposition 4.2. Let R be a differentiably admissible K-algebra. Let f, g ∈ R be nonzero
elements and α ∈ R≥0. There exists b(s) ∈ K[s] \ {0} and δ(s) ∈ DR|K[s] such that

δ(s)f
f s

gs+α
= b(s)

f s

gs+α
.

Proof. We have that the global dimensions of DR(s)|K(s) and DR|K are equal to d = dim(R)
[MNM91, Proposition 2.2.3]. For the sake of simplicity we denote D = DR|K, D(s) =
DR(s)|K(s) M [s] = M α

f/g[s], and M (s) = M [s] ⊗K K(s). We also consider Rfg with the
usual action of DR|K and we set Rfg(s) = Rfg[s] ⊗K[s] K(s), and Dfg(s) = Rfg ⊗R D(s).
We have a chain of isomorphisms

ExtiDf (s)(M (s), Dfg(s)) ∼= ExtiDfg(s)(Rfg(s)⊗Rfg(s) M (s), Dfg(s))

∼= ExtiDfg(s)(Rfg(s),HomRfg(s)(M (s), Dfg(s)))

∼= ExtiDfg(s)(Rfg(s), Dfg(s))⊗Dfg(s) HomRfg(s)(M (s), Dfg(s)))

∼= ExtiDfg(s)(Rfg, Dfg)⊗Dfg HomRfg(s)(M (s), Dfg(s)))

∼= (ExtiD(R,D)⊗R Rfg)⊗Dfg HomRfg(s)(M (s), Dfg(s))).

Since ExtiD(R,D) ⊗R Rfg = 0 for i 6= d, we conclude that ExtiDfg(s)(M (s), Dfg(s)) 6= 0

for i 6= d. Then, M (s) has a D(s)-submodule N in the Bernstein class of D(s) such that



10 ÀLVAREZ MONTANER, GONZÁLEZ VILLA, LEÓN-CARDENAL, AND NÚÑEZ-BETANCOURT

Nfg = M (s) [MNM91, Proposition 1.2.7 and Proof of Theorem 3.1.1]. Then, there exists
` ∈ N such that f `g` fs

gs+α ∈ N . Since N has finite length as DA(s)|K(s)-module the chain

D(s)f `g`
f s

gs+α
⊇ D(s)f `+1g`

f s

gs+α
⊇ D(s)f `+1g`

f s

gs+α
⊇ . . .

stabilizes. Then, there exists m ∈ N and a differential operator δ(s) ∈ DA(s)|K(s) such that

δ(s)f `+m+1 f s

gs+α
= f `+m

f s

gs+α
.

After clearing denominators and applying a shifting, there exists δ̃(s) ∈ DA|K[s] such that

δ̃(s)f f s = f s.

�

Definition 4.3. Let R be a differentiably admissible K-algebra. Let f, g ∈ R be nonzero
elements and α ∈ R≥0. The Bernstein-Sato polynomial bαf/g(s) ∈ K[s] of order α of
the meromorphic function f/g is the monic polynomial of smallest degree satisfying the
functional equation in Proposition 4.2.

Proposition 4.4. Let R be a differentiably admissible K-algebra. Let f, g ∈ R be nonzero
elements and α ∈ R≥0. The following are equivalent:

(1) The Bernstein-Sato polynomial of f/g of order α;

(2) The minimal polynomial of the action of s on
DR|K[s] fs

gs+α

DR|K[s]f fs

gs+α

;

(3) The monic element of smallest degree in K[s] ∩ (AnnDR|K[s](
fs

gs+α ) +DR|K[s]f).

Proof. The equivalence between the first two follows from the definition. For the equiva-
lence between the second and the third, we observe that

DR|K[s] fs

gs+α

DR|K[s]f fs

gs+α

∼= coker

(
DR|K[s]

AnnDR|K[s](f s)

·f−→
DR|K[s]

AnnDR|K[s](
fs

gs+α )

)
∼=

DR|K[s]

AnnDR|K[s](
fs

gs+α ) +DR|K[s]f
.

�

We give a DR[t]|K-module structure on M α
f/g[s] where the new variable t acts as multi-

plication by f . We define

t · h(s)

fagb
f s

gs+α
=
h(s+ 1)

fagb
f

f s

gs+α

∂t ·
h(s)

fagb
f s

gs+α
=
h(s− 1)

fagb
1

f

f s

gs+α

A simple computation shows that ∂tt − t∂t = 1 and that −∂tt acts as multiplication by
s. Moreover ts − st = t and we may consider the ring DR|K〈s, t〉 ⊆ DR[t]|K. Denote for
simplicity

N α
f/g = DR|K[s]

f s

gs+α
⊆M α

f/g[s]
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We have that N α
f/g is indeed a DR|K〈s, t〉-module. As in the classical case, we may view

the Bernstein-Sato polynomial of f/g of order α as the minimal polynomial of the action
of −∂tt = s on

N α
f/g

t N α
f/g

Building upon the previous construction we deduce a Bernstein-Sato polynomial of a
meromorphic function that mimics the classical case.

Theorem 4.5. Let R be a differentiably admissible K-algebra. Let f, g ∈ R be nonzero
elements. There exists b(s) ∈ K[s] \ {0} and δ[s] ∈ DR|K[s] such that

δ(s)
f

g

(
f

g

)s

= b(s)

(
f

g

)s

which is a functional equation in M 1
f/g[s].

Proof. By Proposition 4.2, we have the functional equation

δ(s)f
f s

gs+1
= b(s)

f s

gs+1

in M 1
f/g[s]. Let φ : M 1

f/g[s]→M 0
f/g[s] be the map defined by

p(s)h

fagb
f s

gs+1
7→ p(s)h

fagb+1

(
f

g

)s

.

We note that φ is an isomorphism of DR|K[s]-modules. Then, after appliying φ, we get
that

δ(s)
f

g

(
f

g

)s

= b(s)
1

g

(
f

g

)s

The result follows after multiplying by g. �

Definition 4.6. Let R be a differentiably admissible K-algebra and f, g ∈ R be nonzero
elements. The Bernstein-Sato polynomial bf/g(s) ∈ K[s] of the meromorphic function f/g
is the monic polynomial of smallest degree satisfying the functional equation in Theorem
4.5.

Remark 4.7. In this situation we may interpret the Bernstein-Sato polynomial of f/g
as the minimal polynomial of the action of s on

DR|K[s] fs

gs+α

DR|K[s]f
g

fs

gs+α

.

We may also give a DR[t]|K-module structure where the new variable t acts now as multi-
plication by f/g.

Remark 4.8. Takeuchi [Tak21] has independently introduced a theory of Bernstein-
Sato polynomials which slightly differs from the one in Definition 4.3. He defines the
Bernstein-Sato polynomial bmero

f/g,α(s) of order α of the meromorphic function f/g as the
monic polynomial of smallest degree satisfying the functional equation

(4.0.1) δ1[s]
f

g

f s

gs+α
+ · · ·+ δ`(s)

f `

g`
f s

gs+α
= b(s)

f s

gs+α
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for some δi[s] ∈ DR|K[s] and ` ≥ 1 large enough. He points out that one may also consider
the functional equation

(4.0.2) δ(s)
f

g

f s

gs+α
= b(s)

f s

gs+α
,

which would lead to a Bernstein-Sato polynomial that we temporaly denote by bf/g,α(s).
They satisfy the following relation

bmero
f/g,α(s) | bf/g,α(s).

When comparing to our family of Bernstein-Sato polynomials of order α, which satisfy
the functional equation

(4.0.3) δ(s)f
f s

gs+α
= b(s)

f s

gs+α
,

we have
bαf/g(s) | bf/g,α(s).

We point out that Takeuchi’s bf/g,0(s) coincides with our bf/g(s) and, following the proof
of Theorem 4.5, we have

bf/g(s) | b1
f/g(s).

Example 4.9 (Separated variables). Take two sets of independent variables x = (x1, . . . , xk)
and y = (y1, . . . , yl), i.e. xi 6= yj for every i = 1, . . . , k and j = 1, . . . , l. Let bf (s) be
the Bernstein- Sato polynomial of f(x), and let P (s, x, ∂x) be a differential operator such
that

P (s, x, ∂x)f
s+1 = bf (s)f

s.

Then for any α ∈ R≥0 and g(y) we have

P (s, x, ∂x)f
f s

gs+α
= bf (s)

f s

gs+α
,

and thus bf (s) | bαf/g(s).

Example 4.10. As a particular case of the preceding example, consider the function

h(x1, . . . , xn) =
xm1

1 · · ·x
mk
k

x
mk+1

k+1 · · · xmnn
.

Then for every α ∈ R≥0 the polynomial bαh(s) equals
k∏
i=1

(
mi∏
j=1

(
s+

j

mi

))
.

Remark 4.11. Since the operator δ(s) = 1 verifies the functional equation

δ(s)
1

gs+α
= 1

1

gs+α
,

we have that bα1/g(s) = 1 for every α ∈ R≥0, and thus the Bernstein-Sato polynomial of
1/g has no roots. However, there exist non constant functions g for which the topological
zeta function of 1/g has non trivial poles [GVL14]. This phenomenon shows that a direct
generalization of the strong monodromy conjecture in the case of meromorphic functions
is not possible and deserves further investigation.
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We now show that −1 is always a root of bαf/g in most cases (see also Remark 4.11).

Proposition 4.12. Let R be a differentiably admissible K-algebra and f, g ∈ R be nonzero
elements such that f is a nonzero divisor in R/gR nor a unit. Then, bαf/g(−1) = 0 for
every α ∈ R.

Proof. We fix α ∈ R. We set Mα
f/g = Rfg

1
gα
. This free module has an structure of

DR|K-module given by

∂ · h

fagb
1

gα
= ∂

(
h

fagb

)
1

gα
− α δ(g)

fagb+1

1

gα

where ∂ is a K-linear derivative on R. There is a specialization map of DR|K-modules
from M α

f/g[s]→Mα
f/g by sending s 7→ −1.

There exists δ(s) ∈ DR|K[s] such that

(4.0.4) δ(s)f
f s

gs+α
= b(s)

f s

gs+α
.

After specializing, we have

(4.0.5) δ(−1)
1

gα
= b(−1)

1

f

1

gα
.

We note that δ(−1) 1
gα
∈ Rg

1
gα
. Then, there exists u ∈ R and θ ∈ N such that δ(−1) 1

gα
=

u
gθ

1
gα
. Then Equation 4.0.5 implies u

gθ
= b(−1) 1

f
, which is equivalent to fu = b(−1)gθ. If

θ = 0, we have that b(−1) = 0, because f is not a unit. Since f is a nonzero divisor in
R/gR, it is also a nonzero divisor in R/gθR if θ 6= 0. Thus bαf/g(−1) = 0. �

Corollary 4.13. Let R = C[x1, . . . , xd] and f, g ∈ R be nonzero elements such that f
does not divide g. Then, bαf/g(−1) = 0 for every α ∈ R.

Proof. We can assume that f and g are relatively prime. If g is a unit, this is a known
fact of the classical Bernstein-Sato polynomial. Then, the claim follows from Proposition
4.12, because f and g form a regular sequence. We note that f is not a unit because it
does not divide g. �

4.1. Rationality of the roots of the meromorphic Bernstein-Sato polynomial.
A classical result of Kashiwara [Kas77] asserts that the roots of the Bernstein-Sato poly-
nomial are negative rational numbers. This result was later refined by Lichtin [Lic89]
by giving a set of candidate roots described in terms of the numerical data of the log
resolution of the singularity. A similar result also holds in the meromorphic case.

Let OCn,0 be the ring of germs of holomorphic functions around a point 0 ∈ Cn, which
we identify with R = C{x1, . . . , xn} by taking local coordinates. We take a small neigh-
borhood of the origin U ⊆ Cn where f and g are holomorphic. Let Jf = ( df

dx1
, . . . , df

dx1
)

and Jg = ( dg
dx1
, . . . , dg

dx1
) be the Jacobian ideals of f and g respectively. We may assume

that the zero locus of Jf is contained in the zero locus of f and the same condition holds
for g.

Let π : X → U be a log resolution of the meromorphic germ f/g, which is in particular
a log resolution of f−1(0) ∪ g−1(0). In the sequel we will use the notations in Section 2.4
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but just recall that we associated to f/g the divisor F̃ = F̃0 + F̃∞ where

F̃0 =
∑
i∈I0

Nf/g,iEi and F̃∞ =
∑
i∈I∞

Nf/g,iEi.

Theorem 4.14. Let f, g ∈ R be nonzero holomorphic functions and α ∈ R≥0. The roots
of bαf/g(s) are negative rational numbers. Moreover, they are contained in the set{

ki + 1 + `

Nf/g,i

; ` ≥ 0, i ∈ I0

}
.

Proof. Let π : X → U be a log resolution of the meromorphic germ f/g and let DX and D
denote the corresponding rings of differential operators. Assume that in local coordinates
around a point p ∈ X we have either

f̃

g̃
= zN1

1 · · · zNmm or
f̃

g̃
=

1

zN1
1 · · · zNmm

Therefore, locally at the point p, we have that the Bernstein-Sato polynomial of order α
is either

bα
f̃/g̃

(s) =
m∏
i=1

(
Ni∏
j=1

(
s+

j

Ni

))
or bα

f̃/g̃
(s) = 1.

By considering a cover of X by affine open subsets where we can use local coordinates as
above, we obtain the global Bernstein-Sato polynomial, that we also denote by bα

f̃/g̃
(s) if

no confusion arises, as the least common multiple of the local Bernstein-Sato polynomials.
Then the rationality result boils down to proving the existence of an integer ` ≥ 0 such
that

(4.1.1) bαf/g(s) | bαf̃/g̃(s)b
α
f̃/g̃

(s+ 1) · · · bα
f̃/g̃

(s+ `).

The proof of this fact in the meromorphic case is analogous to the classical case con-
sidered by Kashiwara. We only have to be careful when dealing with the module

N α
f̃/g̃

= DX [s]
f̃ s

g̃s+α

If f̃
g̃

= zN1
1 · · · zNmm we have that N α

f̃/g̃
is subholonomic as DX-module as in the classical

case. Specifically, its characteristic variety is the closure of {(x, sdf(x)) ; f(x) 6= 0, s ∈ C}
in the cotangent bundle T ∗X and thus it has dimension n + 1. N α

f̃/g̃
has the same

characteristic variety when f̃
g̃

= 1

z
N1
1 ···z

Nm
m

so it is subholonomic as well.
The rest of the proof follows the same lines of reasoning of Kashiwara so we will just

sketch the key points and refer to [Kas77] for details. Let

N = R0π+N α
f̃/g̃

= R0π∗(DU←X ⊗L
D N α

f̃/g̃
)

be the degree zero direct image of N α
f̃/g̃

, where DU←X denotes the transfer bimodule.

There is a canonical section u ∈ N associated to 1U←X ⊗ f̃s

g̃s+α ∈ DU←X ⊗L
D N α

f̃/g̃
that

allows us to describe a D-submodule

N ′ = D[s]u ⊆ N
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This inclusion is indeed a morphism of D〈s, t〉-modules. We have that N is subholonomic
as D-module [Kas77, Lemma 5.7] and moreover N /tN is holonomic so the action of s
has a minimal polynomial which we denote bN (s). We have that N ′/tN ′ is holonomic
as well which leads to a polynomial bN ′(s). Using that N /N ′ is also holonomic we get
by [Kas77, Proposition 5.11] that there exist ` ≥ 0 large enough such that t`N ⊆ N ′.
From the relation

bN (s+ j)tjN = tjbN (s)N ⊆ tj+1N ,

j ≥ 0, we obtain

bN (s+ `) · · · bN (s)N ′ ⊆ bN (s+ `) · · · bN (s)N ⊆ t`+1N ⊆ tN ′

and thus bN ′(s) | bN (s + `) · · · bN (s). Finally, we have to relate this equation to (4.1.1).
On the one hand, since bα

f̃/g̃
(s)N α

f̃/g̃
⊆ tN α

f̃/g̃
there exist a DX-module endomorphism

h : N α
f̃/g̃
→ N α

f̃/g̃
such that bα

f̃/g̃
(s) = t ◦ h. Applying the functor R0π+ we get

bα
f̃/g̃

(s)N = t ◦ R0π+(h)N ⊆ tN

and thus bN (s) | bα
f̃/g̃

(s). On the other hand we have a surjection of D〈s, t〉-modules
N ′ � N α

f/g and thus bN ′(s)N α
f/g ⊆ tN α

f/g which gives bαf/g(s)) | bN ′(s) and Equation
(4.1.1) follows.

The refinement given by Lichtin [Lic89] requires to pass from left to right D-modules in
order to plug in all the information given by the relative canonical divisor. Namely, for a
leftD-module M we consider the rightD-module M (r) := ωR⊗RM . In local coordinates,
this operation is given by the involution on D that sends a differential operator δ to its
adjoint δ∗ described uniquely by the properties (δδ′)∗ = δ′∗δ∗, f ∗ = f for any f ∈ R and
∂∗i = −∂i. This gives an equivalence between left and right D-modules. We can extend
this to an equivalence between left and right D〈s, t〉-modules by taking t∗ = t, ∂∗t = −∂t
and s∗ = (−∂tt)∗ = t∂t = ∂tt− 1 = −s− 1. For an element u in a D〈s, t〉-module M we
set u∗ = dx1 ∧ · · · ∧ dxn ⊗ u. Then we have u∗δ∗ = (δu)∗ for any δ ∈ D〈s, t〉.

Now, for u = fs

gs+α ∈ N α
f/g we have that the functional equation

δ(s)f
f s

gs+α
= b(s)

f s

gs+α
becomes f

(
f s

gs+α

)∗
(δ(s))∗ = (b(s))∗

(
f s

gs+α

)∗
and the minimal polynomials satisfying these equations are related by

(4.1.2) bαf/g(s) = bu(s) = bu∗(−s− 1) = bα(f/g)∗(−s− 1).

In particular bu∗(s) is the minimal polynomial of the action of s on (N α
f/g)

(r)/(N α
f/g)

(r)t.
Let π : X → U be a log resolution of f/g. We may construct (N α

f̃/g̃
)(r) = ωX ⊗OX N α

f̃/g̃

as before but, following Lichtin, we consider the DX〈s, t〉-submodule

Nv := vDX [s]

with v = π∗(dx1 ∧ · · · ∧ dxn) ⊗ f̃s

g̃s+α ∈
(
N α
f̃/g̃

)(r)

. In local coordinates around a point
p ∈ X we have either

v = wzN1s+k1
1 · · · zNms+kmm or v = wz−N1s+k1

1 · · · z−Nms+kmm ,
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where w is a unit. The Bernstein-Sato polynomial associated to these elements is either

bv(s) =
m∏
i=1

(
Ni∏
j=1

(
s+

ki + j

Ni

))
or bv(s) = 1,

and we have a relation with the Bernstein-Sato polynomial associated to Nv, i.e. the
minimal polynomial of the action of s on Nv/Nvt, given by bNv(s) = bv(−s − 1). By
considering a cover of X we get the global Bernstein-Sato polynomial that we also denote
by bNv(s) if no confusion arises.

Then the refined version of Lichtin result follows from proving the existence of an integer
` ≥ 0 such that the polynomial bu∗(s) in Equation (4.1.2) satisfies

(4.1.3) bu∗(s) | bNv(s)bNv(s− 1) · · · bNv(s− `).

The rest of the proof is analogous to Kashiwara’s proof of rationality but working in the
category of right D-modules.

�

Corollary 4.15. Let f, g ∈ R be nonzero holomorphic functions. The roots of bf/g(s) are
negative rational numbers. Moreover, they are contained in the set{

ki + 1 + `

Nf/g,i

; ` ≥ 0, i ∈ I0

}
.

Proof. It follows from the fact that bf/g(s) divides b1
f/g(s). �

5. Archimedean Local Zeta Functions

In this section we use the Bernstein-Sato polynomial of f/g to study Archimedean
local zeta functions. Let OCn,0 be the ring of germs of holomorphic functions around a
point 0 ∈ Cn, which we identify with R = C{x1, . . . , xn} by taking local coordinates. For
definiteness we take a small neighborhood of the origin U ⊆ Cn where f and g are both
holomorphic. By a test function we mean a smooth function with compact support on
Cn. Then the local zeta function attached to a test function φ and f/g is defined as

Zφ(s, f/g) =

∫
U\H

φ(x)

∣∣∣∣f(x)

g(x)

∣∣∣∣2s dx,

where s is a complex number and H = f−1(0) ∪ g−1(0). When g = 1 (the classical
case), local zeta functions were introduced by Gel’fand and Shilov in the 50’s [GS16].
In that case is not difficult to show that Zφ(s, f/1) = Zφ(s, f) converges on the half
plane {s ∈ C ; Re(s) > 0} and defines a holomorphic function there. In contrast, the
convergence of the parametric integral Zφ(s, f/g) is a delicate matter as Veys and Zúñiga-
Galindo noted [VZG17, Remark 2.1 (1)]. In particular they explain that the convergence
of the integral does not follow from the fact that φ has compact support and they use an
embedded resolution of H to show that the integral has a region of convergence [VZG17,
Theorem 3.5 (1)]. As in the classical case, the meromorphic continuation of Zφ(s, f/g)
does not depend on the set U .

Building on the properties of the log canonical threshold of f and g we describe below
a simple region of convergence for Zφ(s, f/g). First, we recall the definition of the log
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canonical threshold of f and some of its properties regarding the local zeta function of f
and φ.

Definition 5.1. Let f be a holomorphic function in an open set U ⊆ Cn. The log-
canonical threshold of f (at the origin) is the number

lct0(f) = sup

{
λ ∈ R>0 ;

∫
Bε(0)

|f |−2λ <∞, for some ε > 0

}
.

It is known that lct0(f) is a positive rational number. Furthermore, we have that
Zφ(s, f) is an holomorphic function on Re(s) > − lct0(f). Using this fact one may show
that Zφ(s, g−1) =

∫
U\g−1(0)

φ(x) |g(x)|−2s dx, is holomorphic on Re(s) < lct0(g).

Lemma 5.2. Let f and g be nonzero holomorphic functions. Then, the integral Zφ(s, f/g)
converges for − lct0(f) < Re(s) < lct0(g). Furthermore, it defines a holomorphic function
there.

Proof. First we show that Zφ(s, f/g) is finite on the interval − lct0(f) < Re(s) ≤ 0. Note
that in this region the function |g(x)|−2s is well defined and continuous over U \H. Then∣∣∣∣∣

∫
U\H

φ(x)

∣∣∣∣f(x)

g(x)

∣∣∣∣2s dx

∣∣∣∣∣ ≤
∫
U\H
|φ(x)|

∣∣∣∣f(x)

g(x)

∣∣∣∣2 Re(s)

dx <∞,

since the the support of φ is compact and
∣∣∣f(x)
g(x)

∣∣∣2 Re(s)

is continuous. A symmetric argument
shows that Zφ(s, f/g) < ∞ for 0 ≤ Re(s) < lct0(g). The fact that Zφ(s, f/g) defines a
holomorphic function on − lct0(f) < Re(s) < lct0(g) can be proved as in the classical
case by showing that ∂/∂s̄(Zφ(s, f/g)) = 0, which follows in particular from Lebesgue’s
dominated convergence theorem [Igu78, Theorem 3.1]. �

Remark 5.3. The region of convergence of Lemma 5.2 is in general smaller that the region
of convergence described in the work of Veys and Zuñiga-Galindo [VZG17]. According to
their Example 3.13 (4), the integral Zφ(s, y2 + x4/x2 + y4) converges in −3/2 < Re(s) <
3/2, whereas Lemma 5.2 shows that the integral converges in −3/4 < Re(s) < 3/4. We
point out that the region of convergence of Veys and Zuñiga-Galindo is optimal in the
sense that the endpoints give actual poles for Zφ(s, f/g), i.e. −3/2 and 3/2 are poles of
Zφ(s, y2 + x4/x2 + y4).

Another property of Zφ(s, f) that one may also study is the existence of a meromorphic
continuation to the whole complex plane. This fact was conjectured by Gel’fand in the
50’s and proved by Bernstein and Gel’fand [BG69], Atiyah [Ati70] using resolution of
singularities, and Bernstein [Ber72] using the Bernstein-Sato polynomial. In the case of
meromorphic functions, Veys and Zúñiga-Galindo [VZG17, Theorem 3.5 (2)] showed that
Zφ(s, f/g) has a meromorphic continuation to the whole complex plane and its poles are
described by means of the numerical data of an embedded resolution of singularities of
H. By using the theory of Bernstein-Sato polynomials developed in Sections 3 and 4 we
present a proof of the meromorphic continuation of Zφ(s, f/g), resembling the original
proof of Bernstein [Ber72], giving in addition a shorter list of candidate poles.

For a differential operator δ(s) ∈ DR|C[s] we denote the conjugate operator by δ(s).
This is the operator obtained from δ by replacing xi with xi and ∂xi with ∂xi . A simple
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calculation shows that the functional equation in Lemma 4.2 implies

(5.0.1) δ(s)δ(s)
|f |2(s+1)

|g|2(s+α)
= bαf/g(s)

2 |f |2s

|g|2(s+α)
in M α

f/g[s].

Theorem 5.4. Let f and g be nonzero holomorphic functions and take α = lct0 g. The
local zeta function Zφ(s, f/g) has a meromorphic continuation to the whole complex plane
C, and its poles are contained in the set{

ζ − kα ; k ∈ Z≥0

}
ζ root of bα

f/g
(s)

⋃{
kα− ξ ; k ∈ Z≥0

}
ξ root of bα

g/f
(s)
.

In particular, the poles of Zφ(s, f/g) are rational numbers.

Proof. Let bαf/g(s) ∈ C[s] be the nonzero polynomial of Lemma 4.2, note that there exists
a map of DR|C-modules

ψλ : M α
f/g[s]→ Frac(C{x1, . . . , xd})

that maps s 7→ λ and fs

gs+α 7→ fλ

gλ+α
for every λ ∈ C. We also notice that after possible

shrinking U , (5.0.1) remains valid for f, g ∈ R, and then multiplication of Zφ(s, f/g) by
bαf/g(s)

2 gives

bαf/g(s)
2 Zφ(s, f/g) =

∫
U\H

φ(x)bαf/g(s)
2

∣∣∣∣f(x)

g(x)

∣∣∣∣2s dx

=

∫
U\H

φ(x)|g(x)|2α bαf/g(s)2 1

|g(x)|2α

∣∣∣∣f(x)

g(x)

∣∣∣∣2s dx

=

∫
U\H

φ(x)|g(x)|2α
(
δ(s)δ(s)

|f(x)|2(s+1)

|g(x)|2(s+α)

)
dx

=

∫
U\H

φ(x)|g(x)|2α
(
δ(s)δ(s)|f(x)|2−2α

∣∣∣∣f(x)

g(x)

∣∣∣∣2(s+α)
)

dx

=

∫
U\H

(
|f(x)|2−2αδ∗(s)δ

∗
(s) · φ(x)|g(x)|2α

) ∣∣∣∣f(x)

g(x)

∣∣∣∣2(s+α)

dx

= Zψ(s+ α, f/g).

Here δ∗ denotes the adjoint operator of δ and ψ = |f(x)|2−2αδ∗(s)δ
∗
(s) · φ(x)|g(x)|2α is a

complex test function. By Lemma 5.2, Zψ(s + α, f/g) converges for β − α < Re(s) < 0
and thus

Zφ(s, f/g) =
Zψ(s+ α, f/g)

bαf/g(s)
2

converges in β − α < Re(s) < α outside the possible roots of bf/g(s). If we now multiply
Zψ(s + α, f/g) by bαf/g(s + α)2 and repeat the reasoning above, we may conclude that
Zφ(s, f/g) can be extended meromorphically to β − 2α < Re(s) < α with possible poles
in the roots of bαf/g(s) · bαf/g(s + α). Iterating this process, we obtain a meromorphic
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extension to Re(s) < α for Zφ(s, f/g), and the possible poles of the zeta function are
contained in the set {

ζ − kα ; k ∈ Z≥0

}
ζ root of bα

f/g
(s)
.

For the continuation ‘to the right’ of Zφ(s, f/g) we use Lemma 4.2 in the following version

γ(−s)f
α−s

g1−s = bαg/f (−s)
f s−α

gs
,

which implies the analogue of 5.0.1: γ(−s)γ(−s) |f |
2(α−s)

|g|2(1−s) = bαg/f (−s)2 |f |2(s−α)
|g|2s . If we multi-

ply Zφ(s, f/g) by bαg/f (−s)2 we obtain

Zφ(s, f/g) =
Zϕ(α− s, f/g)

bαg/f (−s)2
,

showing that Zφ(s, f/g) converges in β < Re(s) < α− β away from the possible roots of
bαg/f (s). Further iteration of this process provides the desired conclusion. The rationality
of the poles of Zφ(s, f/g) follows from Theorem 4.14. �

Remark 5.5. Veys and Zúñiga-Galindo study local zeta functions for meromorphic func-
tions over local fields of characteristic zero [VZG17]. The statement and proof of Lemma
5.2 are also valid in this generality, providing also a simple region of convergence for the
non Archimedean Zφ(s, f/g), cf. [VZG17, Theorem 3.2 (1)]. We do not known if the
theory developed in sections 3 and 4 is also valid in this generality, but it is certainly true
over Archimedean local fields of characteristic zero, that is, R or C. The proof of Theorem
5.4 for the real case can be given by adapting the ideas of our proof and following the
lines of Igusa’s work [Igu00, Theorem 5.3.1].

6. Multiplier ideals: analytic construction

In this section we describe the theory of analytic multiplier ideals for meromorphic
functions and relate their jumping numbers to roots of the meromorphic Bernstein-Sato
polynomial. To this end, we use the previous notation, identifying OCn,0 with the ring
R = C{x1, . . . , xn} by taking local coordinates.

Definition 6.1. Let f, g ∈ R be nonzero elements such that f/g is not constant and
λ ∈ R≥0. We define the multiplier ideal (at the origin) of f/g at λ by

J

((
f

g

)λ)
=

{
h ∈ R ;

∫
Br(0)

|h|2|g|2λ

|f |2λ
<∞ for some r > 0

}
,

where Br(0) denotes a closed ball of radius r > 0 around the origin 0.

The following useful remark shows that we can describe the meromorphic multiplier
ideal from the theory of mixed multiplier ideals J (fλ1gλ2) associated to the pair of func-
tions.
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Remark 6.2. Let f, g ∈ R be nonzero elements and λ ∈ R. Pick t ∈ N such that t ≥ λ.
Then,

J
(
fλgt−λ

)
: gt =

{
h ∈ R ; hgt ∈ J

(
fλgt−λ

)}
=

{
h ∈ R ;

∫
Br(0)

|h|2|g|2t

|f |2λ|g|2t−2λ
<∞ for some r > 0

}
=

{
h ∈ R ;

∫
Br(0)

|h|2|g|2λ

|f |2λ
<∞ for some r > 0

}
= J

((
f

g

)λ)
.

Remark 6.3. Let f, g ∈ R be nonzero elements and λ ∈ R. Then,

J

((
f

g

)λ)
= J

((
g

f

)−λ)
.

Definition 6.4. Let f, g ∈ R be nonzero elements and λ ∈ R. We say that λ is a jumping
number for f/g if for every ε > 0 we have either

J

((
f

g

)λ)
6= J

((
f

g

)λ−ε)
or

J

((
f

g

)λ)
6= J

((
f

g

)λ+ε
)
.

We stress that multiplier ideals of meromorphic functions are not necessarily continuous
on neither side. For instance, if g = 1, it is known that

J
(
fλ
)

= J
(
fλ+ε

)
for small enough ε > 0. In contrast, if f = 1,

J
(

1

gλ

)
6= J

(
1

gλ−ε

)
for small enough ε > 0.

Proposition 6.5. Let f, g ∈ R be a nonzero elements and λ ∈ R≥0. Then,

J

((
f

g

)λ+`
)

=

(
f `

g`

(
J
(
f

g

)λ))⋂
R

for every ` ∈ N. In particular, if λ+ 1 is a jumping number, then λ is a jumping number.

Proof. We fix t ≥ λ+ 1. The result follows from the equality

J
(
fλ+`gt−λ−1

)
: gt =

((
f `

g`
J (fλgt−λ)

)
: gt
)⋂

R =

(
f `

g`
(
J (fλgt−λ) : gt

))⋂
R.

given by Remark 6.2. �

We note that Proposition 6.5 gives a weaker version of Skoda’s Theorem [Laz04, 9.6.21].
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Theorem 6.6. Let f, g ∈ R be nonzero elements and λ ∈ R. Then, the set of jumping
numbers of f/g is a set of rational numbers with no accumulation points.

Proof. It suffices to show that the set of jumping numbers of f/g in [0, t] is a finite set
of rational numbers for any t ∈ Z≥0. By Remark 6.2, the jumping numbers of J ((f

g
)λ)

is a subset of the jumping numbers of J
(
fλgt−λ

)
. The last set is the intersection of

the jumping walls of J (fλ1gλ2) with the line λ1 + λ2 = t. We conclude that the set
of jumping numbers of f/g is a set of rational numbers with no accumulation points,
because the jumping walls are the boundaries of the constancy regions of J (fλ1gλ2) and,
by construction, they are defined by linear equations with rational coefficients and there
are only finitely many in any bounded part of the positive orthant R2

≥0. �

We state the following extension in our setting of the classical result of Ein, Lazarsfeld,
Smith and Varolin [ELSV04, Theorem 2.1].

Theorem 6.7. Let f, g ∈ R be nonzero elements and λ be a jumping number of f/g such
that λ ∈ (1− lct0(g), 1]. Then, −λ is a root of the Bernstein-Sato polynomial of f/g.

Proof. Suppose that λ > 1 − lct0(g) is a jumping number of f/g and take 1 − lct0(g) <
λ′ < λ. If we fix an arbitrary c ∈ [λ′, λ) then by the definition of jumping number there

exist a function h ∈ J
((

f
g

)c)
such that h /∈ J

((
f
g

)λ−ε)
, (we may assume without

lost of generality that the sign of the definition is negative). Equivalently, there exist r, r′
(with 0 < r′ < r) such that

(6.0.1)
∫
Br(0)

|h|2|g|2c

|f |2c
<∞ and

∫
Br′ (0)

|h|2|g|2(λ−ε)

|f |2(λ−ε) =∞.

We shall show that the first integral in Equation (6.0.1) becomes unbounded when c
approaches λ. To do so, note first that Theorem 4.5 implies the following analogue of
Equation (5.0.1)

δ(s)δ(s)
|f |2(s+1)

|g|2(s+1)
= bf/g(s)

2 |f |2s

|g|2s
.

In particular, for s = −c and for any positive test function φ supported on Br(0) we have

∫
Br(0)

|h|2φ bf/g(−c)2 |g|2c

|f |2c
=

∫
Br(0)

|h|2φ δ(−c)δ(−c) |f |
2(−c+1)

|g|2(−c+1)

=

∫
Br(0)

|f |2(−c+1)

|g|2(−c+1)
δ∗(−c)δ∗(−c)(|h|2φ),

(6.0.2)

where δ∗(s) and δ∗(s) denote the respective adjoint operators. Since c > λ′ > 1− lct0(g),
the proof of Lemma 5.2 implies that the right-hand side of Equation (6.0.2) is uniformly
bounded by a positive number depending only on h and ϕ. If we now take φ as the
characteristic function of the ball Br′(0), then∫

Br(0)

|h|2φ bf/g(−c)2 |g|2c

|f |2c
≥
∫
B′r(0)

|h|2φ bf/g(−c)2 |g|2c

|f |2c
= bf/g(−c)2

∫
Br′ (0)

|h|2|g|2c

|f |2c
.
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Our previous discussion implies that bf/g(−c)2
∫
Br′ (0)

|h|2|g|2c
|f |2c is bounded for any c ∈ [λ′, λ),

but Equation (6.0.1) shows that the last integral tends to infinity as c tends to λ, implying
that bf/g(−λ) = 0.

�

7. Multiplier ideals: algebraic construction

In this section we define the algebraic version of multiplier ideals for meromorphic func-
tions using log resolutions. LetOCn,0 be the ring of germs of holomorphic functions around
a point 0 ∈ Cn, which we identify with R = C{x1, . . . , xn} by taking local coordinates.
Throughout this section we use the notation introduced in Section 2.4 concerning the
numerical data associated to a log resolution π : X → U of the meromorphic germ f/g.

Definition 7.1. Let f, g ∈ R be nonzero elements such that f/g is not constant and
λ ∈ R≥0. We define the 0-multiplier ideal of f/g at λ as the stalk at the origin of

J

((
f

g

)λ)
= π∗OX(−[λ · F̃ ] +Kπ),

where [·] denotes the integer part of a real number or R-divisor. If no confusion arises we

denote the stalk at the origin in the same way and thus J
((

f
g

)λ)
⊆ R.

Remark 7.2.
(1) The above definition is independent of the choice of the log resolution π. This

follows from analogous considerations to those in the classical case when g = 1
[Laz04, Example 9.1.16, Theorem 9.2.18 & Lemma 9.2.19].

(2) Given h ∈ R, the condition h ∈ J ((f
g
)λ) is equivalent to

ordEiπ
∗h ≥ [λ ·Nf/g,i]− ki for every i ∈ I.

(3) Since ordEiπ
∗hgt = ordEiπ

∗h+tNg,i, and [λ ·Nf/g,i]+tNg,i = [λ ·Nf,i+(t−λ) ·Ng,i]

for all t ∈ N such that t ≥ λ, we have that the condition h ∈ J ((f
g
)λ) is equivalent

to the conditions ordEiπ
∗hgt ≥ [λ ·Nf,i + (t−λ) ·Ng,i] + ki for all t ∈ N with t ≥ λ

and all i ∈ I. This gives a different proof of Remark 6.2.
(4) Given h ∈ R, we have ordEiπ

∗h ≥ 0 for all i ∈ I. Since J ((f
g
)λ) ⊆ R, it follows

that

J

((
f

g

)λ)
= π∗OX(−[λ · F̃0] +Kπ).

(5) One can associate ∞-multiplier ideals J∞((f
g
)λ) to the meromorphic germ f/g

and the parameter λ as follows J∞((f
g
)λ) = J (( g

f
)λ).

The following properties of multiplier ideals J ((f
g
)λ) are analogous to the case of mul-

tiplier ideals associated to holomorphic germs f , that is, when g = 1.

Lemma 7.3. There exists a discrete strictly increasing sequence of rational numbers

λ1 < λ2 < · · ·
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such that

J

((
f

g

)λi+1

)
( J

((
f

g

)c)
= J

((
f

g

)λi)

for c ∈ [λi, λi+1), and all i. These rational numbers are called the 0-jumping numbers of
f/g.

Remark 7.4.

• The candidate 0-jumping numbers of f/g have the form ki+1+`
Nf/g,i

with ` ∈ Z≥0.
• Let λ ∈ Q be a candidate jumping number of f associated to the divisor Ei. Then
λ · Nf,i

Nf/g,i
is a candidate 0-jumping number of f/g. Notice that Nf,i

Nf/g,i
≥ 1.

Lemma 7.5. For any λ ∈ R>0 we have J (fλ) ⊆ J ((f
g
)λ). In addition, we have

J ((f
g
)n) = (fn) for any n ∈ Z>0.

Proof. The inclusion J (fλ) ⊆ J ((f
g
)λ) follows from the fact that Nf,i/Nf/g,i ≥ 1. There-

fore, we have that (fn) = J (fn) ⊆ J ((f
g
)n). Moreover, for any Ei in the strict transform

of f we have that Nf,i/Nf/g,i = 1, and ki = 0. Hence, if h ∈ J ((f
g
)n), we have that

ordEi π
∗h ≥ n ·Nf,i. It follows that f divides h and hence J ((f

g
)n) ⊆ (fn). �

Remark 7.6. In general J ((f
g
)λ+n) 6= (fn) · J ((f

g
)λ), as Example 7.7 shows. As a

consequence, the periodicity of jumping numbers fails. Alternatively, Skoda’s Theorem
for multiplier ideals of meromorphic germs is weaker than the classic one.

Example 7.7. Let us consider f = y3 + x5, g1 = x, g2 = y, and f/gi with i = 1, 2. The
minimal resolution of fgi is obtained after 4 point blow-ups. Denote Ei with i = 1, 2, 3, 4
the exceptional divisors, E5 (resp. E6) the strict transform of f (resp. of gi). Notice
that E5 intersects E4, and E6 intersects E1 if i = 1 or E2 if i = 2. Two additional point
blow-ups, with exceptional divisors E7 and E8 are needed to construct the resolution of
f/gi. The following figures and tables give the corresponding dual resolution graphs and
resolution data

E8 E7 E1 E3 E4 E2

E6 E5

E1 E3 E4 E2 E7 E8 E9

E5 E6

E1 E2 E3 E4 E5 E6 E7 E8

Nf,i 3 5 9 15 1 0 3 3
Ng1,i 1 1 2 3 0 1 2 3
ki 1 2 4 7 0 0 2 3

E1 E2 E3 E4 E5 E6 E7 E8 E9

Nf,i 3 5 9 15 1 0 5 5 5
Ng2,i 1 2 3 5 0 1 3 4 5
ki 1 2 4 7 0 0 3 4 5
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The set of jumping numbers of f/g1 is
{

8
12
, 11

12
, 1, 23

12

}
∪Z≥2, the set of jumping numbers

of f/g2 is
{

8
10

}
∪ Z>0 and the multiplier ideals of f/g1 and f/g2 are

J

((
f

g1

)λ)
=



1 0 < λ < 8/12,

(x, y) 8/12 ≤ λ < 11/12,

(x2, y) 11/12 ≤ λ < 1,

f 1 ≤ λ < 23/12,

(x, y)f 23/12 ≤ λ < 2

fn n ≤ λ < n+ 1,

and n ∈ Z≥2.

and J

((
f

g2

)λ)
=


1 0 < λ < 8/10,

(x, y) 8/10 ≤ λ < 1,

fn n ≤ λ < n+ 1,

and n ∈ Z≥1.

For comparison’s sake, recall that the set of jumping numbers of f is
{

8
15
, 11

15
, 13

15
, 14

15

}
+Z≥0,

and the multiplier ideals of f are

J (fλ) =



fn n < λ < 8/15 + n, and λ 6= 0,

(x, y)fn 8/15 + n ≤ λ < 11/15 + n,

(x2, y)fn 11/15 + n ≤ λ < 13/15 + n,

(x, y)2fn 13/15 + n ≤ λ < 14/15 + n,

(x3, xy, y2)fn 14/15 + n ≤ λ < 1 + n.
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