Generating and characteristic functions

September 13, 2013

Probability generating function

Let \(X \) be a nonnegative integer-valued random variable.

The probability generating function of \(X \) is defined to be

\[
G_X(s) \equiv E(s^X) = \sum_{k \geq 0} s^k P(X = k)
\]

- If \(X \) takes a finite number of values, the above expression is a finite sum.
- Otherwise, it is a series that converges at least for \(s \in [-1, 1] \) and sometimes in a larger interval.

If \(X \) takes a finite number of values \(x_0, x_1, \ldots, x_n \), \(G_X(s) \) is a polynomial:

\[
G_X(s) = \sum_{k=1}^{n} s^k P(X = k)
= P(X = 0) + P(X = 1) s + \cdots + P(X = n) s^n
\]
Probability generating function

If X takes a countable number of values $x_0, x_1, \ldots, x_k, \ldots$, then

$$G_X(s) = \sum_{k \geq 0} s^k P(X = k)$$

$$= P(X = 0) + P(X = 1) s + \cdots + P(X = k) s^k + \cdots$$

is a series that converges at least for $|s| \leq 1$, because

$$\left| \sum_{k \geq 0} s^k P(X = k) \right| \leq \sum_{k \geq 0} |s|^k P(X = k) \leq \sum_{k \geq 0} P(X = k) = 1$$

Examples

Let $X \sim B(n, p)$.

$$P(X = k) = \binom{n}{k} p^k q^{n-k}, \quad k = 0, 1, \ldots, n$$

Then

$$G_X(s) = \sum_{k \geq 0} s^k P(X = k) = \sum_{k=0}^{n} s^k \binom{n}{k} p^k q^{n-k}$$

$$= \sum_{k=0}^{n} \left(\frac{n}{k} \right) (sp)^k q^{n-k} = (q + sp)^n, \quad s \in \mathbb{R}$$

Examples

Let X be a Bernoulli random variable, $X \sim B(p)$.

$$P(X = 0) = q, \quad P(X = 1) = p$$

We have

$$G_X(s) = \sum_{k \geq 0} s^k P(X = k) = q + sp, \quad s \in \mathbb{R}$$

Examples

$X \sim \text{Poiss} (\lambda)$.

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, \ldots$$

Then

$$G_X(s) = \sum_{k \geq 0} s^k P(X = k) = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(s\lambda)^k}{k!}$$

$$= e^{-\lambda} e^{s\lambda} = e^{\lambda(s-1)}, \quad s \in \mathbb{R}$$
Examples

\(X \sim \text{Geom}(p)\)

\[
P(X = k) = q^{k-1}p, \quad k = 1, 2, \ldots, \quad 0 < p < 1
\]

We have

\[
G_X(s) = \sum_{k=0}^{\infty} s^k P(X = k) = \sum_{k=1}^{\infty} s^k q^{k-1}p
\]

\[
= sp \sum_{k=1}^{\infty} (sq)^{k-1} = \frac{sp}{1 - sq}, \quad |s| < \frac{1}{q}
\]

Unicity

If two nonnegative, integer-valued random variables have the same generating function, then they follow the same probability law.

Theorem

Let \(X\) and \(Y\) be nonnegative integer-valued random variables such that

\[
G_X(s) = G_Y(s).
\]

Then

\[
P(X = k) = P(Y = k) \quad \text{for all} \quad k \geq 0.
\]

The result is a special case of the uniqueness theorem for power series.

Convolutions

Theorem (Convolution)

If \(X\) and \(Y\) are independent random variables and \(Z = X + Y\), then

\[
G_Z(s) = G_X(s) G_Y(s)
\]

Proof:

\[
G_Z(s) = E(s^Z) = E(s^{X+Y}) = E(s^X)E(s^Y) = G_X(s)G_Y(s)
\]

Example

Let \(X \sim \text{Bin}(n, p)\), \(Y \sim \text{Bin}(m, p)\) be independent random variables and let

\[
Z = X + Y
\]

We have

\[
G_Z(s) = G_X(s) G_Y(s) = (q + sp)^n (q + sp)^m = (q + sp)^{n+m}
\]

Observe that \(G_Z(s)\) is the probability generating function of a \(\text{Bin}(n + m, p)\) random variable. By the unicity theorem,

\[
X + Y \sim \text{Bin}(n + m, p)
\]
Convolution theorem

More generally,

Theorem

Let X_1, X_2, \ldots, X_n be independent, nonnegative, integer-valued random variables and set

$$S_n = X_1 + X_2 + \cdots + X_n.$$

Then

$$G_S(s) = \prod_{k=1}^{n} G_{X_k}(s).$$

Example: Negative binomial probability law

A biased coin such that $P(\text{heads}) = p$ is repeatedly tossed until a total amount of k heads has been obtained.

Let X be the number of tosses.

Notice that

$$X = X_1 + X_2 + \cdots + X_k,$$

where

$$X_i \sim \text{Geom}(p)$$

is the number of tosses between the $(i-1)$-th and the i-th head.

Convolution theorem

A case of particular importance is:

Corollary

If, in addition, X_1, X_2, \ldots, X_n are equidistributed, with common probability generating function $G_X(s)$, then

$$G_S(s) = (G_X(s))^n.$$
Example: Negative binomial probability law

Recall that if $\alpha \in \mathbb{R}$, then the Taylor series expansion about 0 of the function $(1 + x)^\alpha$ is, for $x \in (-1, 1)$,

$$1 + \alpha x + \frac{\alpha(\alpha - 1)}{2} x^2 + \ldots + \frac{\alpha(\alpha - 1)\ldots(\alpha - r + 1)}{r!} x^r + \ldots$$

We can write

$$(1 + x)^\alpha = \sum_{r \geq 0} \binom{\alpha}{r} x^r$$

where

$$\binom{\alpha}{r} = \frac{\alpha(\alpha - 1)\ldots(\alpha - r + 1)}{r!}$$

Example: Negative binomial probability law

Consider the series expansion of $G_X(s)$:

$$G_X(s) = (sp)^k(1 - sq)^{-k} = (sp)^k \sum_{r=0}^{\infty} \binom{-k}{r}(-sq)^r$$

where

$$\binom{-k}{r} = (-k)(-k-1)\ldots(-k-r+1)$$

$$\frac{1}{r!} = (-1)^r \binom{k+r-1}{k-1}$$

Therefore,

$$G_X(s) = \sum_{r=0}^{\infty} \binom{k+r-1}{k-1} p^k q^r s^{k+r} = \sum_{n=k}^{\infty} \binom{n-1}{k-1} p^k q^{n-k} s^n$$

Hence,

$$P(X = n) = \begin{cases} 0, & n < k \\ \binom{n-1}{k-1} p^k q^{n-k}, & n = k, k+1, \ldots \end{cases}$$

This is the negative binomial probability law.

Properties

- $G_X(0) = P(X = 0)$
- $G_X(1) = 1$

We have

$$G_X(1) = \left[\sum_{k=0}^{\infty} s^k P(X = k) \right]_{s=1} = \sum_{k=0}^{\infty} P(X = k) = 1$$
Properties

Proposition

Let R be the radius of convergence of $G_X(s)$. If $R > 1$, then

$$E(X) = G_X'(1)$$

Indeed,

$$G_X'(s) = \frac{d}{ds} \sum_{k \geq 0} s^k P(X = k) = \sum_{k \geq 1} k s^{k-1} P(X = k)$$

Hence,

$$G_X'(1) = \sum_{k \geq 1} k P(X = k) = E(X)$$

Examples

Let $X \sim \text{Bin}(n, p)$.

$$E(X) = G_X'(1) = \frac{d}{ds} (q + sp)^n \bigg|_{s=1} = np(q + p)^{n-1} = np$$

More generally,

Proposition

- $E(X) = G_X'(1) \equiv \lim_{s \to 1^-} G_X'(s)$
- $E(X(X - 1) \cdots (X - k + 1)) = G_X^{(k)}(1) \equiv \lim_{s \to 1^-} G_X^{(k)}(s)$

Examples

Let $X \sim \text{Poiss}(\lambda)$.

$$E(X) = G_X'(1) = \frac{d}{ds} e^{\lambda(s-1)} \bigg|_{s=1} = \lambda e^{\lambda(s-1)} \bigg|_{s=1} = \lambda$$

Analogously,

$$E(X(X - 1)) = G_X''(1) = \lambda^2 e^{\lambda(s-1)} \bigg|_{s=1} = \lambda^2$$

Hence,

$$E(X^2) = \lambda^2 + \lambda, \quad \text{Var}(X) = E(X^2) - (E(X))^2 = \lambda$$
Examples

\(X \sim \text{Geom}(p). \)

\[
E(X) = G'_0(1) = \frac{d}{ds} \frac{sp}{(1 - sq)} \bigg|_{s=1} = \frac{p}{(1 - sq)^2} \bigg|_{s=1} = \frac{1}{p}
\]

Analogously,

\[
E(X(X - 1)) = G''_0(1) = \frac{2pq}{(1 - sq)^3} \bigg|_{s=1} = \frac{2q}{p^2}
\]

Therefore

\[
E(X^2) = \frac{2q}{p^2} + \frac{1}{p}, \quad \text{Var}(X) = E(X^2) - (E(X))^2 = \frac{q}{p^2}
\]

Probability generating function
Convolution theorem

Moment generating function
Power series expansion
Convolution theorem

Characteristic function
Characteristic function and moments
Convolution and unicity
Inversion
Joint characteristic functions

Examples

Let \(X \) be a \textbf{negative binomial} random variable.

\[
E(X) = G'_0(1) = \frac{d}{ds} \left(\frac{sp}{1 - sq} \right)^k \bigg|_{s=1}
\]

\[
= k \left(\frac{sp}{1 - sq} \right)^{k-1} \frac{p}{(1 - sq)^2} \bigg|_{s=1} = \frac{k}{p}
\]

This result can also be obtained from \(X = X_1 + \cdots + X_k \), with each \(X_i \sim \text{Geom}(p) \).

\[
E(X) = \sum_{i=1}^k E(X_i) = \frac{k}{p}
\]

Moment generating function

The \textbf{moment generating function} of a random variable \(X \) is defined as

\[
\phi_X(t) \equiv E \left(e^{tx} \right) = \begin{cases}
\sum_{i} e^{tx_i} P(X = x_i), & \text{if } X \text{ is discrete} \\
\int_{-\infty}^{\infty} e^{tx} f_X(x) \, dx, & \text{if } X \text{ is continuous}
\end{cases}
\]

provided that the sum or the integral converges.
The moment generating function specifies **uniquely** the probability distribution.

Theorem

Let X and Y be random variables. If there exists $h > 0$, such that $\Phi_X(t) = \Phi_Y(t)$ for $|t| < h$, then X and Y are identically distributed.

Examples

Let $X \sim \text{Bin}(n, p)$.

$$\Phi_X(t) = \sum_{k=0}^{n} e^{tk} P(X = k) = \sum_{k=0}^{n} \binom{n}{k} (pe^t)^k q^{n-k}$$

$$= (q + pe^t)^n, \quad t \in \mathbb{R}$$

Let $X \sim \text{Exp}(\mu)$.

$$\Phi_X(t) = \int_{-\infty}^{\infty} e^{tx} f_X(x) \, dx$$

$$= \int_{0}^{\infty} \mu e^{-(\mu-t)x} \, dx = \frac{\mu}{\mu - t}, \quad t < \mu$$

For continuous random variables, $\Phi_X(t)$ is related to the Laplace transform of $f_X(x)$.

Let $X \sim \text{Poiss}(\lambda)$.

$$\Phi_X(t) = \sum_{k=0}^{\infty} e^{tk} P(X = k) = \sum_{k=0}^{\infty} \frac{(e^t \lambda)^k}{k!} e^{-\lambda}$$

$$= e^{-\lambda} \sum_{k=0}^{\infty} \frac{(e^t \lambda)^k}{k!} = e^{\lambda(e^t-1)}, \quad t \in \mathbb{R}$$
Examples

Let $Z \sim N(0, 1)$.

$$
\Phi_Z(t) = \int_{-\infty}^{\infty} e^{tz} f_Z(z) \, dz = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-z^2/2} \, dz = e^{t^2/2}, \quad t \in \mathbb{R}
$$

because

$$
\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-z^2/2} \, dz = P(-\infty < N(t, 1) < \infty) = 1
$$

Power series expansion

Notice that

$$
\Phi_X(t) = \frac{d}{dt} E\left(e^{tX}\right) = E\left(\frac{d}{dt} e^{tX}\right) = E\left(X e^{tX}\right)
$$

Therefore,

$$
\Phi_X'(0) = E(X)
$$

Analogously,

$$
\Phi_X''(t) = \frac{d}{dt} \Phi_X'(t) = \frac{d}{dt} E\left(X e^{tX}\right) = E\left(X^2 e^{tX}\right)
$$

Thus,

$$
\Phi_X''(0) = E(X^2)
$$

Examples

More generally, if

$$
X = \sigma Z + m,
$$

then $X \sim N(m, \sigma^2)$.

We have

$$
\Phi_X(t) = E\left(e^{tX}\right) = E\left(e^{(\sigma Z + m)}\right) = e^{tm} E\left(e^{t\sigma Z}\right) = e^{tm} \Phi_Z(\sigma t) = e^{\sigma^2 t^2 + tm}
$$

For instance, if $X \sim \text{Exp} (\mu)$,

$$
\Phi_X(t) = \frac{\mu}{\mu - t}, \quad t < \mu
$$

and

$$
E(X) = \Phi_X'(0) = \frac{d}{dt} \left(\frac{\mu}{\mu - t}\right)_{t=0} = \frac{\mu}{(\mu - t)^2}_{t=0} = 1/\mu
$$

Analogously,

$$
E(X^2) = \Phi_X''(0) = \frac{d}{dt} \left(\frac{\mu}{(\mu - t)^2}\right)_{t=0} = \frac{2\mu}{(\mu - t)^3}_{t=0} = 2/\mu^2
$$
Power series expansion

More generally,

\[\Phi_X(t) = E \left(e^{tX} \right) = E \left(1 + tX + \frac{(tX)^2}{2!} + \cdots + \frac{(tX)^k}{k!} + \cdots \right) \]

\[= 1 + E(X) t + \frac{E(X^2)}{2!} t^2 + \cdots + \frac{E(X^k)}{k!} t^k + \cdots \]

This is the power series expansion of \(\Phi_X(t) \),

\[\Phi_X(t) = \sum_{k=0}^{\infty} \frac{\phi_X^{(k)}(0)}{k!} t^k \]

Power series expansion

For instance, let \(X \sim \text{Exp}(\mu) \). If \(|t| < \mu\) we have

\[\Phi_X(t) = \frac{\mu}{\mu - t} = \frac{1}{1 - (t/\mu)} = 1 + \frac{t}{\mu} + \left(\frac{t}{\mu} \right)^2 + \cdots \]

Hence,

\[\frac{E(X^n)}{n!} = \frac{1}{\mu^n} \]

Therefore,

\[E(X^n) = \frac{n!}{\mu^n} \]

Power series expansion

For instance, let \(X \sim \text{Exp}(\mu) \). If \(|t| < \mu\) we have

\[\Phi_X(t) = \frac{\mu}{\mu - t} = \frac{1}{1 - (t/\mu)} = 1 + \frac{t}{\mu} + \left(\frac{t}{\mu} \right)^2 + \cdots \]

Hence,

\[\frac{E(X^n)}{n!} = \frac{1}{\mu^n} \]

Therefore,

\[E(X^n) = \frac{n!}{\mu^n} \]

Convolution theorem

The convolution theorem applies also to moment generating functions.

Theorem

Let \(X_1, X_2, \ldots, X_n \) be independent random variables and let \(S = X_1 + X_2 + \cdots + X_n \). Then,

\[\Phi_S(t) = \prod_{k=1}^{n} \Phi_{X_k}(t) \]
Examples

$X \sim \text{Poiss}(\lambda_X), \ Y \sim \text{Poiss}(\lambda_Y)$, independent.

Let $Z = X + Y$.

We have

$$\Phi_Z(t) = \Phi_X(t)\Phi_Y(t) = e^{\lambda_X(e^{t-1})}e^{\lambda_Y(e^{t-1})} = e^{(\lambda_X + \lambda_Y)(e^{t-1})}$$

Hence,

$Z \sim \text{Poiss}(\lambda_X + \lambda_Y)$

Examples

$X \sim \mathcal{N}(m_X, \sigma_X^2), \ Y \sim \mathcal{N}(m_Y, \sigma_Y^2)$, independent.

Let $Z = X + Y$.

We have

$$\Phi_Z(t) = \Phi_X(t)\Phi_Y(t)$$
$$= e^{\frac{\sigma_X^2}{2} + tm_X}e^{\frac{\sigma_Y^2}{2} + tm_Y} = e^{\frac{(\sigma_X^2 + \sigma_Y^2)^2}{2} + t(m_X + m_Y)}$$

Therefore

$Z \sim \mathcal{N}(m_X + m_Y, \sigma_X^2 + \sigma_Y^2)$

Characteristic function

The characteristic function of a random variable X is the complex-valued function of the real argument ω

$$M_X : \mathbb{R} \rightarrow \mathbb{C}$$

$$\omega \mapsto M_X(\omega)$$

defined as

$$M_X(\omega) \equiv E \left(e^{i\omega X} \right) = E \left(\cos(\omega X) \right) + i \left(E \left(\sin(\omega X) \right) \right)$$
Characteristic function

Therefore,

\[M_X(\omega) = \begin{cases} \sum_k e^{i\omega x_k} P(X = x_k), & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} e^{i\omega x} f_X(x) \, dx, & \text{if } X \text{ is continuous} \end{cases} \]

- The characteristic function exists for all \(\omega \) and for all random variables.
- If \(X \) is continuous, \(M_X(\omega) \) is the Fourier transform of \(f_X(x) \).
 (Notice the change of sign from the usual definition.)
- If \(X \) is discrete, \(M_X(\omega) \) is related to Fourier series.

Properties

- \(|M_X(\omega)| \leq M_X(0) = 1 \) for all \(\omega \in \mathbb{R} \).

\[|M_X(\omega)| = \left| E\left(e^{i\omega X}\right) \right| \leq E\left(\left| e^{i\omega X}\right| \right) = E(1) = 1 \]

On the other hand,

\[M_X(0) = E\left(e^{i0X}\right) = E(1) = 1 \]

- \(\overline{M_X(\omega)} = M_X(-\omega) \).

\[
\overline{M_X(\omega)} = E\left(e^{i\omega X}\right) = E\left(e^{-i\omega X}\right) = E(\cos(\omega X)) - i E(\sin(\omega X)) = E(\cos(-\omega X)) + i E(\sin(-\omega X)) = M_X(-\omega)
\]

- \(M_X(\omega) \) is uniformly continuous in \(\mathbb{R} \).

Examples

Let \(X \sim \text{Binom}(n, p) \). Then,

\[M_X(\omega) = (pe^{i\omega} + q)^n \]

If \(X \sim \text{Poiss}(\lambda) \), then

\[M_X(\omega) = e^{\lambda(e^{i\omega} - 1)} \]

If \(X \sim \text{N}(m, \sigma^2) \), then

\[M_X(\omega) = e^{i\omega m - \frac{1}{2} \sigma^2 \omega^2} \]
Characteristic function and moments

Theorem

If \(E(X^n) < \infty \) for some \(n = 1, 2, \ldots \), then

\[
M_X(\omega) = \sum_{k=0}^{\infty} \frac{E(X^k)}{k!} (i\omega)^k + o(|\omega|^n) \quad \text{as} \quad \omega \to 0.
\]

So,

\[
E(X^k) = \frac{M_X^{(k)}(0)}{i^k} \quad \text{for} \quad k = 1, 2, \ldots, n.
\]

In particular, if \(E(X) = 0 \) and \(\text{Var}(X) = \sigma^2 \), then

\[
M_X(\omega) = 1 - \frac{1}{2} \sigma^2 \omega^2 + o(\omega^2) \quad \text{as} \quad \omega \to 0.
\]

Indeed,

\[
M_X(\omega) = E\left(e^{i\omega X}\right) = \frac{\sum_{k=0}^{\infty} (i\omega X)^k}{k!} = \sum_{k=0}^{\infty} \frac{i^k E(X^k)}{k!} \omega^k
\]

But this is the Taylor’s series expansion of \(M_X(\omega) \):

\[
M_X(\omega) = \sum_{k=0}^{\infty} \frac{M_X^{(k)}(0)}{k!} \omega^k
\]

Therefore

\[
i^k E(X^k) = M_X^{(k)}(0)
\]

Convolution theorem

Theorem

Let \(X_1, X_2, \ldots, X_n \) be independent random variables and let

\[
S = X_1 + X_2 + \cdots + X_n.
\]

Then

\[
M_S(\omega) = \prod_{k=1}^{n} M_{X_k}(\omega)
\]
Convolution theorem

In the case $n = 2$ we have essentially the convolution theorem for Fourier transforms.

If X and Y are continuous and independent random variables and $Z = X + Y$, then

$$f_Z = f_X * f_Y$$

This implies

$$F(f_Z) = F(f_X) \cdot F(f_Y),$$

that is,

$$M_Z(\omega) = M_X(\omega)M_Y(\omega)$$

Unicity

Theorem

Let X have probability distribution function F_X and characteristic function M_X. Let $\bar{F}_X(x) = (F_X(x) + F_X(x^-))/2$.

Then

$$\bar{F}_X(b) - \bar{F}_X(a) = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-i\omega b} - e^{-i\omega a}}{i\omega} M_X(\omega) \, d\omega.$$

M_X specifies uniquely the probability law of X. Two random variables have the same characteristic function if and only if they have the same distribution function.

Inversion

Theorem (Inversion of the Fourier transform)

Let X be a continuous r.v. with density f_X and characteristic function M_X. Then

$$f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega x} M_X(\omega) \, d\omega$$

at every point x at which f_X is differentiable.

Inversion

In the discrete case, $M_X(\omega)$ is related to *Fourier series*.

Theorem

If X is an integer-valued random variable, then

$$P(X = k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{-ik\omega}}{e^{-i\omega k}} M_X(\omega) \, d\omega$$

Joint characteristic functions

The joint characteristic function of the random variables X_1, X_2, \ldots, X_n is defined to be

$$M_X(\omega_1, \omega_2, \ldots, \omega_n) = \mathbb{E} \left(e^{i(\omega_1 X_1 + \omega_2 X_2 + \cdots + \omega_n X_n)} \right)$$

Using vectorial notation one can write

$$\omega = (\omega_1, \omega_2, \ldots, \omega_n)^t, \quad X = (X_1, X_2, \ldots, X_n)^t$$

and

$$M_X(\omega) = \mathbb{E} \left(e^{i\omega^t X} \right)$$

Joint moments

The joint characteristic function allows us to calculate joint moments. For instance, given X, Y:

$$m_{kl} = \mathbb{E} (X^k Y^l) = \frac{1}{i^{k+l}} \frac{\partial^{k+l} M_{XY}(\omega_1, \omega_2)}{\partial \omega_1^k \partial \omega_2^l} \bigg|_{(\omega_1, \omega_2) = (0, 0)}$$

Marginal characteristic functions

Marginal characteristic functions are easily derived from the joint characteristic function.

For instance, given X, Y:

$$M_X(\omega) = \mathbb{E} \left(e^{i\omega X} \right)$$

$$= \mathbb{E} \left(e^{i(\omega_1 X_1 + \omega_2 Y)} \right) \bigg|_{\omega_2 = 0} = M_{XY}(\omega, 0)$$

Analogously,

$$M_Y(\omega) = M_{XY}(0, \omega)$$

Independent random variables

Theorem

The random variables X_1, X_2, \ldots, X_n are independent if and only if

$$M_X(\omega_1, \omega_2, \ldots, \omega_n) = M_{X_1}(\omega_1) M_{X_2}(\omega_2) \cdots M_{X_n}(\omega_n)$$

If the random variables are independent, then

$$M_X(\omega_1, \omega_2, \ldots, \omega_n)$$

$$= \mathbb{E} \left(e^{i(\omega_1 X_1 + \omega_2 X_2 + \cdots + \omega_n X_n)} \right)$$

$$= \mathbb{E} \left(e^{i\omega_1 X_1} \right) \mathbb{E} \left(e^{i\omega_2 X_2} \right) \cdots \mathbb{E} \left(e^{i\omega_n X_n} \right)$$

$$= M_{X_1}(\omega_1) M_{X_2}(\omega_2) \cdots M_{X_n}(\omega_n)$$