Online algorithms

Online algorithm
1. The input is revealed one step at a time.
2. The output is also constructed one step at a time, the decisions are taken with a partial knowledge of the input.
3. Such decisions are irreversible, and thus usually lead to a non-optimal solution.

Online algorithms respond to situations in which decisions have to be made without knowing the future requests. Some online problems are: scheduling, paging, routing, financial management, and other optimization problems. See [2] for more information about online algorithms.

Competitive analysis
• The quality of an online algorithm is measured by comparing its performance to that of an optimal offline algorithm.
• The analysis is done in terms of an adversary [or worst case].

Deterministic algorithms often confer too much power to the adversary, which is supposed to know our decisions in advance. In such cases, online deterministic algorithms are not competitive.

Competitive ratio. Given an optimization problem, an online algorithm A is c-competitive for each instance x if one can have
\[C_A(x) \leq c \cdot C^*(x) + \alpha \]
where \(C_A \) and \(C^* \) denote the cost or profit of the algorithm A, and of an optimal algorithm, respectively.

Online randomized algorithms
In an online randomized algorithm part of the decisions are taken probabilistically. Several models can be taken into account, according to how the adversary is defined and how much power we confer to it. Randomization allows to reduce the impact of worst case instances.

Competitive ratio of an online randomized algorithm. Analogous to the competitive ratio of online deterministic algorithms, by taking expectations.

Online bipartite matching

The problem
Given an optimization problem, an online algorithm A is c-competitive for each instance x if one can have
\[C_A(x) \leq c \cdot C^*(x) + \alpha \]
where \(C_A \) and \(C^* \) denote the cost or profit of the algorithm A, and of an optimal algorithm, respectively.

Online randomized algorithms
In an online randomized algorithm part of the decisions are taken probabilistically. Several models can be taken into account, according to how the adversary is defined and how much power we confer to it. Randomization allows to reduce the impact of worst case instances.

Competitive ratio of an online randomized algorithm. Analogous to the competitive ratio of online deterministic algorithms, by taking expectations.

References
1. Benjamin Birnbaum and Claire Mathieu.
On-line bipartite matching made simple.

2. Allan Borodin and Ran El-Yaniv.
Online Computational and Economic Analysis.

The relative graph density problem.

Competitive and truthful algorithms for combinatorial auctions.

5. Bernhard Fuchs, Winfried Hochstättler, and Walter Kern.
Online matching on a line.

Online weighted matching.

An optimal Algorithm for On-line Bipartite Matching.

8. Mohammad Mahdian and Qiq Yan.
Online Bipartite Matching with Random Arrivals: An Approach Based on Strongly-Fast-Relaxing LPs.

AdWords and general online matching.

10. Adam Meyerson, Anupam Gupta, and Lars Poblete.
Randomized online algorithms for minimum metric bipartite matching.

SIROCCO 2015