The Hierarchical Product of Graphs

Lali Barrière
Francesc Comellas
Cristina Dalfó
Miquel Àngel Fiol

Universitat Politècnica de Catalunya - DMA4

April 8, 2008
The Hierarchical Product of Graphs

Outline

1. Introduction
2. Graphs and matrices
3. The hierarchical product
 - Definition and basic properties
 - Vertex hierarchy
 - Metric parameters
4. Algebraic properties
 - Spectral properties of $G \sqcap K_2^m$
 - The spectrum of the binary hypertree $T_m = K_2^m$
 - The spectrum of a generic two-term product $G_2 \sqcap G_1$
5. Related works
 - Hypertrees and generalized hypertrees
 - Generalization of the hierarchical product
6. Conclusions
The Hierarchical Product of Graphs

Introduction

1. Introduction

2. Graphs and matrices

3. The hierarchical product
 - Definition and basic properties
 - Vertex hierarchy
 - Metric parameters

4. Algebraic properties
 - Spectral properties of $G \sqcap K_2^m$
 - The spectrum of the binary hypertree $T_m = K_2^m$
 - The spectrum of a generic two-term product $G_2 \sqcap G_1$

5. Related works
 - Hypertrees and generalized hypertrees
 - Generalization of the hierarchical product

6. Conclusions
Motivation

Complex networks: randomness, heterogeneity, modularity

Hierarchical networks: degree distribution, modularity

Our work

- Deterministic graphs
- Algebraic methods
Our work

- Deterministic graphs
- Algebraic methods
- Far from "real networks"

but a beautiful mathematical object !!!
Previous work

The Hierarchical Product of Graphs
Graphs and matrices

1 Introduction

2 Graphs and matrices

3 The hierarchical product
 Definition and basic properties
 Vertex hierarchy
 Metric parameters

4 Algebraic properties
 Spectral properties of $G \sqcap K^m_2$
 The spectrum of the binary hypertree $T_m = K^m_2$
 The spectrum of a generic two-term product $G_2 \sqcap G_1$

5 Related works
 Hypertrees and generalized hypertrees
 Generalization of the hierarchical product

6 Conclusions
Spectrum of a matrix M

M $n \times n$ matrix on \mathbb{R}

- Characteristic polynomial of M
 \[\Phi_M(x) := \det(xI - M) \]

- Spectrum of M
 \[\text{sp}M := \text{set of roots of } \Phi_M(x), \text{ called eigenvalues of } M \]
 \[\lambda \in \text{sp}M \Rightarrow \dim \ker(\lambda I - M) \geq 1 \]

- Eigenvectors, eigenspaces
 \[\mathbf{v} \text{ is a } \lambda\text{-eigenvector if } M\mathbf{v} = \lambda \mathbf{v} \]
 \[\lambda \in \text{sp}M, \ E_\lambda := \text{ set of } \lambda\text{-eigenvectors of } M \]
 \[E_\lambda \text{ is a subspace of } \mathbb{R}^n \]
Adjacency matrix and Laplacian matrix

$G = (V, E)$, $V = \{1, 2, \ldots n\}$ ⇒

- Adjacency matrix of G:

$$A(G) = (a_{i,j})_{1 \leq i, j \leq n} \quad a_{i,j} = \begin{cases} 1, & \text{if } i \sim j \\ 0, & \text{if } i \not\sim j \end{cases}$$

$$\text{tr}(A) = 0, \quad \sum_j a_{i,j} = \delta_i$$

(Ordinary) spectrum of $G := \text{spectrum of } A(G)$.

- Laplacian matrix of G:

$$L(G) = (\ell_{i,j})_{1 \leq i, j \leq n} \quad \ell_{i,j} = \begin{cases} \delta_i, & \text{if } i = j \\ -1, & \text{if } i \sim j \\ 0, & \text{if } i \not\sim j, i \neq j \end{cases}$$

$$L(G) = \text{diag}(\delta_1, \delta_2, \ldots, \delta_n) - A(G)$$

Laplacian spectrum of $G := \text{spectrum of } L(G)$.
Example: \(G = P_3 \)

\[
A(G) = \begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix} \quad L(G) = \begin{bmatrix}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{bmatrix}
\]
Example: $G = P_3$

$$A(G) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \Rightarrow \Phi_A(x) = \det \begin{bmatrix} x & -1 & 0 \\ -1 & x & -1 \\ 0 & -1 & x \end{bmatrix} = x^3 - 2x$$

Eigenvalues and eigenvectors

$$\Phi_A(x) = (x - \sqrt{2}) \cdot x \cdot (x + \sqrt{2}) \Rightarrow \lambda_1 = \sqrt{2}, \lambda_2 = 0, \lambda_3 = -\sqrt{2}$$

$w_1 = (\sqrt{2}, 2, \sqrt{2})$

$w_2 = (1, 0, -1)$

$w_3 = (\sqrt{2}, -2, \sqrt{2})$
Example: $G = P_3$

$$L(G) = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix} \Rightarrow$$

$$QL(x) = \det \begin{bmatrix} x - 1 & 1 & 0 \\ 1 & x - 2 & 1 \\ 0 & 1 & x - 1 \end{bmatrix} = x^3 - 4x^2 + 3x$$

Laplacian eigenvalues and eigenvectors

$$QL(x) = x \cdot (x - 1) \cdot (x - 3) \Rightarrow \mu_1 = 3, \mu_2 = 1, \mu_3 = 0$$

$$\mathbf{w}_1 = (1, -2, 1)$$
$$\mathbf{w}_2 = (1, 0, -1)$$
$$\mathbf{w}_3 = (1, 1, 1)$$
Properties

\(G = (V, E) \) graph ⇒

- \(A \) adjacency matrix
- \(\Phi_A(x) = \Phi_G(x) = \det(xI - A) \) characteristic polynomial
- \(\text{sp}(A) = \text{sp}(G) = \{\lambda_0^{m_0}, \lambda_1^{m_1}, \ldots, \lambda_d^{m_d}\} \)
- \(\text{ev}(A) = \text{ev}(G) = \{\lambda_0 > \lambda_1 > \cdots > \lambda_d\} \)

Basic properties

1. \(A \) symmetric ⇒ \(\forall \lambda_i \in \mathbb{R}; A \) diagonalizes; \(\lambda_i \in \mathbb{Q} \Rightarrow \lambda_i \in \mathbb{Z} \)
2. \(G = G_1 \cup \cdots \cup G_k \) connected comp. ⇒ \(\Phi_G(x) = \prod_i \Phi_{G_i}(x) \)
3. \(G \) connected ⇒ \(\lambda_0 = \rho(G) \) spectral radius of \(G \)
 \(\forall i, |\lambda_i| \leq \rho(G) \)
 if \(m \geq 1 \) ⇒ \(\rho(G) \geq 1 \) and there is a negative eigenvalue
4. \(\mathbf{w} = (w_1, \ldots, w_n) \) eigenvector of eigenvalue \(\lambda \) ⇒
 \[A\mathbf{w} = \lambda\mathbf{w} \iff \forall i, \sum_{j \sim i} w_j = \lambda w_i \]
 (assign weight \(w_i \) to vertex \(i \))
An easy case

\[G = K_n \]

\[A(K_n) = J - I, \text{ where } J = (1) \]
\[sp(J) = \{n^1, 0^{n-1}\} \]
\[E_n = (1, 1, \ldots 1) \]
\[E_0 \perp E_n \]

\[sp(K_n) = \{(n - 1)^1, (-1)^{n-1}\} \]
\[E_{n-1} = (1, 1, \ldots 1) \]
\[E_{-1} \perp E_n \]
Not so basic properties

1. \[\frac{\delta_1 + \cdots + \delta_n}{n} \leq \lambda_0 \leq \max_i \delta_i \]

 If \(G \) is \(\delta \)-regular, then \(\lambda_0 = \delta \) and \(\mathbf{w}_0 = (1, 1, \ldots, 1) \)

2. \(D = \text{diam} G \Rightarrow D \leq d = |\text{ev}(G)| - 1 \)

3. \(G \) bipartite \(\Leftrightarrow \) \(sp(G) \) symmetric (with respect to 0)

4. \(\omega_G \) clique number of \(G \), \(\chi_G \) chromatic number of \(G \) \(\Rightarrow \)
 \[\omega_G \leq 1 - \frac{\lambda_0}{\lambda_d} \leq \chi_G \leq 1 + \lambda_0 \]

5. \(G \) regular, \(\alpha_G \) independence number of \(G \) \(\Rightarrow \)
 \[\alpha_G \leq \frac{n}{1 + \frac{\lambda_0}{-\lambda_d}} \]

The Hierarchical Product of Graphs
Graphs and matrices

Spectrum of some graphs

• $\text{sp}(K_{m,n}) = \{ \pm \sqrt{mn}, 0^{m+n-2} \}$

• $\omega = e^{\frac{2\pi i}{n}} \Rightarrow \text{sp}(C_n) = \{ \omega^r + \omega^{-r} = 2 \cos \frac{2\pi r}{n} : 0 \leq r \leq n - 1 \}$

$A(C_4) = \begin{bmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
\end{bmatrix}$ $\Rightarrow \Phi_{C_4}(x) = (x^2 - 4) \cdot x^2$

$\omega = e^{\frac{2\pi i}{4}} = i \Rightarrow \lambda_0 = \omega^4 + \omega^{-4} = 2, \lambda_1 = \omega^3 + \omega^{-3} = 0,$
$\lambda_2 = \omega + \omega^{-1} = 0, \lambda_3 = \omega^2 + \omega^{-2} = -2$

• $\text{sp}(P_n) = \{ 2 \cos \frac{\pi r}{n+1} : 1 \leq r \leq n \}$

$\begin{cases}
\text{sp}(G) = \{ \lambda_0^{m_0}, \lambda_1^{m_1}, \ldots, \lambda_d^{m_d} \} \\
\text{sp}(H) = \{ \mu_0^{k_0}, \mu_1^{k_1}, \ldots, \mu_{d'}^{k_{d'}} \} \\
\end{cases} \Rightarrow \text{sp}(G \square H) = \{ (\lambda_i + \mu_j)^{m_i+k_j} : 0 \leq i \leq d, 0 \leq j \leq d' \}$
The Hierarchical Product of Graphs
Graphs and matrices

\[\Phi_G(x) \text{ coefficients} \]

\[\Phi_G(x) = x^n + c_1 x^{n-1} + \cdots + c_{n-1} x + c_n \Rightarrow \]

1. \[c_1 = \text{tr}(A) = 0 \]

\[A^k = (a^k_{i,j}), \ a^k_{i,j} = \text{number of walks of length } k \text{ from } i \text{ to } j; \]
\[c := \text{number of closed walks of length } k \Rightarrow \]

\[c = \text{tr}(A^k) = \sum_i \lambda^k_i \]

In particular, \[\text{tr}(A^2) = \sum_i \lambda^2_i = 2 \cdot m \text{ and} \]
\[\text{tr}(A^3) = \sum_i \lambda^3_i = 6 \cdot t, \text{ where } t = \text{number of triangles}. \]

2. \[-c_2 = m \]

3. \[-c_3 = 2 \cdot t \]
1 Introduction

2 Graphs and matrices

3 The hierarchical product
 Definition and basic properties
 Vertex hierarchy
 Metric parameters

4 Algebraic properties
 Spectral properties of $G \sqcap K_2^m$
 The spectrum of the binary hypertree $T_m = K_2^m$
 The spectrum of a generic two-term product $G_2 \sqcap G_1$

5 Related works
 Hypertrees and generalized hypertrees
 Generalization of the hierarchical product

6 Conclusions
The Hierarchical Product of Graphs

The hierarchical product

Definition and basic properties

Definition

For $i = 1, \ldots, N$, G_i graph rooted at 0

$H = G_N \sqcap \cdots \sqcap G_2 \sqcap G_1$

- vertices $x_N \ldots x_3 x_2 x_1$, $x_i \in V_i$
- if $x_j \sim y_j$ in G_j then

$x_N \ldots x_{j+1} x_j 0 \ldots 0 \sim x_N \ldots x_{j+1} y_j 0 \ldots 0$

Example

The hierarchical products $K_2 \sqcap K_3$ and $K_3 \sqcap K_2$
The Hierarchical Product of Graphs

The hierarchical product

Definition and basic properties

\[G_N \sqcap \cdots \sqcap G_2 \sqcap G_1 \text{ is a spanning subgraph of } G_N \sqcap \cdots \sqcap G_2 \sqcap G_1 \]

Example

The hierarchical product \(P_4 \sqcap P_3 \sqcap P_2 \)
The Hierarchical Product of Graphs

The hierarchical product

Definition and basic properties

\[G^N = G \sqcap \cdots \sqcap G \] is the hierarchical \(N \)-power of \(G \)

Example

The hierarchical powers \(K_2^2 \), \(K_2^4 \) and \(K_2^5 \)
Example

The hierarchical power C_4^3
The Hierarchical Product of Graphs
The hierarchical product
Definition and basic properties

Order and size

\[n_i = |V_i| \text{ and } m_i = |E_i| \]
\[H = G_N \sqcap \cdots \sqcap G_2 \sqcap G_1 \]

- \[n_H = n_N \cdots n_3 n_2 n_1 \]
- \[m_H = \sum_{k=1}^{N} m_k n_{k+1} \cdots n_N \]

Properties of \(\sqcap \)

- Associativity. \(G_3 \sqcap G_2 \sqcap G_1 = G_3 \sqcap (G_2 \sqcap G_1) = (G_3 \sqcap G_2) \sqcap G_1 \)
- Right-distributivity. \((G_3 \cup G_2) \sqcap G_1 = (G_3 \sqcap G_1) \cup (G_2 \sqcap G_1) \)
- Left-semi-distributivity. \(G_3 \sqcap (G_2 \cup G_1) = (G_3 \sqcap G_2) \cup n_3 G_1, \) where \(n_3 G_1 = \overline{K}_{n_3} \sqcap G_1 \) is \(n_3 \) copies of \(G_1 \)
- \(G \sqcap K_1 = K_1 \sqcap G = G \)

\((G, \sqcap) \) is a monoid
The Hierarchical Product of Graphs

The hierarchical product

Vertex hierarchy

Degrees

- If \(\delta_i = \delta_{G_i}(0) \), then

 \[
 \delta_{G}(0) = \sum_{i=1}^{N} \delta_i
 \]

 \[
 x = x_Nx_{N-1} \ldots x_k00 \ldots 0, \ x_k \neq 0 \Rightarrow
 \]

 \[
 \delta_{H}(x) = \sum_{i=1}^{k-1} \delta_i + \delta_{G_k}(x_k)
 \]

- If \(G \) is \(\delta \)-regular, the degrees of the vertices of \(G^N \) follow an exponential distribution, \(P(k) = \gamma^{-k} \), for some constant \(\gamma \)

 For \(k = 1, \ldots, N - 1 \), \(G^N \) contains \((n - 1)n^{N-k} \) vertices with degree \(k\delta \) and \(n \) vertices with degree \(N\delta \)
The Hierarchical Product of Graphs

The hierarchical product

Vertex hierarchy

Example

\[T_m = K_2^m \text{ has } 2^{m-k} \text{ vertices of degree } k = 1, \ldots, m - 1, \text{ and two vertices of degree } m \]
The Hierarchical Product of Graphs

The hierarchical product

Vertex hierarchy

Modularity

\[H = G_N \sqcap \cdots \sqcap G_2 \sqcap G_1, \text{ } z \text{ an appropriate string} \]

\[H\langle zx_k \ldots x_1 \rangle = H[\{zx_k \ldots x_1|x_i \in V_i, 1 \leq i \leq k\}] \]

\[H\langle x_N \ldots x_k z \rangle = H[\{x_N \ldots x_k z|x_i \in V_i, k \leq i \leq N\}] \]

Lemma

- \[H\langle zx_k \ldots x_1 \rangle = G_k \sqcap \cdots \sqcap G_1, \text{ for any fixed } z \]
- \[H\langle x_N \ldots x_k 0 \rangle = G_N \sqcap \cdots \sqcap G_k \]
- \[H\langle x_N \ldots x_k z \rangle = (n_N \cdots n_k)K_1, \text{ for any fixed } z \neq 0 \]

\[H^* = H - 0 \]

Lemma

- \[(G_N \sqcap \cdots \sqcap G_2 \sqcap G_1)^* = \bigcup_{k=1}^{N} (G_k^* \sqcap G_{k-1} \sqcap \cdots \sqcap G_1) \]
- \[(K_2^N)^* = \bigcup_{k=0}^{N-1} K_2^k \]
- \[K_2^N - \{0, 10\} = K_2^{N-1} \cup K_2^{N-1} \]
Example

Modularity and symmetry of $T_m = K^m_2$
Example

Modularity and symmetry of $T_m = K_2^m$
Example

Modularity and symmetry of $T_m = K_{2^m}$
Example

Modularity and symmetry of $T_m = K_{2^m}$
Example

Modularity and symmetry of $T_m = K_{2m}$
Example

Modularity and symmetry of $T_m = K_2^m$
Eccentricity, radius and diameter

$$H = G_N \sqcap \cdots \sqcap G_2 \sqcap G_1$$

$$\varepsilon_i = \text{ecc}_{G_i}(0), \ r_{G_N} = r_N \text{ and } D_{G_N} = D_N$$

$$\rho_i$$ shortest path routing of $$G_i$$, $$i = 1, \ldots, N$$

Proposition

• $${\rho_i} \{i = 1 \ldots N\}$$ induce a shortest path routing $$\rho$$ in $$H$$

• The eccentricity, radius and diameter of $$H$$ are

$$\text{ecc}_H(0) = \sum_{i=1}^{N} \varepsilon_i, \quad r_H = r_N + \sum_{i=1}^{N-1} \varepsilon_i, \quad D_H = D_N + 2 \sum_{i=1}^{N-1} \varepsilon_i$$
The Hierarchical Product of Graphs

The hierarchical product

Metric parameters

Proof.
The Hierarchical Product of Graphs

The hierarchical product

Metric parameters

Proof.
Mean distance

G graph of order n

Mean distance. $d_G = \frac{1}{n(n-1)} \sum_{v \neq w \in V} \text{dist}_G(v, w)$

Local mean distance. $d_0^G = \frac{1}{n} \sum_{v \in V} \text{dist}_G(0, v)$

Proposition

$H = G_2 \cap G_1 \Rightarrow \begin{cases} d_H^{00} = d_1^0 + d_2^0 \\ d_H = \frac{1}{n-1} [(n_1 - 1)d_1 + n_1(n_2 - 1)(d_2 + 2d_1^0)] \end{cases}$
Mean distance

G graph of order n

Mean distance. $d_G = \frac{1}{n(n-1)} \sum_{v \neq w \in V} \text{dist}_G(v, w)$

Local mean distance. $d^0_G = \frac{1}{n} \sum_{v \in V} \text{dist}_G(0, v)$

Proposition

$H = G_2 \sqcap G_1 \Rightarrow \left\{ \begin{array}{l}
 d^{00}_H = d^0_1 + d^0_2 \\
 d_H = \frac{1}{n-1} \left[(n_1 - 1)d_1 + n_1(n_2 - 1)(d_2 + 2d^0_1) \right]
\end{array} \right.$

Proof.

Just compute!
Corollary

\[H = G^N, \ d = d_G, \ d^0 = d_G^0 \]

- \(\text{ecc}_N(0) = N\varepsilon, \ d_N^0 = Nd^0 \)
- \(r_N = r + (N - 1)\varepsilon, \ D_N = D + 2(N - 1)\varepsilon \)
- \(d_N = d + 2 \left(\frac{(N-1)n^N+1}{n^N-1} - \frac{1}{n-1} \right) d^0 \)

Asymptotically, \(d_N \sim d + 2d^0 \left(N - \frac{n}{n-1} \right) \sim d + 2Nd^0 \)

Example

\[G = K_2 \Rightarrow \text{ecc} = r = D = 1, \ d^0 = 1/2 \text{ and } d = 1 \]

The metric parameters of \(T_m = K_2^m \) are

- \(\text{ecc}_m(0) = m, \ d_m^0 = m/2 \)
- \(r_m = m, \ D_m = 2m - 1 \)
- \(d_m = \frac{m^{2m}}{2^{m-1}} - 1 \sim m - 1 \)
1 Introduction

2 Graphs and matrices

3 The hierarchical product
 Definition and basic properties
 Vertex hierarchy
 Metric parameters

4 Algebraic properties
 Spectral properties of $G \sqcap K_2^m$
 The spectrum of the binary hypertree $T_m = K_2^m$
 The spectrum of a generic two-term product $G_2 \sqcap G_1$

5 Related works
 Hypertrees and generalized hypertrees
 Generalization of the hierarchical product

6 Conclusions
Background

Kronecker product $A \otimes B = (a_{ij}B)$
If A and B are square, $A \otimes B$ and $B \otimes A$ are permutation similar
Background

Kronecker product $A \otimes B = (a_{ij}B)$

If A and B are square, $A \otimes B$ and $B \otimes A$ are permutation similar

Lemma

$H = G_2 \cap G_1 \Rightarrow$

$$A_H = A_2 \otimes D_1 + I_2 \otimes A_1 \cong D_1 \otimes A_2 + A_1 \otimes I_2$$

where $D_1 = \text{diag}(1, 0, \ldots, 0)$
The Hierarchical Product of Graphs

Algebraic properties

Background

Kronecker product $A \otimes B = (a_{ij}B)$

If A and B are square, $A \otimes B$ and $B \otimes A$ are permutation similar

Lemma

$H = G_2 \cap G_1 \Rightarrow$

$$A_H = A_2 \otimes D_1 + I_2 \otimes A_1 \cong D_1 \otimes A_2 + A_1 \otimes I_2$$

where $D_1 = \text{diag}(1, 0, \ldots, 0)$

Example

$H = G \cap K_n$, G of order $N \Rightarrow$

$$A_H = D_1 \otimes A_G + A_{K_n} \otimes I_N = \begin{pmatrix}
A_G & I_N & \cdots & I_N \\
I_N & 0 & \cdots & I_N \\
\vdots & \vdots & \ddots & \vdots \\
I_N & I_N & \cdots & 0
\end{pmatrix}$$
The Theorem (Silvester, 2000)

R commutative subring of $F^{n \times n}$, the set of all $n \times n$ matrices over a field F (or a commutative ring), and $M \in R^{m \times m}$. Then,

$$\det_F M = \det_F(\det_R M)$$

The Corollary (Silvester, 2000)

$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ where A, B, C, D commute with each other.

Then,

$$\det M = \det(AD - BC)$$
The Hierarchical Product of Graphs
Algebraic properties
Spectral properties of $G \sqcap K_2^m$

1. Introduction

2. Graphs and matrices

3. The hierarchical product
 Definition and basic properties
 Vertex hierarchy
 Metric parameters

4. Algebraic properties
 Spectral properties of $G \sqcap K_2^m$
 The spectrum of the binary hypertree $T_m = K_2^m$
 The spectrum of a generic two-term product $G_2 \sqcap G_1$

5. Related works
 Hypertrees and generalized hypertrees
 Generalization of the hierarchical product

6. Conclusions
The Hierarchical Product of Graphs
Algebraic properties
Spectral properties of $G \sqcap K_2^m$

$G \sqcap K_2$

Example

The Petersen graph, hierarchically multiplied by K_2
$G \sqcap K_2$

G graph of order n,
A adjacency matrix of G and
ϕ_G characteristic polynomial of G

- The adjacency matrix of $H = G \sqcap K_2$ is

$$A_H = \begin{pmatrix} A & I_n \\ I_n & 0 \end{pmatrix}$$

- The characteristic polynomial of H is

$$\phi_H(x) = \det(xI_{2n} - A_H) = \det\left(\begin{pmatrix} xI_n - A & -I_n \\ -I_n & xI_n \end{pmatrix} \right) = \det((x^2 - 1)I_n - xA) = x^n \phi_G(x - \frac{1}{x})$$
The Hierarchical Product of Graphs
Algebraic properties
Spectral properties of $G \sqcap K_2^m$

\[\phi_H(x) = x^n \phi_G(x - \frac{1}{x}) \]

Proposition

$H = G \sqcap K_2$ and \(\text{sp}G = \{ \lambda_{00}^m < \lambda_{11}^m < \ldots < \lambda_{dd}^m \} \) \implies

\[\text{sp}H = \{ \lambda_{00}^m < \lambda_{01}^m < \ldots < \lambda_{0d}^m < \lambda_{10}^m < \lambda_{11}^m < \ldots < \lambda_{1d}^m \} \]

where \(\lambda_{0i} = f_0(\lambda_i) = \frac{\lambda_i - \sqrt{\lambda_i^2 + 4}}{2} \), \(\lambda_{1i} = f_1(\lambda_i) = \frac{\lambda_i + \sqrt{\lambda_i^2 + 4}}{2} \)
\[\phi_H(x) = x^n \phi_G(x - \frac{1}{x}) \]

Proposition

\(H = G \sqcap K_2 \) and \(\text{sp}G = \{ \lambda_0^{m_0} < \lambda_1^{m_1} < \ldots < \lambda_d^{m_d} \} \) ⇒

\[\text{sp}H = \{ \lambda_{00}^{m_0} < \lambda_{01}^{m_1} < \ldots < \lambda_{0d}^{m_d} < \lambda_{10}^{m_0} < \lambda_{11}^{m_1} < \ldots < \lambda_{1d}^{m_d} \} \]

where \(\lambda_{0i} = f_0(\lambda_i) = \frac{\lambda_i - \sqrt{\lambda_i^2 + 4}}{2} \), \(\lambda_{1i} = f_1(\lambda_i) = \frac{\lambda_i + \sqrt{\lambda_i^2 + 4}}{2} \)

Proof.

\(\lambda \in \text{sp}H \iff \phi_H(\lambda) = \lambda^n \phi_G(\lambda - \frac{1}{\lambda}) = 0 \iff \lambda - \frac{1}{\lambda} \in \text{sp}G \)

\[\lambda_i \in \text{sp}G \implies \lambda^2 - \lambda_i \lambda - 1 = 0 \]
The Hierarchical Product of Graphs

Algebraic properties

Spectral properties of $G \sqcap K_2^m$

$$\phi_H(x) = x^n \phi_G(x - \frac{1}{x})$$
The Hierarchical Product of Graphs

Algebraic properties

Spectral properties of $G \square K_2^m$

$$H_m = G \square K_2^m$$

$H_m = H_{m-1} \square K_2$, $m \geq 1$. The adjacency matrix of H_m is

$$A_m = \begin{pmatrix} A_{m-1} & I_{m-1} \\ I_{m-1} & 0 \end{pmatrix}$$

where I_m denotes the identity matrix of size $n2^m$ (the same as A_m).

$H_0 = G$, $A_0 = A$ the adjacency matrix of G

Example
Let \(\{p_i, q_i\}_{i \geq 0} \) be the family of polynomials satisfying the recurrence equations
\[
\begin{align*}
 p_i &= p_{i-1}^2 - q_{i-1}^2 \\
 q_i &= p_{i-1} q_{i-1}
\end{align*}
\]
with initial conditions
\[
p_0 = x \text{ and } q_0 = 1
\]

Proposition

For every \(m \geq 0 \), the characteristic polynomial of \(H_m = G \sqcap K_2^m \) is
\[
\phi_m(x) = q_m(x)^n \phi_0 \left(\frac{p_m(x)}{q_m(x)} \right)
\]

Lemma

If \(p \) and \(q \) are arbitrary polynomials, then
\[
\det \begin{pmatrix} pI_n - qA & -qI_n \\ -qI_n & pI_n \end{pmatrix} = \det((p^2 - q^2)I_n - pqA)
\]
Proof of $\phi_m(x) = q_m(x)^n \phi_0 \left(\frac{p_m(x)}{q_m(x)} \right)$.

By induction on m, using the Lemma
Proof of $\phi_m(x) = q_m(x)^n \phi_0 \left(\frac{p_m(x)}{q_m(x)} \right)$.

By induction on m, using the Lemma

- Case $m = 0$. Trivially from $q_0(x) = 1$ and $p_0(x) = x$.

Seminario “Víctor Neumann-Lara”, IMUNAM, 8-4-08
Proof of $\phi_m(x) = q_m(x)^n \phi_0 \left(\frac{p_m(x)}{q_m(x)} \right)$.

By induction on m, using the Lemma

- **Case $m = 0$.** Trivially from $q_0(x) = 1$ and $p_0(x) = x$.

- **$m \geq 1$.** By induction on i, we prove that
 \[\phi_m = \det(p_i I_{m-i} - q_i A_{m-i}) \]

 - $i = 0$: $\phi_m = \det(x I_m - A_m) = \det(p_0 I_m - q_0 A_m)$
 - $i - 1 \Rightarrow i$: $\phi_m = \det(p_{i-1} I_{m-i+1} - q_{i-1} A_{m-i+1}) = \det((p_{i-1}^2 - q_{i-1}^2) I_{m-i} - p_{i-1} q_{i-1} A_{m-i})) = \det(p_i I_{m-i} - q_i A_{m-i})$
Proof of $\phi_m(x) = q_m(x)^n \phi_0 \left(\frac{p_m(x)}{q_m(x)} \right)$.

By induction on m, using the Lemma

- **Case $m = 0$.** Trivially from $q_0(x) = 1$ and $p_0(x) = x$.
- **$m \geq 1$.** By induction on i, we prove that
 \[
 \phi_m = \det(p_i I_{m-i} - q_i A_{m-i})
 \]
 - $i = 0$: $\phi_m = \det(x I_m - A_m) = \det(p_0 I_m - q_0 A_m)$
 - $i - 1 \Rightarrow i$: $\phi_m = \det(p_{i-1} I_{m-i+1} - q_{i-1} A_{m-i+1}) = $
 \[
 = \det((p_{i-1}^2 - q_{i-1}^2) I_{m-i} - p_{i-1} q_{i-1} A_{m-i}) =
 \]
 \[
 = \det(p_i I_{m-i} - q_i A_{m-i})
 \]
 - The case $i = m$ gives
 \[
 \phi_m(x) = \det(p_m(x) I_0 - q_m(x) A_0) =
 \]
 \[
 = \det \left(q_m(x) \left(\frac{p_m(x)}{q_m(x)} I_0 - A_0 \right) \right) = q_m(x)^n \phi_0 \left(\frac{p_m(x)}{q_m(x)} \right)
 \]
The Hierarchical Product of Graphs

Algebraic properties
 The spectrum of the binary hypertree $T_m = K_2^m$

1. Introduction

2. Graphs and matrices

3. The hierarchical product
 Definition and basic properties
 Vertex hierarchy
 Metric parameters

4. Algebraic properties
 Spectral properties of $G \sqcap K_2^m$
 The spectrum of the binary hypertree $T_m = K_2^m$
 The spectrum of a generic two-term product $G_2 \sqcap G_1$

5. Related works
 Hypertrees and generalized hypertrees
 Generalization of the hierarchical product

6. Conclusions

Seminario “Víctor Neumann-Lara”, IMUNAM, 8-4-08
The Hierarchical Product of Graphs

Algebraic properties

The spectrum of the binary hypertree $T_m = K_2^m$

\[T_m = K_2^m \]

\[p_i = p_{i-1}^2 - q_{i-1}^2 \]
\[q_i = p_{i-1}q_{i-1} \]
\[p_0 = x, \quad q_0 = 1 \]

Corollary

- $\phi_{T_m}(x) = p_m(x)$
- $\phi_{T_m^*}(x) = q_m(x)$
The Hierarchical Product of Graphs

Algebraic properties

The spectrum of the binary hypertree $T_m = K_2^m$

\[T_m = K_2^m \]

\[p_i = p_{i-1}^2 - q_{i-1}^2 \]
\[q_i = p_{i-1}q_{i-1} \]
\[p_0 = x, \quad q_0 = 1 \]

Corollary

- $\phi_{T_m}(x) = p_m(x)$
- $\phi_{T_m^*}(x) = q_m(x)$

Proof.

$G = K_1 \implies \phi_0(x) = x \implies \phi_{T_m}(x) = q_m(x)^n \phi_0\left(\frac{p_m(x)}{q_m(x)}\right) = p_m(x)$

$T_m^* = T_m - 0 = \bigcup_{i=0}^{m-1} T_i \implies \phi_{T_m^*}(x) = \prod_{i=0}^{m-1} p_i(x) = q_m(x)$
The Hierarchical Product of Graphs
Algebraic properties
The spectrum of the binary hypertree $T_m = K_2^m$

Proposition

T_m, $m \geq 1$, has **distinct** eigenvalues $\lambda_0^m < \lambda_1^m < \cdots < \lambda_{n-1}^m$, with $n = 2^m$, **satisfying the following recurrence relation**:

$$
\lambda_{\frac{n}{2}+k}^m = \frac{\lambda_{k-1}^{m-1} + \sqrt{(\lambda_{k-1}^{m-1})^2 + 4}}{2}
$$

$$
\lambda_{n-k-1}^m = -\lambda_k^m
$$

for $m > 1$ and $k = \frac{n}{2}, \frac{n}{2} + 1, \ldots, n - 1$
The Hierarchical Product of Graphs
Algebraic properties
The spectrum of the binary hypertree $T_m = K_2^m$

Proposition

$T_m, m \geq 1,$ has distinct eigenvalues $\lambda_0^m < \lambda_1^m < \cdots < \lambda_{n-1}^m,$ with $n = 2^m,$ satisfying the following recurrence relation:

$$
\lambda_{\frac{n}{2}+k}^m = \frac{\lambda_{k}^{m-1} + \sqrt{(\lambda_{k}^{m-1})^2 + 4}}{2}
$$

$$
\lambda_{n-k-1}^m = -\lambda_k^m
$$

for $m > 1$ and $k = \frac{n}{2}, \frac{n}{2} + 1, \ldots, n - 1$

Proof.

• $\lambda_0 i = f_0(\lambda_i) = \frac{\lambda_i - \sqrt{\lambda_i^2 + 4}}{2},$ $\lambda_1 i = f_1(\lambda_i) = \frac{\lambda_i + \sqrt{\lambda_i^2 + 4}}{2}$

• T_m bipartite \Rightarrow its spectrum is symmetric with respect to 0

• $\text{sp } T_0 = \{0^1\} \Rightarrow$ the multiplicity of every λ_1^m is 1
The Hierarchical Product of Graphs
Algebraic properties
The spectrum of the binary hypertree $T_m = K_2^m$

Properties of $sp \ T_m$

$$\lambda_i \in spG \Rightarrow \lambda^2 - \lambda_i \lambda - 1 = 0$$

$$f_0(x) = \frac{x - \sqrt{x^2 + 4}}{2} \quad f_1(x) = \frac{x + \sqrt{x^2 + 4}}{2}$$

$m = 0 \Rightarrow sp T_0 = \{0\}$

$m = 1 \Rightarrow \lambda_0 = f_0(0) = -1, \ \lambda_1 = f_1(0) = 1$

$m = 2 \Rightarrow$

\[\begin{align*}
\lambda_0 &= f_0(-1) = f_0(f_0(0)) = -1.618 \\
\lambda_1 &= f_0(1) = f_0(f_1(0)) = -0.618 \\
\lambda_2 &= f_1(-1) = f_1(f_0(0)) = 0.618 \\
\lambda_3 &= f_1(1) = f_1(f_1(0)) = 1.618
\end{align*}\]

\ldots

m fixed, $i = i_{m-1} \ldots i_1 i_0 \in \mathbb{Z}_2^m \Rightarrow$

$$\Rightarrow \lambda_i = (f_{i_{m-1}} \circ \ldots \circ f_{i_1} \circ f_{i_0})(0)$$
The hierarchical product of graphs

Algebraic properties

The spectrum of the binary hypertree $T_m = K_2^m$

The distinct eigenvalues of the hypertree T_m for $0 \leq m \leq 6$.

![Graph Diagram]
Proposition

The asymptotic behaviors of

- the spectral radius $\rho_k = \max_{0 \leq i \leq n-1} \{|\lambda_i|^2\} = \lambda_{11\ldots1}$,
- the second largest eigenvalue $\theta_k = \lambda_{11\ldots10}$, and
- the minimum positive eigenvalue $\sigma_k = \min_{0 \leq i \leq n-1} \{|\lambda_i|^2\} = \lambda_{10\ldots0}$

of the hypertree T_k are:

$$\rho_k \sim \sqrt{2^k}, \quad \theta_k \sim \sqrt{2^k}, \quad \sigma_k \sim 1/\sqrt{2^k}$$
Proof of $\rho_k \sim \sqrt{2k}$, $\theta_k \sim \sqrt{2k}$, $\sigma_k \sim \frac{1}{\sqrt{2k}}$.
The Hierarchical Product of Graphs
Algebraic properties
The spectrum of the binary hypertree $T_m = K_2^m$

Proof of $\rho_k \sim \sqrt{2k}, \theta_k \sim \sqrt{2k}, \sigma_k \sim 1/\sqrt{2k}$.

• $\rho_k \sigma_k = 1$
Proof of $\rho_k \sim \sqrt{2k}$, $\theta_k \sim \sqrt{2k}$, $\sigma_k \sim 1/\sqrt{2k}$.

- $\rho_k \sigma_k = 1$
- ρ_k and θ_k verify the recurrence

 $\lambda_{k+1} = f_1(\lambda_k) = \frac{1}{2}(\lambda_k + \sqrt{\lambda_k^2 + 4})$
Proof of $\rho_k \sim \sqrt{2k}$, $\theta_k \sim \sqrt{2k}$, $\sigma_k \sim 1/\sqrt{2k}$.

- $\rho_k \sigma_k = 1$
- ρ_k and θ_k verify the recurrence
 \[
 \lambda_{k+1} = f_1(\lambda_k) = \frac{1}{2}(\lambda_k + \sqrt{\lambda_k^2 + 4})
 \]
- Assuming $\lambda_k \sim \alpha k^\beta$
 \[
 \alpha (k + 1)^\beta \sim \frac{\alpha k^\beta + \sqrt{\alpha^2 k^{2\beta} + 4}}{2} \Rightarrow
 \Rightarrow \alpha^2 (k + 1)^\beta [(k + 1)^\beta - k^\beta] \sim 1
 \]
 \[
 2(k + 1)^{1/2} [(k + 1)^{1/2} - k^{1/2}] = \frac{2(k + 1)^{1/2}}{(k + 1)^{1/2} + k^{1/2}} \to 1
 \]
The Hierarchical Product of Graphs

Algebraic properties

The spectrum of a generic two-term product $G_2 \sqcap G_1$

1. Introduction
2. Graphs and matrices
3. The hierarchical product
 Definition and basic properties
 Vertex hierarchy
 Metric parameters
4. Algebraic properties
 Spectral properties of $G \sqcap K^m_2$
 The spectrum of the binary hypertree $T_m = K^m_2$
 The spectrum of a generic two-term product $G_2 \sqcap G_1$
5. Related works
 Hypertrees and generalized hypertrees
 Generalization of the hierarchical product
6. Conclusions
The Hierarchical Product of Graphs
Algebraic properties
The spectrum of a generic two-term product $G_2 \sqcap G_1$

Theorem

Let G_1 and G_2 be two graphs on n_i vertices, with adjacency matrix A_i and characteristic polynomial $\phi_i(x)$, $i = 1, 2$.

Consider the graph $G_1^* = G_1 - 0$, with adjacency matrix A_1^* and characteristic polynomial ϕ_1^*.

Then the characteristic polynomial $\phi_H(x)$ of the hierarchical product $H = G_2 \sqcap G_1$ is:

$$\phi_H(x) = \phi_1^*(x)^{n_2} \phi_2 \left(\frac{\phi_1(x)}{\phi_1^*(x)} \right)$$
The Hierarchical Product of Graphs

Algebraic properties

The spectrum of a generic two-term product \(G_2 \sqcap G_1 \)

Proof of \(\phi_H(x) = \phi_1^*(x)^n \phi_2 \left(\frac{\phi_1(x)}{\phi_1^*(x)} \right). \)
The Hierarchical Product of Graphs

Algebraic properties

The spectrum of a generic two-term product $G_2 \sqcap G_1$

Proof of $\phi_H(x) = \phi_1^*(x)^{n_2} \phi_2 \left(\frac{\phi_1(x)}{\phi_1^*(x)} \right)$.

- The adjacency matrix of H is an $n_1 \times n_1$ block matrix, with blocks of size $n_2 \times n_2$

$$A_H = D_1 \otimes A_2 + A_1 \otimes I_2 = \begin{pmatrix} A_2 & B \\ B^\top & A_1^* \otimes I_2 \end{pmatrix}$$

where $B = \begin{pmatrix} I_2 & \ldots \ldots & I_2 \\ \end{pmatrix}$
Proof of $\phi_H(x) = \phi_1^*(x)^n_2 \phi_2 \left(\frac{\phi_1(x)}{\phi_1^*(x)} \right)$.

- The adjacency matrix of H is an $n_1 \times n_1$ block matrix, with blocks of size $n_2 \times n_2$

$$A_H = D_1 \otimes A_2 + A_1 \otimes I_2 = \begin{pmatrix} A_2 & B \\ B^\top & A_1^* \otimes I_2 \end{pmatrix}$$

where $B = \begin{pmatrix} I_2 & \cdots & (\delta) & I_2 & 0 & 0 & \cdots & 0 \end{pmatrix}$

- The characteristic polynomial of H is

$$\phi_H(x) = \det(xI - A_H) = \det \begin{pmatrix} xI_2 - A_2 & -B \\ -B^\top & (xI_1^* - A_1^*) \otimes I_2 \end{pmatrix}$$
Proof of $\phi_H(x) = \phi_1^*(x)^n_2 \phi_2 \left(\frac{\phi_1(x)}{\phi_1^*(x)} \right)$.

- The adjacency matrix of H is an $n_1 \times n_1$ block matrix, with blocks of size $n_2 \times n_2$
 \[A_H = D_1 \otimes A_2 + A_1 \otimes I_2 = \begin{pmatrix} A_2 & B \\ B^\top & A_1^* \otimes I_2 \end{pmatrix} \]
 where $B = \begin{pmatrix} I_2 & \ddots & I_2 \\ I_2 & \ddots & I_2 \\ & & 0 & \ddots & 0 \end{pmatrix}$
- The characteristic polynomial of H is
 \[\phi_H(x) = \det(xI - A_H) = \det \begin{pmatrix} xI_2 - A_2 & -B \\ -B^\top & (xI_1^* - A_1^*) \otimes I_2 \end{pmatrix} \]
- Computing the determinant in $\mathbb{R}^{n_2 \times n_2}$:
 \[\phi_H(x) = \det([xI_2 - A_2]\phi_1^*(x)I_2 + \phi_1(x)I_2 - xI_2\phi_1^*(x)) = \]
 \[= \det(\phi_1(x)I_2 - \phi_1^*(x)A_2) = \det \left(\phi_1^*(x) \left[\frac{\phi_1(x)}{\phi_1^*(x)}I_2 - A_2 \right] \right) = \]
 \[= \phi_1^*(x)^n_2 \phi_2 \left(\frac{\phi_1(x)}{\phi_1^*(x)} \right) \]
Corollary

G_1 walk-regular $\Rightarrow \phi_H(x) = \left(\frac{\phi'_1(x)}{n_1}\right)^{n_2} \phi_2 \left(\frac{n_1\phi_1(x)}{\phi'_1(x)}\right)$

Proof.

$\phi^*_1(x) = \frac{1}{n_1}\phi'_1(x)$

Corollary

G graph of order $n_2 = N$ and characteristic polynomial $\phi_G \Rightarrow$ the characteristic polynomial of $H = G \sqcap K_n$ is

$\phi_H(x) = (x + 1)^{N(n-2)}(x - n + 2)^N \phi_G \left(\frac{(x + 1)(x - n + 1)}{(x - n + 2)}\right)$

Proof.

K_n is walk-regular, $\phi_{K_n} = (x - n + 1)(x + 1)^{n-1}$ and

$\phi'_{K_n} = (x + 1)^{n-1} + (n - 1)(x - n + 1)(x + 1)^{n-2}$
1 Introduction

2 Graphs and matrices

3 The hierarchical product
 Definition and basic properties
 Vertex hierarchy
 Metric parameters

4 Algebraic properties
 Spectral properties of $G \sqcap K^m_2$
 The spectrum of the binary hypertree $T_m = K^m_2$
 The spectrum of a generic two-term product $G_2 \sqcap G_1$

5 Related works
 Hypertrees and generalized hypertrees
 Generalization of the hierarchical product

6 Conclusions
Introduction

Graphs and matrices

The hierarchical product
 Definition and basic properties
 Vertex hierarchy
 Metric parameters

Algebraic properties
 Spectral properties of $G \sqcap K_2^m$
 The spectrum of the binary hypertree $T_m = K_2^m$
 The spectrum of a generic two-term product $G_2 \sqcap G_1$

Related works
 Hypertrees and generalized hypertrees
 Generalization of the hierarchical product

Conclusions
The Hierarchical Product of Graphs

Related works

Hypertrees and generalized hypertrees

\[T_m = K_2^m \]
Eigenvalues of the hypertree T_m for $0 \leq m \leq 6$.
The Hierarchical Product of Graphs

Related works

Hypertrees and generalized hypertrees

The generalized hypertree

\(T_r^m = P_r^m \)

Example
Eigenvalues of T_3^m for $0 \leq m \leq 3$.
The Hierarchical Product of Graphs

Related works

Generalization of the hierarchical product

1. Introduction

2. Graphs and matrices

3. The hierarchical product
 Definition and basic properties
 Vertex hierarchy
 Metric parameters

4. Algebraic properties
 Spectral properties of $G \sqcap K_2^m$
 The spectrum of the binary hypertree $T_m = K_2^m$
 The spectrum of a generic two-term product $G_2 \sqcap G_1$

5. Related works
 Hypertrees and generalized hypertrees
 Generalization of the hierarchical product

6. Conclusions
Definition of the generalized hierarchical product

\[G_i = (V_i, E_i), \emptyset \neq U_i \subseteq V_i, \ i = 1, 2, \ldots, N - 1 \]

\[H = G_N \boxtimes G_{N-1}(U_{N-1}) \boxtimes \cdots \boxtimes G_1(U_1) \] is the graph:

- vertices \(V_N \times \cdots V_2 \times V_1 \)
- if \(x_j \sim y_j \) in \(G_j \) and \(u_i \in U_i, \ i = 1, 2, \ldots, j - 1 \) then
 \[x_N \cdots x_{j+1}x_ju_{j-1} \cdots u_1 \sim x_N \cdots x_{j+1}y_ju_{j-1} \cdots u_1 \]

Example

- For every \(i, U_i = V_i \Rightarrow \)
 \[G_N \boxtimes G_{N-1}(U_{N-1}) \boxtimes \cdots \boxtimes G_1(U_1) = G_N \boxtimes G_{N-1} \boxtimes \cdots \boxtimes G_1 \]

- For every \(i, U_i = \{0\} \Rightarrow \)
 \[G_N \boxtimes G_{N-1}(U_{N-1}) \boxtimes \cdots \boxtimes G_1(U_1) = G_N \boxtimes G_{N-1} \boxtimes \cdots \boxtimes G_1 \]
Example

Two views of a generalized hierarchical product K_3^3 with $U_1 = U_2 = \{0, 1\}$.
Summary

1. Definition of the hierarchical product of graphs
2. Spectral properties
3. The particular case of T_m
4. Properties of T_r^m, $\text{sp} T_r^m$ and $\bigcup_m \text{sp} T_r^m$
5. Definition and properties of the generalized hierarchical product
Publications

• On the spectra of hypertrees, BCDF, Linear Algebra and its Applications, 428(7):1499–1510

• On the hierarchical product of graphs and the generalized binomial tree, BCDF, Linear and Multilinear Algebra, submitted (September 2007).

The Hierarchical Product of Graphs

Conclusions

Gracias !!!