Generalized Syzygies for Commutative Koszul Algebras
Joint Work in Progress with Vassily Gorbounov (Aberdeen)
Zain Shaikh (Cologne) and Andrew Tonks (Londonmet)

Imma Gálvez Carrillo
Universitat Politècnica de Catalunya, Departament de Matemàtica Aplicada III,
EET, Terrassa

CSASC 2011 ”Categorical Algebra, Homotopy Theory, and Applications”
Donau Universität Krems
September 27, 2011
Towards generalized syzygies

Definition: Koszul homology

Let \(\{a_1, \ldots, a_n\} \) be a sequence of elements in a commutative \(\mathbb{C} \)-algebra \(A \). Let \(W \) be an \(n \)-dimensional complex vector space with basis \(\{\theta_1, \ldots, \theta_n\} \). The **Koszul homology** of \(A \) with respect to the sequence \(\{a_1, \ldots, a_n\} \) is the homology of the complex

\[
A \otimes \bigwedge W,
\]

where \(A \) has homological degree zero, each \(\theta_i \) has homological degree one, and the **Koszul differential** is given by the formula

\[
d_K = \sum_{i=1}^{n} a_i \frac{\partial}{\partial \theta_i}.
\]
Definition: Quadratic algebra

Let A be a positively graded connected algebra, locally finite-dimensional. A is called quadratic if it is determined by a vector space of generators $V = A_1$ and subspace of quadratic relations $I \subset A_1 \otimes A_1$.

Definition: Koszul quadratic dual

The Koszul dual algebra $A^!$ associated with a quadratic algebra A is

$$A^! = T(V^*)/I^\perp,$$

where $I^\perp \subset V^* \otimes V^*$ is the annihilator of I. Clearly $A^{!!} = A$.

Imma Gálvez Carrillo

Generalized Syzygies for Commutative Koszul Algebras
Definition: Koszul algebra

A quadratic as above is a **Koszul algebra** iff

\[A^1 \cong \text{Ext}^*_A(k, k) \]
Definition: Lie superalgebra

A **Lie superalgebra** over \mathbb{C} is a $\mathbb{Z}/2$-graded vector space (over \mathbb{C}) $L = L(0) \oplus L(1)$ with a map $[\cdot, \cdot] : L \otimes L \to L$ of $\mathbb{Z}/2$-graded spaces, satisfying:

1. (anti-symmetry) $[x, y] = -(-1)^{|x||y|}[y, x]$ for all homogeneous $x, y \in L$,

2. (Jacobi identity)

$$(-1)^{|x||z|}[x, [y, z]] + (-1)^{|y||x|}[y, [z, x]] + (-1)^{|z||y|}[z, [x, y]] = 0$$

for all homogeneous $x, y, z \in L$.

Imma Gálvez Carrillo
UPC-Terrassa
Definition: Lie superalgebra (continued)

Here $|x|$ is the parity of x: $|x| = i$ when $x \in L(i)$ for $i = 0, 1$. An element x in $L(0)$ or $L(1)$ is termed even or odd respectively. We recover the familiar definition of a Lie algebra (over \mathbb{C}) in the case $L = L(0)$.

Definition: graded Lie superalgebra

A **graded Lie superalgebra** is a Lie superalgebra L together with a grading compatible with the bracket and supergrading. That is, $L = \bigoplus_{m \geq 1} L_m$ such that $[L_i, L_j] \subset L_{i+j}$ and $L(i) = \bigoplus_{m \geq 1} L_{2m-i}$ for $i = 0, 1$.
Assume that $A = T(V)/I$ is commutative, hence $\wedge^2 V \subset I$. Therefore I^\perp is contained in $S^2(V^*)$, and so is generated by certain linear combinations of anti-commutators $[a^*_i, a^*_j] = a^*_i a^*_j + a^*_j a^*_i$. As a consequence, the Koszul quadratic dual of A can be described as the universal envelope of a graded Lie superalgebra,

$$A^! = U(L), \quad L = \bigoplus_{m \geq 1} L_m = \mathbb{L}(V^*)/J,$$

where \mathbb{L} is the free Lie superalgebra functor, the space of (odd) generators V^* is concentrated in degree 1, and J is the Lie ideal with the same generators as I^\perp but viewed as linear combinations of supercommutators.
The following Lie ideals are main characters of our work.

Definition

For $k \geq 2$, we define the graded Lie superalgebras

$$L_{\geq k} = \bigoplus_{m \geq k} L_m.$$
The algebra of syzygies (I)

Definition: the algebra of syzygies

Let A be a commutative \mathbb{C}-algebra which is a module over $S(V)$, and suppose we have a minimal free resolution of A,

$$\cdots \rightarrow F_2 \rightarrow F_1 \rightarrow F_0 \rightarrow A \rightarrow 0.$$

This is an exact sequence of graded free $S(V)$-modules,

$$F_p = \bigoplus_{q \geq m_p} R_{pq} \otimes S(V),$$

where R_{pq} is the finite dimensional vector spaces of p-th order syzygies of degree q for A, and m_p is the minimum degree among the p-th order syzygies.
Since the chosen resolution is minimal, the differential vanishes on tensoring this complex with the trivial $S(V)$-module \mathbb{C}.

Hence

$$\text{Tor}^{S(V)}_p(A, \mathbb{C}) = R_p := \bigoplus_{q \geq m_p} R_{pq}.$$
The functor $\text{Tor}^S(V)$ may also be calculated by resolving the other argument \mathbb{C}.

The Koszul complex $K(S(V))$ of the symmetric algebra $S(V) = \mathbb{C}[a_1, \ldots, a_n]$, is given by $(S(V) \otimes \bigwedge W, d_K)$, that is,

$$(\mathbb{C}[a_1, \ldots, a_n] \otimes \bigwedge (\theta_1, \ldots, \theta_n), d_K).$$

with the Koszul differential d_K of the sequence $\{a_1, \ldots, a_n\}$.
Since this complex is a resolution of \(\mathbb{C} \) we can calculate the syzygies \(R_p \) of the quadratic algebra \(A = T(V)/I \) by the homology of the complex

\[
A \otimes_{S(V)} K(S(V)) = A \otimes_{S(V)} S(V) \otimes_{\mathbb{C}} \bigwedge W = A \otimes \bigwedge W.
\]

This homology inherits a multiplication from \(K(S(V)) \) and becomes an associative algebra.
Theorem [4, 12, 9]

Let $A = T(V)/I$ be a commutative Koszul algebra, $R = \bigoplus_p R_p$ is its algebra of syzygies and $A^! = T(V^*)/I^\perp = U(L)$ is its Koszul dual.

Then $R_{pq} \cong H^{q-p}(L_{\geq 2}, \mathbb{C})_q$ as algebras.

So $H^*(L_{\geq 2}, \mathbb{C})$ gives indeed the algebra of syzygies of A.

So $H^*(L_{\geq 2}, \mathbb{C})$ gives indeed the algebra of syzygies of A.

The interpretation of the algebras $L_{\geq k}$ for $k > 2$ was outlined by Berkovits in [4].

So $H^*(L_{\geq 2}, \mathbb{C})$ gives indeed the algebra of syzygies of A.

The interpretation of the algebras $L_{\geq k}$ for $k > 2$ was outlined by Berkovits in [4].

We concentrate on the case $k = 3$.

Let $A = \mathbb{C}[a_1, \ldots, a_n]/I$ be commutative Koszul, with minimal set of generators $\{\Gamma_1, \ldots, \Gamma_m\}$ of I representing lowest degree syzygies.

Lemma

If the quadratic relations for A are defined by the formulas

$$\Gamma_k = \sum_{i,j=1}^{n} \Gamma_{ij}^k a_i a_j,$$

for $k = 1, \ldots, m$, then the representative for the homology class in the algebra of syzygies defined by the sequence $\{\Gamma_1, \ldots, \Gamma_m\}$ is

$$\tilde{\Gamma}_k = \sum_{i,j=1}^{n} \Gamma_{ij}^k a_i \theta_j, \quad k = 1, \ldots, m$$
The Berkovits complex of a commutative Koszul algebra A is

$$C_B(A) := A \otimes \bigwedge (\theta_1, \ldots, \theta_n) \otimes \mathbb{C}[y_1, \ldots, y_m]$$

equipped with the Berkovits differential

$$d_B = d_K + d_{Ber} = \sum_{i=1}^{n} a_i \frac{\partial}{\partial \theta_i} + \sum_{k=1}^{m} \sum_{i,j=1}^{n} \Gamma_{ij}^{k} a_i \theta_j \frac{\partial}{\partial y_k},$$

where the y_k have homological degree two.
Main Theorem [GGST 2011]

Let A be a commutative Koszul algebra and $A^1 = U(L)$. Then,

$$H_*(C_B(A), d_B) \cong H^*(L_{\geq 3}, \mathbb{C}).$$

$H_*(C_B(A), d_B)$ is called the algebra of generalized syzygies of A.
Key Lemma

Let \((C, d)\) be a commutative DG algebra over \(\mathbb{C}\), nonnegatively graded and finitely generated in each degree.
Key Lemma

- Let \((C, d)\) be a commutative DG algebra over \(\mathbb{C}\), nonnegatively graded and finitely generated in each degree.
- Let \(B\) be a contractible DG subalgebra of \(C\), with quasi-isomorphism \(\varepsilon : B \to \mathbb{C}\).
Key Lemma

- Let \((C, d)\) be a commutative DG algebra over \(\mathbb{C}\), nonnegatively graded and finitely generated in each degree.
- Let \(B\) be a contractible DG subalgebra of \(C\), with quasi-isomorphism \(\varepsilon : B \to \mathbb{C}\).
- Consider the DG ideal \(\langle B \rangle\) of \(C\) generated by the augmentation ideal \(\overline{B} = \ker(\varepsilon)\).
Tools for the proof: A result on DG algebras

Key Lemma

Let (C, d) be a commutative DG algebra over \mathbb{C}, nonnegatively graded and finitely generated in each degree.

Let B be a contractible DG subalgebra of C, with quasi-isomorphism $\varepsilon : B \rightarrow \mathbb{C}$.

Consider the DG ideal $\langle B \rangle$ of C generated by the augmentation ideal $\overline{B} = \ker(\varepsilon)$.

If $\langle B \rangle$ is freely generated as a \overline{B}-module by a graded basis of homogeneous elements $Z = \bigcup_{i \geq 0} Z_i$, then C is quasi-isomorphic to $C/\langle B \rangle$.
Assume that A is a commutative Koszul algebra with $A^! = U(L)$ as above. We construct a resolution of A in the category of DG algebras from the Chevalley complex of L.

Definition: the Chevalley complex

The **Chevalley complex** of L is the cochain complex with

$$\text{Ch}^i(L) = \left(\bigwedge^i L \right)^*$$

and the differential $d_C : \text{Ch}^k(L) \rightarrow \text{Ch}^{k+1}(L)$

$$(d_C \varphi)(x_0, \ldots, x_k) = \sum_{i<j} (-1)^{j+\varepsilon(i,j)} \varphi(x_0, \ldots, x_{i-1}, [x_i, x_j], x_{i+1}, \ldots, \hat{x}_j, \ldots, x_k)$$
Some properties of the Chevalley complex

- $d_C : \text{Ch}^1(L) \to \text{Ch}^2(L)$ is the map that is dual to the bracket,

$$(d_C f)(x_0, x_1) = -f[x_0, x_1].$$
Some properties of the Chevalley complex

- $d_C : \text{Ch}^1(L) \rightarrow \text{Ch}^2(L)$ is the map that is dual to the bracket,

\[(d_C f)(x_0, x_1) = -f[x_0, x_1].\]

- The Chevalley complex is a cochain complex that calculates the cohomology of L with trivial coefficients, $H^*(L, \mathbb{C})$.
Some properties of the Chevalley complex

- \(d_C : \text{Ch}^1(L) \to \text{Ch}^2(L) \) is the map that is dual to the bracket,

\[(d_C f)(x_0, x_1) = -f[x_0, x_1]. \]

- The Chevalley complex is a cochain complex that calculates the cohomology of \(L \) with trivial coefficients, \(H^*(L, \mathbb{C}) \).

- This complex admits an algebra structure that descends to one on the cohomology of \(L \) so that the differential \(d_C \) is a derivation with respect to its product.

That is, given \(\varphi \in \left(\bigwedge^i L \right)^* \) and \(\psi \in \left(\bigwedge^j L \right)^* \),

\[\varphi \otimes \psi \in \left(\bigwedge^{i+j} L \right)^* \] and \(d_C(\varphi \otimes \psi) = d_C \varphi \otimes \psi \pm \varphi \otimes d_C \psi. \)
The Chevalley complex as a chain complex

As well as being a cochain complex whose cohomology is that of L, the Chevalley complex may also be considered a chain complex.
The Chevalley complex as a chain complex

- As well as being a *cochain complex* whose cohomology is that of L, the Chevalley complex may also be considered a *chain complex*.

- The chain complex is given by defining L^*_p to have homological grading $p - 1$, so that the homological and cohomological gradings together give the total degree in $\wedge L^*$.
We illustrate the Chevalley complex as a chain complex with homological grading as follows:

\[\begin{array}{c}
\text{Ch}_3(L) \xrightarrow{dC} \text{Ch}_2(L) \xrightarrow{dC} \text{Ch}_1(L) \xrightarrow{dC} \text{Ch}_0(L) \rightarrow 0 \\
0 \rightarrow L_1^* \rightarrow 0 \\
0 \rightarrow L_2^* \rightarrow \wedge^2 L_1^* \rightarrow 0 \\
0 \rightarrow L_3^* \rightarrow L_2^* \wedge L_1^* \rightarrow \wedge^3 L_1^* \rightarrow 0
\end{array} \]

The original cohomological grading is seen on the diagonals.
In our situation of a graded Lie superalgebra L with $A^1 = U(L)$ we observe that

$$\text{Ch}_0(L) = \bigwedge L_1^* = S(V).$$

Proposition

For a commutative Koszul algebra A with $A^1 = U(L)$, the chain complex given by the Chevalley complex of L with homological grading is a resolution of A.
Lifting the Berkovits differential

The setup

We have a basis \(\{q_1, \ldots, q_m\} \) of \(L_2^* \) such that

\[
q_k = \sum_{i,j=1}^{n} \Gamma_{ij}^k \{a_i, a_j\},
\]

and by construction,

\[
d_C(q_k) = \sum_{i,j=1}^{n} \Gamma_{ij}^k a_i a_j
\]

for \(k = 1, \ldots, m \).
The Berkovits differential

Define Y as:

$$\text{Ch}(L) \otimes \bigwedge(\theta_1, \ldots, \theta_n) \otimes \mathbb{C}[y_1, \ldots, y_m],$$

with an obvious graded algebra structure.

We can try to lift the Berkovits differential to Y as follows:

$$d_C + d_K + d_{Ber}$$

where

$$d_{Ber} = \sum_{i,j=1}^{n} \sum_{k=1}^{m} \Gamma_{ij}^k a_i \theta_j \frac{\partial}{\partial y_k}.$$
The correction term

However, one checks that

$$(d_C + d_K + d_{Ber})^2 = \sum_{i,j=1}^{n} \sum_{k=1}^{m} \Gamma_{ij}^k a_i a_j \frac{\partial}{\partial y_k} \neq 0.$$

In order for the differential to square to zero, we define a correction to the differential as

$$d_s = -\sum_{k=1}^{m} q_k \frac{\partial}{\partial y_k}.$$
Proposition

\[(d_C + d_K + d_{Ber} + d_S)^2 = 0.\]
The Resolution of \mathbb{C} inside Y (I)

Proposition

The subalgebra T of Y given by:

$$\text{Ch}(L_1, L_2) \otimes \bigwedge (\theta_1, \ldots, \theta_n) \otimes \mathbb{C}[y_1, \ldots, y_m]$$

is a resolution of \mathbb{C}.

This subcomplex is equipped with the differential

$$\sum_{i=1}^{n} a_i \frac{\partial}{\partial \theta_i} + \sum_{k=1}^{m} \left(\sum_{i,j=1}^{n} \Gamma_{ij}^k a_i \theta_j - q_k \right) \frac{\partial}{\partial y_k} + \sum_{k=1}^{m} \sum_{i,j=1}^{n} \Gamma_{ij}^k a_i a_j \frac{\partial}{\partial q_k}.$$
The Resolution of \mathbb{C} inside Y (II)

Step 1

The Koszul complex (P, d_K) of the sequence $\theta_1, \ldots, \theta_n$ in $\text{Ch}(L_1)$ and the Koszul complex (Q, d_S) of y_1, \ldots, y_m in $\text{Ch}(L_2)$ are contractible, as is the product $(P \otimes Q, d_K + d_S)$.

Step 2

We perturb the differential on $P \otimes Q$ to the differential on T by using the homological perturbation lemma.

Step 3

The perturbed homotopy is well-defined, so T has a strong deformation retraction to $(\mathbb{C}, 0)$ concentrated in degree zero.
We have that T is a subalgebra in Y.
Proof of Main Theorem (I)

- We have that T is a subalgebra in Y.
- We showed in a Proposition above that T is a resolution of C. This satisfies the conditions of the Key Lemma and Y is quasi-isomorphic to $Y/\langle T \rangle$, where $\langle T \rangle$ is the DG ideal in Y generated by the augmentation ideal of T. Hence, $H_i(Y) = H_i(Y/\langle T \rangle) = H_i(Ch(L_{\geq 3}))$.
Proof of Main Theorem (II)

Now, consider the filtration of Y

$$\{0\} \subset F_0 Y \subset F_1 Y \subset \cdots \subset F_n Y \subset \ldots,$$

given by

$$F_p Y_q := \sum_{j \leq p} \sum_{i+j=p+q} \text{Ch}_i(L) \otimes \left(\bigwedge (\theta_1, \ldots, \theta_n) \otimes \mathbb{C}[y_1, \ldots, y_m] \right)_j.$$
Proof of Main Theorem (II)

- Now, consider the filtration of Y

$$\{0\} \subset F_0 Y \subset F_1 Y \subset \cdots \subset F_n Y \subset \cdots,$$

given by

$$F_p Y_q := \sum_{j \leq p} \sum_{i+j=p+q} \text{Ch}_i(L) \otimes \left(\bigwedge (\theta_1, \ldots, \theta_n) \otimes \mathbb{C}[y_1, \ldots, y_m] \right)_j.$$

- The differential on the E_0-term of the spectral sequence associated to this filtration is d_C.
Proof of Main Theorem (II)

- Now, consider the filtration of Y

$$\{0\} \subset F_0 Y \subset F_1 Y \subset \cdots \subset F_n Y \subset \ldots,$$

given by

$$F_p Y_q := \sum_{j \leq p} \sum_{i+j=p+q} \text{Ch}_i(L) \otimes \left(\bigwedge (\theta_1, \ldots, \theta_n) \otimes \mathbb{C}[y_1, \ldots, y_m] \right)_j.$$

- The differential on the E_0-term of the spectral sequence associated to this filtration is d_C.

- Since, $\bigwedge (\theta_1, \ldots, \theta_n) \otimes \mathbb{C}[y_1, \ldots, y_m]$ is a vector space over \mathbb{C}, it is flat as a \mathbb{C}-module.
Proof of main theorem (III)

As $\text{Ch}(L)$ is a resolution for A, we can conclude that the E_1-term of the spectral sequence is contained in one line and is given by,

$$A \otimes \bigwedge(\theta_1, \ldots, \theta_n) \otimes \mathbb{C}[y_1, \ldots, y_m]$$

with precisely the Berkovits differential d_B.

Imma Gálvez Carrillo

Generalized Syzygies for Commutative Koszul Algebras
As $\text{Ch}(L)$ is a resolution for A, we can conclude that the E_1-term of the spectral sequence is contained in one line and is given by,

$$A \otimes \bigwedge(\theta_1, \ldots, \theta_n) \otimes \mathbb{C}[y_1, \ldots, y_m]$$

with precisely the Berkovits differential d_B.

Hence, the homology of this complex is also $H_*(C_b(A), d_B)$ the homology of the Berkovits complex.

