[1] P.B. Acosta-Humánez. Galoisian approach to supersymmetric quantum mechanics. PhD thesis, Univ. Politècnica de Catalunya, July 2009. [ URL ]
[2] P.B. Acosta-Humánez. Nonautonomous Hamiltonian systems and Morales-Ramis theory. I. The case x”=f(x,t). SIAM J. Appl. Dyn. Syst., 8(1):279-297, 2009. [ DOI | MR | Scopus ]
[3] P.B. Acosta-Humánez, M. Álvarez Ramírez, and J. Delgado. Non-integrability of some few body problems in two degrees of freedom. Qual. Theory Dyn. Syst., 8(2):209-239, 2009. [ DOI | MR ]
[4] P.B. Acosta-Humánez, D. Blázquez-Sanz, and C.A. Vargas-Contreras. On Hamiltonian potentials with quartic polynomial normal variational equations. Nonlinear Stud., 16(3):299-313, 2009. [ MR ]
[5] E.M. Alessi, G. Gómez, and J.J. Masdemont. Leaving the Moon by means of invariant manifolds of libration point orbits. Commun. Nonlinear Sci. Numer. Simul., 14(12):4153-4167, 2009. [ DOI | MR | Scopus ]
[6] E.M. Alessi, G. Gómez, and J.J. Masdemont. Transfer orbits in the Earth-Moon system and refinements to JPL ephemerides. In Proceedings of the 21st International Symposium on Space Flight Dynamics, pages 1-15. CNES, 2009.
[7] E. Athanassoula, M. Romero-Gómez, A. Bosma, and J.J. Masdemont. Rings and spirals in barred galaxies II. Ring and spiral morphology. Mon. Not. Roy. Astron. Soc., 400:1706-1720, 2009. [ Scopus ]
[8] E. Athanassoula, M. Romero-Gómez, and J.J. Masdemont. Rings and spirals in barred galaxies I. Building blocks. Monthly Notices Roy. Astronom. Soc., 394:67-81, 2009. [ Scopus ]
[9] E. Barrabés, G. Gómez, J.M. Mondelo, and M. Ollé. Automatic generation of Lissajous-type libration point trajectories and its manifolds for large energies. In Proceedings of the 21th International Symposium on Space Flight Dynamics, pages 1-15. Centre National d'Études Spatiales, 2009.
[10] E. Barrabés, J.M. Mondelo, and M. Ollé. Dynamical aspects of multi-round horseshoe-shaped homoclinic orbits in the RTBP. Celestial Mech. Dynam. Astronom., 105(1-3):197-210, 2009. [ DOI | MR | Scopus ]
[11] E. Barrabés, J.M. Mondelo, and M. Ollé. Numerical continuation of families of homoclinic connections of periodic orbits in the RTBP. Nonlinearity, 22(12):2901-2918, 2009. [ DOI | MR ]
[12] I. Basak. Explicit solution of the Zhukovski-Volterra gyrostat. Regul. Chaotic Dyn., 14(2):223-236, 2009. [ DOI | MR | Scopus ]
[13] D. Blázquez-Sanz. Affine structures on jet and Weil bundles. Colloq. Math., 114(2):291-305, 2009. [ DOI | MR ]
[14] F. Borondo, A. Luque, J. Villanueva, and D.A. Wisniacki. A dynamical systems approach to Bohmian trajectories in a 2D harmonic oscillator. J. Phys. A-Math. Theor., 42(49):495103, 14 pp., 2009. [ DOI | MR ]
[15] R. Calleja and R. de la Llave. Fast numerical computation of quasi-periodic equilibrium states in 1D statistical mechanics, including twist maps. Nonlinearity, 22(6):1311-1336, 2009. [ DOI | MR | Scopus ]
[16] F. Calogero, D. Gómez-Ullate, P.M. Santini, and M. Sommacal. Towards a theory of chaos explained as travel on Riemann surfaces. J. Phys. A-Math. Theor., 42(1):015205, 26 pp., 2009. [ DOI | MR | Scopus ]
[17] F. Cano, F. Loray, J.J. Morales-Ruiz, M. Spivakovsky, and P. Sad. Présentation [Équations différentielles et singularités. En l'honneur de J.M. Aroca]. Astérisque, 323:vii-ix, 2009. [ MR ]
[18] C. Christopher, J. Llibre, Ch. Pantazi, and S. Walcher. Inverse problems for invariant algebraic curves: explicit computations. Proc. Roy. Soc. Edinburgh Sect. A, 139(2):287-302, 2009. [ DOI | MR ]
[19] A. Delshams and G. Huguet. Geography of resonances and Arnold diffusion in a priori unstable Hamiltonian systems. Nonlinearity, 22(8):1997-2077, 2009. [ DOI | MR | Scopus ]
[20] E. Fantino, G. Gómez, J.J. Masdemont, and Y. Ren. On the relation between the Earth's weak stability boundary region and the low-energy transfers to the Moon. In Proceedings of the 21st International Symposium on Space Flight Dynamics, pages 1-15. CNES, 2009.
[21] Yu.N. Fedorov and B. Jovanović. Hamiltonization of the generalized Veselova LR system. Regul. Chaotic Dyn., 14(4-5):495-505, 2009. [ DOI | MR | Scopus ]
[22] Yu.N. Fedorov, A.J. Maciejewski, and M. Przybylska. The Poisson equations in the nonholonomic Suslov problem: integrability, meromorphic and hypergeometric solutions. Nonlinearity, 22(9):2231-2259, 2009. [ DOI | MR | Scopus ]
[23] E. Fontich, R. de la Llave, and Y. Sire. Construction of invariant whiskered tori by a parameterization method. I. Maps and flows in finite dimensions. J. Differential Equations, 246(8):3136-3213, 2009. [ DOI | MR | Scopus ]
[24] E. Fontich, R. de la Llave, and Y. Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electron. Res. Announc. Math. Sci., 16:9-22, 2009. [ DOI | MR ]
[25] E. Fossas, S.J. Hogan, and T.M. Seara. Two-parameter bifurcation curves in power electronic converters. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19(1):349-357, 2009. [ DOI | MR | Scopus ]
[26] L. Garcia-Taberner and J.J. Masdemont. Maneuvering spacecraft formations using a dynamically adapted finite element methodology. J. Guid. Control Dyn., 32(5):1585-1597, 2009. [ Scopus ]
[27] L. Garcia-Taberner and J.J. Masdemont. Reconfiguration of spacecraft formations in the vicinity of libration points. In 60th International Astronautical Congress 2009, pages 4739-4747. IAC, 2009.
[28] M. Gidea and J.J. Masdemont. Preface. Commun. Nonlinear Sci. Numer. Simul., 14:4122, 2009.
[29] D. Gómez-Ullate, N. Kamran, and R. Milson. An extended class of orthogonal polynomials defined by a Sturm-Liouville problem. J. Math. Anal. Appl., 359(1):352-367, 2009. [ DOI | MR | Scopus ]
[30] M.S. Gonchenko and S.V. Gonchenko. On cascades of elliptic periodic points in two-dimensional symplectic maps with homoclinic tangencies. Regul. Chaotic Dyn., 14(1):116-136, 2009. [ DOI | MR | Scopus ]
[31] A. Guillamon and G. Huguet. A computational and geometric approach to phase resetting curves and surfaces. SIAM J. Appl. Dyn. Syst., 8(3):1005-1042, 2009. [ DOI | MR | Scopus ]
[32] A. Guillamon and M. Sabatini. The number of limit cycles in planar systems and generalized Abel equations with monotonous hyperbolicity. Nonlinear Anal., 71(5-6):1941-1949, 2009. [ DOI | MR ]
[33] X. Li and R. de la Llave. Construction of quasi-periodic solutions of delay differential equations via KAM techniques. J. Differential Equations, 247(3):822-865, 2009. [ DOI | MR ]
[34] R. de la Llave. A smooth center manifold theorem which applies to some ill-posed partial differential equations with unbounded nonlinearities. J. Dynam. Differential Equations, 21(3):371-415, 2009. [ DOI | MR | Scopus ]
[35] R. de la Llave and E. Valdinoci. A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 26(4):1309-1344, 2009. [ DOI | MR | Scopus ]
[36] R. de la Llave and E. Valdinoci. Symmetry for a Dirichlet-Neumann problem arising in water waves. Math. Res. Lett., 16(5):909-918, 2009. [ DOI | MR ]
[37] R. de la Llave and A. Windsor. An application of topological multiple recurrence to tiling. Discrete Contin. Dyn. Syst. Ser. S, 2(2):315-324, 2009. [ DOI | MR ]
[38] J. Llibre and M. Ollé. On some particular solutions of the n-body problem. In Proceedings of the VII Jornadas de Trabajo en Mecánica Celeste, number 1 in ROA, pages 45-52. Real Instituto de la Armada de San Fernando (Ministerio de Defensa), 2009.
[39] J. Llibre and Ch. Pantazi. Darboux theory of integrability for a class of nonautonomous vector fields. J. Math. Phys., 50(10):102705, 19 pp., 2009. [ DOI | MR ]
[40] A. Luque and J. Villanueva. Numerical computation of rotation numbers of quasi-periodic planar curves. Phys. D, 238(20):2025-2044, 2009. [ DOI | MR ]
[41] M.R. Massa Esteve and A. Delshams. Euler's beta integral in Pietro Mengoli's works. Arch. Hist. Exact Sci., 63(3):325-356, 2009. [ DOI | MR ]
[42] J.J. Morales-Ruiz and S. Simon. On the meromorphic non-integrability of some N-body problems. Discrete Contin. Dyn. Syst., 24(4):1225-1273, 2009. [ DOI | MR | Scopus ]
[43] M. Romero-Gómez, E. Athanassoula, J.J. Masdemont, and C. García-Gómez. Invariant manifolds as building blocks for the formation of spiral arms and rings in barred galaxies. In Chaos in astronomy, Astrophys. Space Sci. Proc., pages 85-92. Springer, Berlin, 2009. [ MR ]
[44] M. Romero-Gómez, J.J. Masdemont, C. García-Gómez, and E. Athanassoula. The role of the unstable equilibrium points in the transfer of matter in galactic potentials. Commun. Nonlinear Sci. Numer. Simul., 14(12):4123-4138, 2009. [ DOI | MR | Scopus ]
[45] T.M. Seara and J. Villanueva. Numerical computation of the asymptotic size of the rotation domain for the Arnold family. Phys. D, 238(2):197-208, 2009. [ DOI | MR ]