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The shape of a galaxy is not much influenced by the potential
as it might seem1
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ABSTRACT
The dynamics of a galaxy as a stellar system in statistical equilibrium is usually obtained from the
superposition principle, based on the linearity of the Boltzmann collisionless equation (BCE) in regard
to the phase space density function. The term statistical equilibrium is a notion coming from statistical
dynamics, although, from an analytical dynamics viewpoint, it should be associated with an invariant
density function under the BCE in the phase space. Dissipative forces like dynamical friction, which
are essential to statistical dynamics, emerge in analytical dynamics via non steady-state phase density
functions and/or potentials as solutions of the BCE. When some kinematic knowledge about the stellar
integrals of motion or the velocity distribution function is already known, Jeans’ inverse problem leads,
from an statistical viewpoint, to the most probable time-dependent potential function.

For a mixture of several galactic components, the natural approach is the Jeans’ inverse problem,
by associating a generalised quadratic velocity distribution with each stellar population. Then, the BCE
relates the dynamics of each stellar population to a potential, which is shared by all of the population
components. Therefore, in solving the BCE, the coexistenceof several stellar populations introduces a set
of integrability conditions, which areconditions of consistency for a population mixture, that forces the
potential function to adopt a relatively simple functionalform, while the velocity or mass distributions,
or the number of stellar populations, have a higher number ofdegrees of freedom.

Axially symmetric stellar systems have been mostly used to describe general features of galaxies,
although they cannot account for spiral or bar structures. Nevertheless, due to the conditions of con-
sistency, axially symmetric potentials are proven to be still suitable to describe non-axially symmetric
stellar systems. A paradigm of this situation is the point-axial symmetry model, with rotational symmetry
of order two, devoted to allow mass or velocity distributions consistent with spiral or bar structures. In
such a case, the BCE yields an axially symmetric potential, although the mass and velocity distributions
still maintain point-axial symmetry.

1. Introduction

In wide regions of a galaxy the phase space density function can be approximated as depending
on an integral of motion quadratic in the peculiar velocities, by leaving free the functional de-
pendency in time and space (Chandrasekhar 1960). However, the symmetry of this distribution
does not allow non-null odd-order central moments, so that amixture of populations is needed
to account for other informative statistics of the velocitydistribution. For the whole three di-
mensional space, under the axial symmetry hypothesis, Sala(1990) determined the family of
potential functions that are consistent with such a quadratic integral of motion, and Cubarsi
(1990) studied what restrictions would apply to the potential for a mixture of stellar populations
under the same hypothesis. When the axial symmetry hypothesis relaxes toward a point-axial
model, i.e. rotational symmetry of 180◦, to account for mass distributions consistent with ellip-
soidal, spiral or bar structures, Chandrasekhar’s equations also yield an axisymmetric potential

1 75 years anniversary of IAP Conference:The origin of the Hubble sequence. Institut d’Astrophysique
de Paris, Paris, 24-28 June 2013.
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(Sanz-Subirana 1987, Juan-Zornoza 1995). The parameters involved in the distribution function
of a single population are detailed in the Appendix. By usingthe variablesτ = 1
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These equations depend on the population specific functionsK1(θ, t), k3(t) andK4(θ). In addi-
tion, there are three integrability conditions depending on theθ-derivativesK′1(θ, t) andK′4(θ).

2. Conditions of consistency

2.1. Axisymmetric potential

The constantk2 does not appear in Eq. 1, so that the axisymmetric potential does not con-
straint the velocity distribution in the rotation direction. The common solution of Eq. 1, planned
for each population, is of course valid for populations having the parametersK1, k3 and K4

proportional. However, we must reject such a case because itleads to extremely constrained
populations, with the same differential movement and proportional velocity ellipsoids, but for
the rotation direction.

2.2. Point-axial symmetric distribution

One or several populations may have a point-axial distribution even with an axisymmetric po-
tential. Therefore, the potential does not depend on the specific population parameterK4(θ).
Then, we are led to the following conditions,
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which yield a potentialU = U1(τ + ζ, t) + 1
τ+ζ

U2(ζ/τ)
It is worth noticing that the same conditions are obtained byimposing the consistency with

one or several populations having a flat velocity distribution,K4 → 0, which is also equivalent
to a velocity distribution isothermic in thez direction.

2.3. Separability of the potential

According to the first expression in Eq. 1 and Eq. 2, we have

(K1 − k3)
∂2U
∂τ∂ζ

= 0 (3)
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Fig. 1. Rupture of axisymmetry in the Galactic plane produced by tidal forces. The bar structure acts as
a quasi-static density wave for the other components of the rotating disc.

which implies eitherK1(θ, t) = k3(t) or
∂2U
∂τ∂ζ

= 0. In the first case, the resulting potential is
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and, in the separable case, it is

U = A(t) (τ + ζ) +
B
τ
, if K′1 = 0 ; U = A(t) (τ + ζ) , if K′1 , 0 (5)

2.4. Unconstrained centroid motions

The separable potentials, Eq. 5, allow unconstrained centroid motions in all directions.
However, the non-separable case, Eq. 4, requires the potential to be independent from the quan-
tity k̇3/k3. This condition implies a potential with the following form

U = A(t) (τ + ζ) +
U2 (ζ/τ)
τ + ζ

(6)

In all this cases the velocity and mass distributions dependon θ throughK4 (and only for the
unrealistic harmonic potential of Eq. 5 throughK1). In any case, the potential depends on time
throughA(t) andk3(t).

3. Bar structure

The rupture of axisymmetry takes place probably by the interaction of close galaxies, where
tidal forces play a crucial role Fig. 1. They produce a transient variation in their mass distri-
butions, by changing them toward a nearly ellipsoidal distribution. Each interacting galaxy is
stretched by the gravitational field of the other, and the most vulnerable components, such as the
gas and stars right at the outer edges of the disc, are shearedoff from their respective galaxy. The
tidal shear acts to twist and compress the gas clouds to trigger intense star formation around the
major axis of the elliptical disc. Part of the gas component,in their rotation around the galactic
centre, is withheld and feeds an emerging bar structure witha higher formation rate by causing
more luminosity.

The tidal force has its maximum efficiency over the component of one galaxy having a syn-
chronous rotation with the other galaxy. Although for rigidbodies only the satellite should be
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Fig. 2.
(Left) Rotation velocity curve for a sin-
gle population withα = 0.1 andβ = 5
in Eq. 8 (arbitrary units). The high slope
at the origin transforms the initial bar into
two spiral arms. As time increases, due
to the vanishing trend of the rotation ve-
locity, the shape of the arms is apparently
maintained, so that the arms act as a static
density wave for the stellar disc compo-
nents.
(Right) Curve for a mixture of four pop-
ulations withα = 0.1, 0.01, 0.001, 0, re-
spectively. If the population factor isp
and the values forpβ are in proportions
5:1:0.1:0.1, the bar also produces two spi-
ral arms, but, as time goes by, the flat ro-
tation curve provides two spiral arms. In
this case, the arms act as a rotating den-
sity wave for the other disc components.

tidally locked around the larger one, for the fluid components of a galaxy it is likely that one
of the stellar or gas components of the host galaxy to be also tidally locked with the satellite,
especially if the discs are in a common plane. Such a situation is basically consistent with the
bar structure acting as a quasi-static density wave (Lin & Shu 1964) for the other components
of the rotating disc.

4. Spiral arms

The bar-shaped structure is in the long term unstable for several reasons: e.g., the tidal force
weakens because the satellite galaxy merges to the host, or because the interacting galaxies
move away. Then the bar is left under the effects of the galactic potential by meeting its natural
circular motion. In the case of galaxies moving away in parabolic orbits, the motion of the bar
should depend on the relative motion and rotation directions of the interacting galaxies (Toomre
& Toomre 1972), since, in moving away, a resulting torque from both extremes of the bar would
also determine its rotation behaviour.

If the bar is non homogeneous, its composition may be managedthrough a mixture of pop-
ulations. The rotation affects each population differently, since their mean motion depends on
the integrals of motion which are specific of each centroid (Juan-Zornoza et al. 1990, Cubarsi
et al. 1990).

5. Rotation curve

The rotation velocity curve produced by the ellipsoidal model is not consistent with the nearly
flat velocity curves provided by models accounting for dark matter (Rubin et al. 1980). However,
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Fig. 3.
(Left) Rotation velocity curve for a
two-population mixture not far from a
rigid rotation, withα = 0.001, 0, and
pβ in proportions 10:1. At the origin,
the linear behaviour and small slope
produces a rotation of the bar with
no spiral structure. The non-vanishing
asymptotic trend makes the bar rotate
with a slightly spiral shape far from the
centre.
(Right) Curve for a two-population
mixture with a higher initial slope and
a slightly decreasing asymptotic trend,
α = 0.01, 0.001, andpβ in proportions
10:1. The loss of linearity at the ori-
gin produces the curvature of the bar
toward a spiral. The non-vanishing ro-
tation at large distances from the origin
induces an apparent rotation of the spi-
ral structure.

such a rotation curve is altered by the mixture nature of the stellar system, so that the total
rotation curve is, at every point, the weighted mean of the population rotation curves with their
respective relative stellar densities, by resulting a shape similar to the envelope of their single
population rotation curves. Forn populations, with respective fractionsp(i), we have
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In the planez = 0, the rotation velocity for a single ellipsoidal population is (e.g., Sala 1990)
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computed from local values of the second moments. Dependingon the values ofα we may
have a variety of curves ranging from an asymptotically vanishing rotation velocity, as in Fig.
2 (left), to the linear rotation curve of a constant angular velocity, whenα → 0. If µ̟̟ >> µθθ,
we obtain a rapidly increasing curve at the origin, as in Fig.2, while if µθθ → µ̟̟, the curve
has a soft slope at the origin, as in Fig. 3. For a mixture of ellipsoidal populations, we may get
a number of asymptotic trends, including flat rotation curves as Fig. 2 (right).

Notice that the case of nearly constant angular velocity is consistent with the subpopulation
of early-type stars (named population A1 in Alcobé & Cubarsi 2005) with approximately no net
radial motion (Cubarsi & Alcobé 2006). This stellar component was also found as associated
with one of the prominent modes (around the Hyades stream) ofthe velocity distribution for
disc stars with absolute velocity lower than 51 km s−1 (Sample IV in Cubarsi 2010) and also
with one of the main subpopulations of the disc stars with eccentricitye ≤ 0.15, associated with
the Hyades and Pleiades stellar groups (Cubarsi 2010).
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6. Discussion

The mixture of point-axial stellar systems with a symmetry plane maintains the axial sym-
metry of the velocity distribution in this plane in all the cases but for the harmonic potential,
although it produces an apparent vertex deviation of the whole velocity distribution due to the
unconstrained mean velocity of the populations, that may include a net radial motion. As the
interaction that breaks the axial symmetry disappears, thebar evolves under theaxial gravita-
tional field toward an spiral arm structure, that depends on the average rotation velocity of its
stellar components. The spiral arms maintain the point-axial symmetry until they are dissolved
within the disc after a number of turns, and the galaxy would then recover the axial symme-
try of the initial mass distribution thanks to the potentialthat has not lost its initial symmetry.
It lasts however to evaluate whether the introduction of a symmetry plane is the cause of the
nearly axial symmetry of the velocity distribution inz = 0, produced byK′1 = 0, or whether, by
relaxing this hypothesis, we might get a clear point-axial velocity distribution in this plane.

Appendix

For a single stellar population, a generalised quadratic velocity distribution function in the pe-
culiar velocities (u1, u2, u3) may be written asf (Q + σ(r, t)), Q =

∑

i, j Ai j(r, t) uiu j, whereAi j

are elements of a symmetric, positive definite matrix. Then,Q + σ is an isolating integral of
the star motion, which is a combination of some of the classical integrals. Under the point-axial
symmetry hypothesis and symmetry planez = 0, the elements of the second-rank tensorA are
(e.g., Juan-Zornoza & Sanz-Subirana 1991):

A̟̟ = K1 + K4z2, A̟θ = 1
2(K′1 + K′4z2)

A̟z = −K4̟z, Aθθ = K∗1 + k2̟
2 + K∗4z2

Aθz = −1
2K′4̟z, Azz = k3 + K4z2

(9)

K1 = k1 + q sin(2θ + ϕ1), K∗1 = k1 − q sin(2θ + ϕ1)
K4 = k4 + n sin(2θ + ϕ2), K∗4 = k4 − n sin(2θ + ϕ2)

(10)

beingk1, k3, q, ϕ1 time dependent functions, andk2, k4, n, ϕ2 constants. The uppercase letterK
represents a function depending onθ, the accents meaning derivatives with respect to it.
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