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We consider billiard dynamics inside a smooth strictly convex curve. For each pair of integers

(k,n), we focus our attention on the billiard trajectory that traces a closed polygon with n sides and

makes k turns inside the billiard table, called a (k,n)-orbit. Birkhoff proved that a strictly convex

billiard always has at least two (k,n)-orbits for any relatively prime integers k and n such that

1 � k < n. In this paper, we show that Birkhoff’s lower bound is optimal by presenting examples

of strictly convex billiards with exactly two (k,n)-orbits. We generalize the result to billiards with

given even numbers of orbits for a finite number of periods. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.3697986]

We look at the following problem: A particle moves with

constant speed in a region enclosed by a curve C, reflect-

ing elastically at the impacts with the boundary, called

Billiard Problem. The trajectories described by the parti-

cle are polygonal lines and a (k,n)-trajectory is a particle

path that closes after n hits with the boundary, making k
windings before closing. On the beginnings of the 20th

century, Birkhoff proved that billiards on strictly convex

curves have at least two (k,n)-trajectories, for any rela-

tively prime integers k and n such that 1 � k < n. The

proof of this theorem suggests that for each pair (k,n),

there actually exists a strictly convex billiard having

exactly two of such trajectories. In this paper, we show

that this is true and produce examples of curves satisfy-

ing this property. We also deal with the question of find-

ing billiards with given even numbers of orbits for a finite

number of periods.

I. INTRODUCTION

Let C be a planar, closed, regular, simple, oriented coun-

terclockwise Cl curve, l � 2, with strictly positive curvature

and given in polar coordinates by r ¼ rðhÞ.
The billiard problem on C consists in the free motion of

a point particle in the plane region enclosed by C, being

reflected elastically at the impacts with the boundary. The

motion is completely determined by the point of impact at C,

given by the polar angle h, and the direction of motion im-

mediately after each reflection, defined by p ¼ cos a, where

a is the angle between the direction of motion and the ori-

ented tangent to the boundary at the impact point. Therefore,

we can define a billiard map f : T� ð�1; 1Þ ! T� ð�1; 1Þ,
f ðh0; p0Þ ¼ ðh1; p1Þ, which maps each initial condition

ðh0; p0Þ to the next impact and direction ðh1; p1Þ. Here,

T ¼ R=2pZ.

Billiards inside strictly convex Cl-curves have several

useful properties.1–4 We just recall that the billiard map f is

a Cl�1-diffeomorphism that preserves the measure

dl ¼ kC0ðhÞkdpdh. Besides, f is a monotone twist map with

Lagrangian function

hðh; ~hÞ ¼ kCðhÞ � Cð~hÞk;

so the billiard dynamics satisfies the implicit equations

p0 ¼ �kC0ðh0Þk@1hðh0; h1Þ;
p1 ¼ kC0ðh1Þk@2hðh0; h1Þ:

�

Let k and n be two relatively prime integers such that

1 � k < n. We say that a billiard orbit

ðhi; piÞ ¼ f iðh0; p0Þ; i 2 Z;

is n-periodic when n is the smallest positive integer such that

ðhn; pnÞ ¼ ðh0; p0Þ. In addition, we say that it is a (k,n)-orbit
if it is n-periodic and the angular variable verifies the relation

hn ¼ h0 þ 2pk when lifted to the universal cover R. All

points of a (k,n)-orbit are called (k,n)-periodic.

A point particle following any (k,n)-orbit traces a poly-

gon with n sides that makes k turns inside the billiard table.

Two (k,n)-orbits are geometrically distinct when they give

rise to different polygons. Four examples of (k,n)-orbits are

shown in Fig. 1.

About hundred years ago, Birkhoff introduced convex

billiards and stated the following result:1

Theorem 1. If the boundary C is a strictly convex
Cl-curve, l � 2, then the billiard on C has at least two geo-
metrically distinct (k,n)-orbits for any relatively prime inte-
gers k and n such that 1 � k < n.

Birkhoff’s proof is based on Poincaré’s Last Geometric

Theorem; see Chap. VI of Ref. 1. Kozlov and Treshchëv

derived the same lower bound by means of a variational

method; see Chap. II of Ref. 2. Similar variational proofs

can be found in Refs. 3 and 4. Kozlov and Treshchëv noted

that the lower bound, obtained from completely different

methods agree, which suggests the following problem.

Problem 1: Let k and n be two relatively prime integers
such that 1 � k < n. Is there some strictly convex billiard
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with exactly two geometrically distinct (k,n)-orbits? If so,
how to find such a billiard?

As a first observation, we recall that billiards inside

ellipses have exactly two (1, 2)-orbits, which correspond to

the minor and major axes of the ellipse.

In this paper, we give an affirmative answer to this prob-

lem. Our key tool is a function L� : T! R, called radial
potential,5 whose critical points are in 1-to-1 correspondence

with the (k,n)-periodic points of the billiard map.

As a particular case of our result, one can show that the

small perturbation of the unitary circle given in polar coordi-

nates by r ¼ 1þ � cos nh has exactly two geometrically dis-

tinct (k,n)-orbits when the perturbative parameter � is small

enough. This curve was already studied by Duzhin on his

MS Thesis,6 where he proved the existence of exactly two

(1,3)-orbits and claims that the proof will work for the other

periods.

We also tackle out the following generalized problem.

Problem 2: Let q1;…; qm be some positive integers. Let
ðk1; n1Þ;…; ðkm; nmÞ be some couples of relatively prime
integers such that 1 � ki < ni. Is there some strictly convex
billiard with exactly 2qi geometrically distinct ðki; niÞ-orbits
for each i ¼ 1;…;m? If so, how to find such a billiard?

That is, we look for billiards with given even numbers

of orbits for a finite number of periods. We note that billiards

with an odd number of (k,n)-orbits are very degenerate and

restrict our attention to the generic case.

II. PERTURBATIONS OF THE CIRCULAR BILLIARD

When C0 is the unit circle r � 1, its associated billiard

map

f0ðh; pÞ ¼ ðhþ xðpÞ; pÞ; xðpÞ ¼ 2 arccosðpÞ

is an integrable twist map with Lagrangian function

h0ðh; ~hÞ ¼ kC0ðhÞ � C0ð~hÞk ¼ 2sinðjh� ~hj=2Þ:

It leaves invariant all horizontal circles T ¼ T� fcosða0Þg;
0 < a0 < p, of the cylinder T� ð�1; 1Þ and f0jT is just a rigid

rotation of angle 2a0. Given two relatively prime integers k and

n such that 1 � k < n, we consider the (k,n)-resonant horizon-
tal circle T0 ¼ T� fcosðkp=nÞg where every orbit is a (k,n)-

orbit of f0.

We wonder what happens to this resonant horizontal

circle under a small smooth perturbation C� ¼ C0 þ Oð�Þ of

the unit circle, written in polar coordinates as

r ¼ r�ðhÞ ¼ 1þ �r1ðhÞ þ Oð�2Þ (1)

for some smooth function r1 : T! R.

To begin with, we note that horizontal invariant circles

are unusual structures for smooth convex billiard tables. For

instance, Gutkin7 proved that a noncircular billiard has an

horizontal invariant circle of the form T� fcosða0Þg;
a0 6¼ p=2, if and only if tanðja0Þ ¼ jtanða0Þ for some integer

j > 1. Besides, only the curves of constant width give rise to

billiard tables with T� f0g as an horizontal invariant

circle.7,8 Finally, it is known that resonant invariant curves

generically break up, and, if the perturbation is small

enough, some periodic orbits always persist in a small neigh-

borhood of each resonant curve.9 Therefore, the expected

behavior is that the (k,n)-resonant horizontal circle T0 breaks

up in a finite number of periodic orbits under the above

perturbation.

We want to know how many periodic orbits persist. We

will count them by using the radial Melnikov potential. For

the sake of completeness, we will sketch the main steps lead-

ing to its construction in our particular setup of billiards

inside perturbed circles. The construction for general twist

maps can be found in Refs. 5 and 10.

Let f� ¼ f0 þ Oð�Þ be the billiard map associated to the

perturbed circle C� ¼ C0 þ Oð�Þ given by Eq. (1).

Lemma 1: If � > 0 is small enough, then there exist two
unique smooth functions g�; ~g� : T 7!ð�1; 1Þ such that
g�ðhÞ ¼ cosðkp=nÞ þ Oð�Þ and ~g�ðhÞ ¼ cosðkp=nÞ þ Oð�Þ
uniformly in h 2 T, and f n

� ðh; g�ðhÞÞ ¼ ðh; ~g�ðhÞÞ.
Proof: Let p0 ¼ cosðkp=nÞ. We consider the function

Nðp; �; hÞ :¼ P1ðFn
� ðh; pÞÞ � h� 2pk;

where F� is a lift of f� and P1ðh; pÞ ¼ h is the projection onto

the angular coordinate. The function Nðp; �; hÞ is 2p-periodic

in h and verifies the hypotheses

Nðp0; 0; hÞ ¼ 0; @1Nðp0; 0; hÞ ¼ nx0ðp0Þ 6¼ 0

of the Implicit Function Theorem at ðp; �Þ ¼ ðp0; 0Þ. Here, p
and � are the variables, whereas h is considered a parameter.

Besides, we have used the twist condition

x0ðp0Þ ¼ �2ð1� ðp0Þ2Þ�1=2 ¼ �2

sinðkp=nÞ 6¼ 0:

Therefore, there exists a unique 2p-periodic function

g�ðhÞ ¼ p0 þ Oð�Þ such that Nðg�ðhÞ; �; hÞ � 0. Then, we

determine ~g�ðhÞ from relation f n
� ðh; g�ðhÞÞ ¼ ðh; ~g�ðhÞÞ.

Uniformity in h follows from the compactness of T. h

Using the preservation of the measure dl and the

uniqueness of g�, we have the following result.

Lemma 2: Let T� ¼ fðh; g�ðhÞÞ : h 2 Tg ¼ T0 þ Oð�Þ
and ~T � ¼ fðh; ~g�ðhÞÞ : h 2 Tg ¼ T0 þ Oð�Þ. Then,

T� \ ~T � ¼ fðk; nÞ�periodic points of f�g 6¼ ;;

for any � > 0 small enough.

Let h�ðh; ~hÞ ¼ kC�ðhÞ � C�ð~hÞk be the Lagrangian func-

tion of the perturbed billiard map f�. Rewriting Lemma 6 of

Ref. 5 in polar coordinates, we get the lemma bellow.

Lemma 3: The radial distance between T� and ~T � is

FIG. 1. Two geometrically distinct (1,4)-orbits, a (1,5)-orbit, and a (2, 5)-

orbit.
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~g�ðhÞ � g�ðhÞ ¼ kC0�ðhÞkL0�ðhÞ;

where L� : T! R, L�ðhÞ ¼
Pn

j¼1 h�ð�hj�1ðh; �Þ; �hjðh; �ÞÞ;
and �hjðh; �Þ ¼ P1ðf j

�ðh; g�ðhÞÞÞ for j ¼ 1;…; n.

We say that L� : T! R is the radial potential of the

resonant horizontal circle T0 ¼ T� fcosðkp=nÞg under the

perturbation (1).

Corollary 1: The critical points of the radial potential
L� are in 1-to-1 correspondence with the (k,n)-orbits of the
perturbed billiard map f�.

Once the radial potential

L�ðhÞ ¼ L0ðhÞ þ �L1ðhÞ þ Oð�2Þ

has been introduced, we extract information from its low-

order terms. A straightforward computation5 shows that

L0ðhÞ � 2n sinðkp=nÞ and

L1ðhÞ ¼ 2sinðkp=nÞ
Xn

j¼1

r1ðhþ j2pk=nÞ: (2)

The function L1ðhÞ is the radial Melnikov potential of the

(k,n)-resonant horizontal circle T0 ¼ T� fcosðkp=nÞg
under the perturbation (1). It is 2p-periodic; even more, it is

2p=n-periodic.

Next, we relate its nondegenerate critical points on the

interval ½0; 2p=nÞ with the nondegenerate (k,n)-orbits of the

perturbed map f�. We also determine the linear stability of

these (k,n)-orbits.

If ðh0; p0Þ is a n-periodic point of a planar map f that

preserves area and orientation, then the determinant of the

tangent map Df nðh0; p0Þ is equal to one. Thus, the eigenval-

ues of this tangent map are either both equal to 1 or –1

(degenerate periodic point), or they are real but different

(hyperbolic periodic point), or they are complex conjugates

of modulus one (elliptic periodic point).

Proposition 1: If h0 is a nondegenerate critical point
of L1ðhÞ, the perturbed billiard map f� has a nondegenerate
(k,n)-periodic point Oð�Þ-close to ðh0; cosðkp=nÞÞ for any � >
0 small enough. Moreover, if h0 is a nondegenerate maximum
(resp., minimum) of L1ðhÞ, then the previous (k,n)-periodic
point is hyperbolic (resp., elliptic).

Proof: If h0 is a nondegenerate critical point of L1ðhÞ,
then the radial potential L�ðhÞ ¼ L0 þ �L1ðhÞ þ Oð�2Þ has a

nondegenerate critical point h� ¼ h0 þ Oð�Þ for any � > 0

small enough. Then, ðh�; p�Þ, p� ¼ g�ðh�Þ ¼ p0 þ Oð�Þ, is a

(k,n)-periodic point of f�. Note that p0 ¼ cosðkp=nÞ.
Next, we study the linear stability of ðh�; p�Þ, which is

determined by the value of the trace of the tangent map

A� ¼ Df n
� ðh�; p�Þ, since det½A�� � 1. Let s� ¼ tr½A��. The

(k,n)-periodic point ðh�; p�Þ is hyperbolic if and only if

js�j > 2, whereas it is elliptic if and only if js�j < 2. The

degenerate case corresponds to s� ¼ 62.

Set A� ¼ A0 þ �A1 þ Oð�2Þ and s� ¼ s0 þ �s1 þ Oð�2Þ.
Since f� ¼ f0 þ Oð�Þ and f n

0 ðh; pÞ ¼ ðhþ nxðpÞ; pÞ, we get

that s0 ¼ 2, and

A0 ¼
1 nx0

0 1

� �
; x0 ¼ x0ðp0Þ ¼

�2

sinðkp=nÞ < 0:

By equating the Oð�Þ-terms of the identity det½A�� � 1, we

deduce that s1 ¼ tr½A1� ¼ a11 þ a22 ¼ nx0a21, where

A1 ¼
a11 a12

a21 a22

� �
:

On the other hand, we recall from Lemmas 1 and 3 that

f n
� ðh; g�ðhÞÞ ¼ ðh; ~g�ðhÞÞ ¼ ðh; g�ðhÞ þ kC�

0ðhÞkL0�ðhÞÞ:

If we differentiate the previous identity with respect to h and

evaluate at the critical point h�, it turns out that

A�
1

g0�ðh�Þ

� �
¼ 1

g0�ðh�Þ þ kC0�ðh�ÞkL00� ðh�Þ

� �
; (3)

since L01ðh�Þ ¼ 0. We know from g�ðhÞ ¼ p0 þ Oð�Þ that

g0�ðh�Þ ¼ �g1 þ Oð�2Þ for some coefficient g1. Then, by

equating the Oð�Þ-terms of relation (3), we obtain that

A0
0

g1

� �
þ A1

1

0

� �
¼ 0

g1 þ L001ðh0Þ

� �
;

since kC00ðhÞk � 1 and L0ðhÞ � 2nsinðkp=nÞ. The second

component of the previous vectorial identity implies that

a21 ¼ L001ðh0Þ. Therefore,

s1 ¼ nx0a21 ¼
�2nL001ðh0Þ
sinðkp=nÞ :

If h0 is a nondegenerate maximum of L1ðhÞ, then

L001ðh0Þ < 0, so s� ¼ 2þ �s1 þ Oð�2Þ > 2, and the point is

hyperbolic for small enough �. On the contrary, if h0 is a

nondegenerate minimum of L1ðhÞ, then L00� ðh0Þ > 0, so

js�j ¼ j2þ �s1 þ Oð�2Þj < 2, and the point is elliptic for

small enough �. h

We summarize the results of this section as follows.

Theorem 2. Let C� be the perturbation of the unit circle
given by Eq. (1) in polar coordinates. Let k and n be two rela-
tively prime integers such that 1 � k < n. Let L1ðhÞ be the ra-
dial Melnikov potential defined in Eq. (2). If L1ðhÞ is a Morse
function and � is small enough, then the (even) number of crit-
ical points of L1ðhÞ contained in the interval ½0; 2p=nÞ is
equal to the number of (k,n)-orbits of the billiard map inside
C�. Moreover, all those (k,n)-orbits are Oð�Þ-close to the
(k,n)-horizontal circle T0 ¼ T� fcosðkp=nÞg.

III. BILLIARDS WITH A GIVEN NUMBER OF
(k,n)-ORBITS

Along this section, we will denote the radial Melnikov

potential (2) as L
ðk;nÞ
1 ðhÞ for the sake of clarity, because we

will deal with different couples (k,n).

A. One fixed period

If r1ðhÞ ¼
P

j2Z cjexpðijhÞ is the Fourier expansion of

the smooth function r1 : T! R, and k and n are two rela-

tively prime integers such that 1 � k < n, then the radial

Melnikov potential (2) becomes
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L
ðk;nÞ
1 ðhÞ ¼ 2n sinðkp=nÞ

X
j2nZ

cj expðijhÞ:

This, together with Theorem 2, shows how to build bil-

liard tables with a given even number of (k,n)-orbits for a

fixed period n.

Proposition 2: Given any two integers n � 2 and l � 1,

the billiard inside the perturbed unit circle given in polar
coordinates by

r ¼ 1þ � cos lnh

has, provided that � is small enough, exactly 2l geometrically
distinct (k,n)-orbits for every integer k relatively prime with
n such that 1 � k < n.

Proof: Let k be any integer relatively prime with n such

that 1 � k < n. Then, the radial Melnikov potential is

L
ðk;nÞ
1 ðhÞ ¼ 2n sinðkp=nÞ cos lnh:

This function is Morse and has 2l critical points on ½0; 2p=nÞ,
leading to the desired number of (k,n)-orbits, half of them

hyperbolic, half elliptic.

The number of critical points does not depend on k,

which explains why the proposition holds for any k. h

We note that if m � 2 is an integer such that ln 62 mZ,

then L
ðk;mÞ
1 ðhÞ � 0 for all k, and our first-order Melnikov

method does not provide information about the (k,m)-orbits

of this billiard. One must look for higher order Melnikov

potentials to study those orbits.

Proposition 2 answers the question of finding a billiard

with exactly two orbits for given k and n. For example, given

n¼ 5 and k 2 f1; 2; 3; 4g, we take the billiard map associated

to r ¼ 1þ � cos 5h. Its phase-space, for � ¼ 0:02, is dis-

played in Fig. 2, where we clearly see the five islands corre-

sponding to each one of the (k,5)-elliptic orbits. One can see

also, on this figure, islands around other (k,n)-orbits, not pre-

dicted by our first-order method.

B. Finite number of periods

Once we know how to deal with a single period, the

next natural step is to ask if the same method works for a fi-

nite number of periods. As an illustrative example, let us

seek a billiard with exactly two (1,3)-orbits and two (1,5)-

orbits. Once fixed some coefficients a3; a5 6¼ 0, we consider

the perturbed unit circle

r ¼ 1þ �ða3 cos 3hþ a5 cos 5hÞ:

For each n 2 f3; 5g the radial Melnikov potential of the

(k,n)-resonant horizontal circle under that perturbation is

L
ðk;nÞ
1 ðhÞ ¼ 2n sinðkp=nÞan cos nh;

which is a Morse function with exactly one maximum and one

minimum in the interval ½0; 2p=nÞ, for every 1 � k < n.

Therefore, we deduce that there exists �n such that the billiard

inside that perturbed circle has exactly two (k,n)-orbits, one

hyperbolic, one elliptic, for each n 2 f3; 5g; 1 � k < n;
gcdðk; nÞ ¼ 1 and 0 < � < �n. Taking �� � minf�3; �5g, we

conclude that the perturbed circle has exactly two (1,3), (2,3),

(1,5), (2,5), (3,5), and (4,5)-orbits if � < ��, one elliptic and one

hyperbolic. We display the phase-space of the associated bil-

liard map for a3 ¼ 0:2; a5 ¼ 0:3, and � ¼ 0:2 in Fig. 3. As on

the first example, one can see islands around those elliptic

orbits and also around other elliptic (k,n)-orbits, n 62 f3; 5g,
not predicted by our first-order method.

This example is generalized in the first part of the propo-

sition below, which also analyses other possibility.

Proposition 3: Let n1;…; nm � 2 be pairwise distinct
integers.

(1) If ni 62 njZ for all i 6¼ j, the billiard inside the perturbed
unit circle given in polar coordinates by

r ¼ 1þ �
Xm

i¼1

ai cos nih; ai 6¼ 0;

has exactly two geometrically distinct ðk; niÞ-orbits for
each relatively prime integers k and ni such that
1 � k < ni, if � is small enough.

(2) If q1;…; qm are some arbitrary positive integers and
w¼ lcmðq1n1;…; qmnmÞ, the billiard inside the perturbed
unit circle given in polar coordinates by

r ¼ 1þ � cos wh

has at least 2qi geometrically distinct ðk; niÞ-orbits for
each relatively prime integers k and ni such that 1 � k
< ni, if � is small enough.

FIG. 2. Phase-space of the billiard map associated to r ¼ 1þ 0:02 cos 5h.

FIG. 3. Phase-space of the billiard map associated to r ¼ 1þ 0:04 cos 3h
þ0:06 cos 5h.
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Proof: (1) Let k be an integer relatively prime with ni such

that 1 � k < ni. Then, the radial Melnikov potential of the

ðk; niÞ-resonant horizontal circle is

L
ðk;niÞ
1 ðhÞ ¼ 2ni sin ðkp=niÞai cos nih;

which has exactly one maximum and one minimum on the

interval ½0; 2p=niÞ. Hence, there exists �i such that the per-

turbed billiard has two geometrically distinct ðk; niÞ-orbits,

one hyperbolic and one elliptic, for 0 < � < �i. Taking

� < minf�1;…; �mg, the result follows.

(2) Suffice it to note that the ðk; niÞ-radial Melnikov

potential under these hypotheses is

L
ðk;niÞ
1 ðhÞ ¼ 2ni sin ðkp=niÞ cos wh:

It is a Morse function with 2w=ni � 2qi critical points in the

interval ½0; 2p=niÞ. h

Part (2) of this proposition only evinces the difficulty to

count critical points of trigonometric polynomials with not

relatively prime frequencies. As an example, let us ask if it is

possible to have a certain number of (k,n)-orbits with

n 2 f4; 6g. Since lcmð4; 6Þ ¼ 12, we consider the curve

r ¼ 1þ � cos 12h. If n 2 f4; 6g and k are relatively prime

integers such that 1 � k < n, then the radial Melnikov poten-

tial of the (k,n)-resonant horizontal circle is

L
ðk;nÞ
1 ðhÞ ¼ 2n sin ðkp=nÞ cos12h;

which is a Morse function with exactly six (resp., four) criti-

cal points in the interval ½0; p=2Þ (resp., ½0; p=3Þ) for n¼ 4

(resp., n¼ 6). Therefore, we get six (k,4)-orbits and four

(k,6)-orbits for � > 0 small enough.

Next, we explain how to get six of each. To begin with,

we consider r ¼ 1þ �ð cos 12hþ a18 cos 18hÞ for some

a18 2 R. The function L
ðk;4Þ
1 ðhÞ does not change, so there are

still six (k,4)-orbits for any choice of a18, provided that � is

small enough. On the other hand,

L
ðk;6Þ
1 ðhÞ ¼ 12 sinðkp=6Þðcos 12hþ a18 cos 18hÞ:

This function is Morse when ja18j 6¼ 4=9. Indeed, it has four

critical points in the interval ½0; p=3Þ when ja18j < 4=9, but

six when ja18j > 4=9. Thus, there exist four or six (k,6)-

orbits depending on whether ja18j < 4=9 or ja18j > 4=9, see

Fig. 4. It turns out that L
ðk;6Þ
1 ðhÞ has still four critical points in

the interval ½0; p=3Þ when ja18j ¼ 4=9, but then one of them

is degenerate, so we cannot use the Implicit Function Theo-

rem to guarantee the existence of a periodic orbit near to this

value.

As a last example, let us look for six (k,4)-orbits and

eight (k,6)-orbits. First, we consider r ¼ 1þ �ða12 cos 12h
þa24 cos 24hÞ, for some a12; a24 2 R. Then, the radial Mel-

nikov potentials are

L
ðk;nÞ
1 ðhÞ ¼ 2n sin ðkp=nÞða12 cos 12hþ a24 cos 24hÞ:

Here, n 2 f4; 6g and k are relatively prime integers such that

1 � k < n. These functions L
ðk;nÞ
1 ðhÞ are Morse when

4ja24j 6¼ ja12j. To be more precise, they have six (resp.,

twelve) critical points in ½0; p=2Þ and four (resp., eight) criti-

cal points in ½0; p=3Þ, when 4ja24j < ja12j (resp.,

4ja24j > ja12j) for n¼ 4 (resp., n¼ 6). Therefore, no infini-

tesimal perturbation of the previous form gives rise to the

desired result.

To achieve the goal, we may add a higher frequency to

the perturbation. For instance, we take r ¼ 1þ �r1 where

r1 ¼ a12 cos 12hþ a18 cos 18hþ a30 cos 30h

with a12; a18; a30 2 R. Then, L
ðk;4Þ
1 ðhÞ does not change, but

L
ðk;6Þ
1 ðhÞ ¼ 12 sin ðkp=6Þr1ðhÞ:

Nevertheless, this new function L
ðk;6Þ
1 ðhÞ has eight critical

points only at some bifurcation values of the parameters

a12; a18; a30 2 R, and some of the critical points are degener-

ate, invalidating the use of our method. Thus, adding a

higher frequency has not solved the problem. What could be

done here is to use

r ¼ 1þ �ða12 cos 12hþ a24 sin 24hÞ

with 2ja24j > ja12j, which gives six (1,4)-orbits and eight

(1,6)-orbits, all nondegenerate.

IV. REMARKS AND OPEN QUESTIONS

The method we presented answers the question of how

to build examples of convex billiards attaining the minimum

predicted by Birkhoff’s Theorem, for any relatively prime

integers k and n such that 1 � k < n.

FIG. 4. Islands around elliptic (1, 6)-orbits of the billiard inside r ¼ 1þ �ðcos 12hþ a18 cos 18hÞ for a18 > 4=9 (left) and for 0 < a18 < 4=9 (right).
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We can also deal with some finite sets of periods or with

specific examples, for an even number of orbits, and classify

their stability.

We note that billiards with an odd number of (k,n)-orbits

are very degenerate, since a periodic Morse function always

has an even number of nondegerate critical points, half max-

ima, half minima. To search for examples with an odd num-

ber of orbits, it may be fruitful to study degenerate critical

points of L1, with odd order.

Finally, Birkhoff’s Theorem says that every billiard on a

strictly convex curve has (k,n)-orbits of any period n. Generi-

cally, there is only a finite number of them, for each fixed pe-

riod.11 It would be interesting to find examples with a

prescribed even number of each period. However, the study of

an infinite number of periods is harder than the finite case. Let

us explain why. Once fixed a couple ðki; niÞ and an integer

qi � 1, we find certain perturbations of a circular table that

have exactly 2qi geometrically distinct ðki; niÞ-orbits when the

parameter � is small enough: 0 < � < �i, for some �i. There-

fore, to find a perturbation with given even numbers of ðki; niÞ-
orbits for an infinite family of couples fðki; niÞ : i 2 Ig, we

should check, among other things, that infi2I �i > 0. And this

is not an easy task.
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