E^+ and E^- are invariant under $\text{det}(m)$.

The invariant Linear Spaces E^+ and E^-
The invariant acquires W^+ and W^-.
In particular, \(m_0 \in W^+ \cap F(x) \Rightarrow m_0 \in W^+ \cap W^-

R \text{ reversor } \& \ R(m_0) = m_0 \Rightarrow W^+ = R(W^+) \& m_0 = R(m_0)

Reversibility
Laue's kinematic invariance
Slow dynamics

\[\lambda \geq 1 \Rightarrow h = \log \lambda \ll 1 \Rightarrow N \gg 1 \]

In fact, \[N = \frac{\log (r_0/r_1)}{h} = O(\frac{\lambda}{h}) \] if \(r_0 \) is fixed.