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Abstract: The splitting of separatrices of hyperbolic fixed points for exact symplectic
maps ofn degrees of freedom is considered. The non-degenerate critical points of a
real-valued function (called the Melnikov potential) are associated to transverse homo-
clinic orbits and an asymptotic expression for the symplectic area between homoclinic
orbits is given. Moreover, if the unperturbed invariant manifolds are completely dou-
bled, it is shown that there exist, in general, at least 4 primary homoclinic orhits (4
antisymmetric maps). Both lower bounds are optimal.

Two examples are presented: a-@imensional central standard-like map and the
Hamiltonian map associated to a magnetized spherical pendulum. Several topics are
studied about these examples: existence of splitting, explicit computations of Melnikov
potentials, transverse homoclinic orbits, exponentially small splitting, etc.

1. Introduction

In a previous work [DR96], the authors were able to develop a general theory for per-
turbations of an integrable planar map with a separatrix to a hyperbolic fixed point.
The splitting of the perturbed invariant curves was measured, in first order with respect
to the parameter of perturbation, by means of a perittitnikov function) defined
on the unperturbed separatrix. In case of area preserving perturbatiohgas zero
mean and therefore there exists a periodic funcfioftalled theMelnikov potential
such thatd/ = L'. Consequently, if. is not identically constant (respectively, has non-
degenerate critical points), the separatrix splits (respectively, the perturbed curves cross
transversely). Moreover, under some hypothesis of meromorphicity, the Melnikov po-
tential is elliptic and there exists2ummation Formulésee the Appendix) to compute
it explicitly.

The aim of this paper is to develop a similar theory for more dimensions. The natural
frame is to consider exact symplectic perturbations of-@lnensional exact map with
an-dimensional separatrix associated to a hyperbolic fixed point.
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Exact symplectic mapg' : P — P are defined on exact manifolds, i.en-8imen-
sional manifoldsP endowed with a symplectic form which is exactw = — d¢; and
they are characterized by the equati®ty — ¢ = dS for some functionS : P — R,
calledthe generating functioof F'.

The typical example of an exact symplectic manifold is provided by a cotangent
bundleT* M, together with the canonical fornag, wo, which in cotangent coordinates
(x,y) read aspp = ydx, wp = dzr A dy. Typical exact symplectic maps are the so-
calledtwist maps, which satisfy"™*(y dx) — ydz = Y dX — ydz = dL(x, X), where
(X,Y) = F(z,y). The fact that the generating functiéhcan be written in terms of old
and new coordinatess(x,y) = L(z, X), is thetwist conditionthat gives the name to
these maps. The functiafis called a twist generating function. As in [Eas91], we will
not restrict ourselves to this typical case, since the results to be presented in this paper
are valid on arbitrary exact symplectic manifolds and the twist condition is not needed.

The exact symplectic structure plays a fundamental role in our construction, since it
allows us to work neatly with geometric objects. For example, it is used to introduce two
homoclinic invariants: the action of a homoclinic orbit and the symplectic area between
two homoclinic orbits, called simply the homoclinic area.

Namely, letp., € P be a hyperbolic fixed point af, which lies in the intersection
of the n-dimensional invariant manifoldg/*:5. Given ahomaoclinic orbitO = (pg)rez
of F,i.e.,0 C W"NW?3\ {ps} @andF(pi) = pr+1, We define thdhomoclinic action
of the orbit© as

WOl :=> S(p),

keZ

where, in order to get an absolutely convergent series, the generating fuSdtias

been determined by imposiff{p~.) = 0. Given another homoclinic orbi®’ of F, the
homoclinic aresbetween the two homaoclinic orbit3, O’ is defined as the difference of
homoclinic actionsAW[O, O] := W[O] — W[O']. These two objects argymplectic
invariants i.e., they neither depend on the symplectic coordinates used, nor on the choice
of the one-formp. It is worth noting that in the planar case, the homoclinic area is the
standard (algebraic) area of the lobes between the invariant curves [MMP84, Mat86,
Eas91] and also measures the flux along the homoclinic tangle, which is related to the
study of transport [MMP84, RW88, Mei92].

The unperturbed role will be played by an exact symplectic diffeomorpliigm
P — P, defined on a 2-dimensional exact manifol@®, which possesses a hyperbolic
fixed pointp., and an-dimensionakeparatrixA C W§ N W5, whereW,* denote the
invariant manifolds associated Q..

Consider now a family of exact symplectic diffeomorphisfiis. }, as a general
perturbation of the situation above, and fet = Sy + 51 + O(?) be the generating
function of F.

The main analytical results of this paper are stated and proved in Sect. 2. There, the
Melnikov potential is introduced as the real-valued smooth fundliomd — R given
by

Lp) =) 5ipk), v = Fo (),

keZ

whereS; : P — R is defined as5y(p) = S1(p) — ¢(Fo(p))[F1(p)], and F; is the first

order variation ire of the family { F. }, that is,F1(p) = [0F.(p)/0¢]|.=0. Obviously,S;

is determined by imposinEl(poo) =0, in order to get an absolutely convergent series.
In Theorem 2.1 it is established that
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(i) the Melnikov potentiall. is Fp-invariant: L o Fy = L,
(i) if L # constant, the perturbed invariant manifoldd"s split for 0 < |¢] < 1,

(iii) the non-degenerate critical points bfare associated to transverse intersections of
the perturbed invariant manifolds,

(iv) the above-mentioned homoclinic invariants are given in first ordef by

As a matter of fact, the perturbed homoclinic orbits detected by the Melnikov po-
tential are all of thenprimary homoclinic orbitg). of F, i.e., they are smooth infor
le| small enough.

The Melnikov potential admits several reformulations. For examplg, i a twist
map on a cotangent bundi& M, with twist generating functiof. = Lo+e£1+0(£?),
Sy has the simple forndy (p) = L1(n(p), 7(Fo(p))), wherer : T* M — M is the natural
projection. Consequently, the Melnikov potential reads as [DRS97]

L) =) La(wr, wxer),  xk = 7(pr),

kEZ

where £; is determined by imposing1(zsc, Ts) = 0, andzs, = 7(pso). Another
interesting situation, that allows us to compare the continuous and discrete frames, is
to consideHamiltonian mapsLet H, : P x R — R be a time-periodic Hamiltonian

of period T, and F. = Ww!, whereW!(p) is the solution of the associated Hamilto-
nian equations with initial conditiop att = 0. If H, = Hg + eHy + O(¢?), then

§1(p) =— fOT Hy (¥ (p), t) dt, so the Melnikov potential takes the form (already known

to Poincae)

L) = — /R Hy(Wy(p), ) dt,

whereH; is determined by imposingl1 (W (ps.), t) = 0, or simply Hy(peo,t) = O, if
Hy is autonomous.

An essential ingredient for the proof of Theorem 2.1 is the fact that the invariant
manifoldsW!® are exact Lagrangian immersed submanifold® aihd therefore can be
expressed in terms of generating functi@éds. The Lagrangian property of the invariant
manifolds was already noticed by PoinediPoi99] for flows, although we learned it for
maps from E. Tabacman [Tab95], as well as the expression for the invariant manifolds
givenin Proposition 2.1, in the twist frame. The relationship betwgerands;, the first
order variations im of the generating functions.-*ands., gives then the formulafor the
Melnikov potential. The tools utilized are very similar to those of D. Treschev [Tre94].
However, D. Treschev considers autonomous Hamiltonian flows, and the conservation
of energy makes easier the deduction of the continuous version of Eq. (2.5).

In that frame (Hamiltonian-Lagrangian flows), it is worth noting that a variational
approach to the Melnikov method was carried out by S. Angenent [Ang93] for Hamilto-
nian systems with §degrees of freedom, and that a mechanism for finding homoclinic
orbits in positively definite symplectic diffeomorphisms is due to S. Bolotin [Bol95],
based on interpolating them by Hamiltonian flows.

Section 2 contains also some remarks on the non-symplectic case: a vector-valued
Melnikov function M is then defined, whose non-degenerated zeros are associated to
transverse homoclinic orbits.

The last part of Sect. 2 is devoted to gain information on the number of primary
homoclinic orbits after perturbation. Since the Melnikov potenfiak Fp-invariant,
it can be defined on theeduced separatrixa® := A/ Fp, which is the quotient of the
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separatrix by the unperturbed map. The reduced separatrix is a compact manifold without
boundary, provided that the unperturbed invariant manifoldscarepletely doubled

i.e, W§ = W§andWy®° \ {p} is a submanifold ofP and not only an immersed
submanifold ofP. This is equivalent to require that the separatritis Wy®\ {poo}-
Several dynamical consequences of this fact can be pointed out using topological tools.
In particular, Morse theory gives lower bounds on the number of primary transverse
homoclinic orbits, under conditions of generic position: in Theorem 2.2 it is stated that
the number of primary homoclinic orbits is at least 4.

Moreover, if the map#. have a common symmetdly. P — P (F.ol = IoF_,and
F.(po) = I(pso) = Do) SUch that the one-form is preserved by: I*¢ = ¢, then the
Melnikov potential is/-invariant (see Lemma 2.6). Consequently, it can be considered as
afunction over the quotient manifoldl; := A /{Fp, I'}. If, in addition,I is an involution
(I% = Id) such thatD I(p..) = —1d, the family{ F..} will be calledantisymmetricin this
case, in Theorem 2.2 it is stated that the number of primary homoclinic orbits is at least
4n and that they appear coupled in (anti)symmetric p&@sis a primary homoclinic
orbit if and only if I(O,) also is.

It is worth mentioning that any family of odd magg : R?* — R?" (with the
standard symplectic structure) is antisymmetric.

To prove Theorem 2.2, it is enough to check that the sum oZthBetti numbers
of A* andA7 are 4 and 2, respectively. This is accomplished by computing Zhe
homology ofA* andA7.

Both lower bounds are optimal, as it is shown in several perturbations of maps with
a central symmetry, so that the unperturbed invariant manifolds are completely doubled.
It is important to notice that the invariant manifolds of a product of uncoupled planar
maps with double loops are not completely doubled, see Remark 2.3, and hence, the
topological results do not hold in this case. Indeed, the number of primary homoclinic
orbits may be rather different under perturbation; for instance, it is possible to construct
explicitly perturbations with an infinite number of primary homoclinic orbits, all of them
being transverse. The study of this kind of phenomena is currently being researched.

In Sect. 3, as a first example, we consider the family of twist mag&’6n

2
Fo(z,y) = (y et “|y|2 +evV(y)) , u>leeR,
+ly

with V : R” — R determined by imposingy (0) = 0. The map above is a perturbation
of the McLachlan map [McL94], which is a multi-dimensional generalization of the
McMillan map [McM71], which in its turn is a particular case of the standard-like
Suris integrable maps [Sur89]. The McLachlan map has a central symmetry that makes
the dynamics over the separatrix essentially one-dimensional. This is the key fact that
allow us to perform a complete analysis, since tla¢ural parametrizationg3.2) can
be introduced.

If the potentialV is entire and not identically zero, in Theorem 3.1 it is proved that
the manifold9/VY-S of the mapF: split, for 0 < |¢| < 1. This result is obtained simply
by checking that the Melnikov potential is not constant. Moreové, i a polynomial,
the Melnikov potential can be computed explicitly.

In particular, ifV is a quadratic form¥/ (y) = y " By for some symmetrig x n matrix
B, in Proposition 3.1 it is stated that under generic condition®&det(B) # 0 and
B does not have multiple eigenvalues), the perturbed invariant manifolds are transverse
along exactly 4 primary homoclinic orbits.
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If V is linear:V(y) = b'y for some vectob € R™ \ {0}, in Proposition 3.2 it
is stated that the perturbed invariant manifolds are transverse along exactly 4 primary
homoclinic orbits.

The difference between both kinds of perturbations is that quadratic poténtiale
rise to odd maps, whereas linear ones do not. Moreover, propositions 3.1 and 3.2 give
the unperturbed homoclinic orbits that survive and the first ordey) @fithe homoclinic
areas between the different primary homoclinic orbits.

The weakly hyperbolic caseQ h <« 1, coshf) := p, is also studied for the case of
a quadratic potentidl’, and asymptotic expressions for the homoclinic areas are given
at the end of Sect. 3. It turns out that, for some distinguished pairs, interlaced in the
same way as in the case of 1 degree of freedom, the homoclinic area predicted by the
Melnikov potential is exponentially small with respect to the hyperbolicity parameter
h. Of course, this does not prove that the splitting size is exponentially small in singular
cases, i.e., whenandh tend simultaneously to zero.

The last section is devoted to the study of the Hamiltonian maps arising from time-
periodic perturbations of an (undamped) magnetized spherical pendulum. This model
was introduced by J. Gruendler [Gru85] as a first example of application of the Melnikov
method for high-dimensional (continuous) systems. The Hamiltonians considered have
the form [Gru85]

H.:R" xR —R, H./(z,y,t)=0v?/2+0*—1r?)/2+eV(x,t/h), h>0,ccR,

wherev = |y|,r = |z|, andV = V(z, ¢) is 1-periodic inp. We determind” by imposing
V(0, ) = 0. Note that small values @f correspond to a quick forcing.

General perturbations, and not only symplectic ones, are considered in [Gru85]. As
a consequence, the homoclinic orbits are given in the general case by non-degenerate
zeros of a vector-valued Melnikov function, instead of non-degenerate critical points
of the real-valued Melnikov potential. We have computed the Melnikov potential for
the Hamiltonian perturbations studied in [Gru85], and have verified that his Melnikov
function is the gradient of our Melnikov potential.

Most of the results stated above for the McLachlan map also hold for this Hamiltonian
map. There is, however, a significant difference. One cannot deduce a priori that the
Melnikov potential is not identically constant without computing it. This has to do with
the fact that the Melnikov potential is simply periodic and regular for the polynomial
perturbations considered, in contrast with the complex period and singularities that the
Melnikov potential has for the entire perturbations of the McLachlan map.

To finish the account of results, let us point out that a similar Melnikov analysis for
perturbed ellipsoidal billiards has not been included for the sake of brevity and willappear
elsewhere. Such billiards are a high-dimensional version of perturbed elliptic billiard
tables which have already been studied in several papers [LT93, Tab94, DR96, Lom96a].

After this research was complete, we became aware of some recent papers [Lom97,
Lom96b] of H. Lomel for twist maps on the annulus™ = T*T"™ = T" x R" that
resemble our method. However, they do not contain explicit computations (i.e., in terms
of known functions) of the Melnikov potential, since complex variable methods are not
used. Besides, in those papers it is assumed that the separatrix is globally horizontal, a
condition that does not hold for homoclinicsk3”, since the separatrix must fold to go
back to the fixed point.

Other related papers are [Sun96, BGK95], but their approach is rather different, since
they deal, like [Gru85], with the general case, with no symplectic structure, and therefore
a vector-valued Melnikov function is needed. This makes an important difference not
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only from a computational point of view (there are not explicit (analytic) computations

in these works), but also from a theoretical point of view, siNm@se theorycannot

be applied in the general situation. We also want to mention the work [BF96], where
perturbations ofi-dimensional maps having homo-heteroclinic connections to compact
normally hyperbolic invariant manifolds are considered.

2. Main Results

For the sake of simplicity, we will assume that the objects here considered are smooth.
For a general background on symplectic geometry we refer to [Arn76, GS77, AM78].
The basic properties of immersed submanifolds can be found in [GG73, pages 6-11].

2.1. Exact objectsA 2n-dimensional manifol@® together with an exact non-degenerate
two-form w over it, is called arexact symplectic manifaldhen,w = — d¢ for some
one-form¢, usually called_iouville form, symplectic potentiabr action form

AmapF : P — P is calledexact symplecti¢or simply, exact) if§. ¢ = ¢, ¢ for
all closed pathy C P or, equivalently, ifF"*¢ — ¢ = dS for some functionS : P — R,
calledgenerating functiomf F.

A n-dimensional submanifoldh C P is called anexact Lagrangian submanifold
(or simply, an exact submanifold)ﬁy ¢ = 0 for all closed pathy C A or, equivalently,
if 43¢ = dL for some function : A — R, calledgenerating functiorof A. Here
15+ A — P stands for the inclusion map.

Unfortunately, the invariant manifolds that we will deal with are not submanifolds,
but justimmersedsubmanifolds. Thus, the introduction of some technicalities seems
unavoidable in order to give a rigorous exposition of the subject, and more precisely, to
introduce the notion of separatrix, where the distance between the perturbed invariant
manifolds will be measured.

Given a manifoldV, we recall that a mag : N/ — P is called animmersion
when its differential g(z) has maximal rank at any poiat€ A. If g is one-to-one
onto its imageV = g(N), there is a natural way to mak& a smooth manifold: the
topology onWV is the one which makeg a homeomorphism and the charts)dhare
the pull-backs viagg~! of the charts on\/. The manifoldV constructed in this way is
called animmersed submanifoldf P and its dimension is equal to the dimension of
N. Itis important to notice that the topology of the immersed manifold need not be the
same as the induced one via the inclusi®nc P or, in other words, thatV’ need not
be a submanifold oP in the usual sense.

Fig. 1 shows an example of a double l0dp= g(R) t0 po = lim._ o g(z) for an
immersiong : R — R?. At p.., the induced topology oW via the inclusionV ¢ R?is
not the same as the induced oneyi8oth g(B), for all open bounded intervals C R,
andW \ {p~} are submanifolds, but nd¥. This situation is a particular case of the
following elementary result [GG73, p. 11].

Lemma 2.1. Letg : N/ — P be a one-to-one immersion and 3&t= g(\).

(i) Let B be an open subset df" with compact closure. Them,z : B — P is
an embedding, that is, a homeomorphism onto its imgde®). Thus,g(B) is a
submanifold ofP, which will be called arembedded diskn W.

(ii) Let X' C W be the set of points where the two topologies/®r(the one induced
by the inclusior’V C P and the one that makegsa homeomorphism) differ. Then,
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W CR?

Poo = 9(0)

Fig. 1.9 = (g1, 92) : R — R?, wherega(2) = 32/(1 +2?), g2(2) = g1(22)

A =W\ X is a submanifold oP. IndeedV is not a submanifold oP just at the
points of .

For the sake of clearness, submanifolds and immersed submanifolds will be denoted
by different letters, namely andWV, respectively. For immersed submanifolds the
mapwyy, : W — P stands for the inclusion map, as before. It should be noted thi
smooth, even whewV is not a submanifold oP, because of the differential structure
given toW. Moreover, ify C P is a (closed) path, we will say thatis a (closed) path
in the immersed submanifobd if and only if v is contained iV and it iscontinuous
in the topology ofV. For example, ify is one loop of Fig. 1, it is a closed path R?
but not inW.

With these notations and definitions, we are naturally led to define exact immersed
submanifolds in the same way as exact submanifolds-ddmensional immersed sub-
manifold W C P is calledexactif 9‘?7 ¢ = 0 for all closed path in W or, equivalently,
if «3y,¢ = dL for some functior. : WW — R, called agenerating functiomf W.

The symplectic potentiap is determined except for the addition of a closed zero-
form, and the generating functions of maps or (immersed) submanifolds are determined
except for an additive constant. Henceforth, the syngpgf}lf ¢, with p,qg € W, will
denote the integral ap along an arbitrary path fromto ¢ in W. It only makes sense
for an exact immersed submanifoltf, since then the integral does not depend on the
path. The difference of values éfcan be expressed as an integral of this kind:

L(q)—L(p)=/q dL:W/q(b, Vp,qg €W. (2.1)
P P

Lemma 2.2. LetW be a connected exact immersed submanifol®,dfivariant under
an exact magF'. Let L and.S be their respective generating functions. Then,

S(p) + constant =L(F'(p)) — L(p), Vp e W. (2.2)
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Moreover, ifpo, € W is a fixed point of, the constant is-S(poo)-
Proof. From dS = F*¢ — ¢ and dL = 1},,¢ we get

d(Sjw) =4y dS = (Fy) dL—dL=d(LoFj — L),

wheresS)yy = S oy andFjy = (tw) Yo F oy are the restrictions of andF to W.
Thus,S — Lo F' + L is constant ovelV by connectedness and (2.2) is proved. To end
the proof we only need to evaluate Eq. (2.2p &t po. O

D
P P I

q’d\
.E\
’E\

W o W Wi~ R W~ R

Fig. 2. The invariant manifold3V" andV* are different as smooth manifolds, and are not submanifolds of
R2. There exist no pathg"-S in WS from p to p’ such thaty! =4S

Let poo € P be a hyperbolic fixed point of’. The pointp,, lies in the intersection
of the n-dimensionalunstableandstableinvariant manifolds of the map’ associated
10 poo:

WY = {peP:klirD Fk(p):poo}, WS = {peP:inrp Fk(p):poo}.

The manifoldsW"* need not be submanifolds @, but just connected immersed
submanifolds, see Fig. 2. In fadty*s = g“S(R") for some one-to-one immersions
g*s i R™ — P, such thay"5(0) = p., anddg“3(0)[R™"] is the tangent space t/*"*

at p., [PM82, 1l §6]. Since F' is exact, they are exact immersed submanifolds; if
is a closed path inW" (WV9), then§7¢> = fpm‘b — §pm ¢ = 0, whenk — —oo

(k — +00). It should be noted that if C P is closed and contained V" (resp. V%),
but it isnota path in/WV" (resp.WW®), the above argument fails. (For instancey ié one
loop of Fig. 2.)

We denote by "*the generating functions o5 and we determine the generating
functionsS, L%® by imposingS(p~.) = L*3(p~) = 0. The next proposition gives a nice
interpretation of the generating functions of the stable and unstable invariant manifolds
in terms of the generating function of the map.

Proposition 2.1. Givenp"S € WUS, let us denote,° = F¥(p*S), for k € Z. Then,

Lo =3 SeY, e)=-)>_ S®}).

k<0 k>0
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Proof. From Lemma 2.2, one ha#{p;°) = L"“3(p;5y) — L*(p;,), for all k € Z. To get
the formulae above, we simply consider the telescopic sums

LU0 = ST — LG = S S,

k<0 k<0
L) = ) [L°0}) — L5(pha)] = — > S@3).
k>0 k>0

These series are absolutely convergent, sk@s,) = 0 andp}, (p}) tends top., at an
exponential rate ak tends to—oo (+00). O

LetO = (px)xez be ahomoclinic orbibf F,i.e.,0 € WUNWS)\{pw } andF (px) =
pr+1. We define thehomoclinic actionof the orbit©O asW[O] = LY(px) — L%(px)-
This definition does not depend énsince a direct application of Proposition 2.1 with
py° = py, yields an equivalent-independent definition

WOl = S(px). (2.3)

kEZ

Let O’ be another homoclinic orbit df'. Thehomoclinic aregbetween the two homo-
clinic orbits O, O’ is defined as the difference of homoclinic actioR®/ [0, O] :=
WI[O] — W[O']. For a motivation of this name, considerc O, p’ € O’, 4%* a path
fromp to p’ in WY, v = 4% — ~5, and suppose thd® is an oriented 2-chain such that
0D =~. Then, by Eq. (2.1) and Stokes’ formula, we have

AW[O,0'] = .7£¢ = f//Dw. (2.4)

This formula shows clearly that the homoclinic area isymplectic invarianti.e., it
neither depends on the symplectic coordinates used, nor on the choice of the symplectic
potentialy. The homoclinic action can be considered as the homoclinic area between the
homoclinic orbit at hand and the “orbit” of the fixed popy,. Thus, it is a symplectic
invariant, too.

In particular, ifP = R? with the standard area as the symplectic structurepand,
p' € O are consecutive intersections of the invariant manifolds, then the homoclinic
areaAW[O, O] is simply the (algebraic) area of the associated lobe.

Remark 2.1.SetW = WY n W* and letp, p’ be two points of the same connected
component obV. When it is possible to choose the patfis in W“S from p to p’ such
thaty =+ — 4% = 0, AW[O,0'] = ([7 ¢ = 0, i.e., the actions coincide. They can be
different if p andp’ are not in the same component)of. For instance, ip, p’, D and
D’ are asin Fig. 2W[0O] = — [[,w > 0andW[O'] = [[,, w < 0.

2.2. Families of exact objects\ow, we carry out the generalization of Lemma 2.2 and
Proposition 2.1 for families of exact immersed submanifolds and maps, depending (in a
smooth way) on a small parameteiFirst, let us recall the following standard fact from
symplectic geometry [Wei73, GS77].

Lemma 2.3. In any pointp of any Lagrangian submanifold of P there exists a neigh-
bourhoodp € U C P and local coordinategzx, y) over U such thaty = ydz (i.e.,
w = dz A dy) and the setA N U is given by the equatiop = 0.
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We recall that a:-dimensional submanifold is Lagrangian if.;w = 0. In partic-
ular, exact submanifolds are Lagrangian. The coordinates above are aatibedent
coordinatessince they give a symplectic change of variables from the neighbourhood
U onto a neighbourhoot of p in the cotangent spad&* A.

Let g. : NV — P be one-to-one immersions and $&t = ¢g.(N). We will say that
the family ofimmersed submanifold3$V. } is smooth(ate = 0) when for any embedded
disk A C W, there exists a smooth family of embedded di§ks } such thatA. C W,
andAp = A. We remember that embedded disks are submanifol@, ahd they are
exact if the immersed submanifolds are.

Lemma 2.4. Let {W.} be a smooth (at = 0) family of connected exact immersed
submanifolds.

(i) Letp € Wy and A C W, be an embedded disk containipgLet {A.} be a
smooth family of embedded disks such thatc W. and Ag = A. LetU be a
neighbourhood of in P, where cotangent coordinatés, i) exist forA. Thus, the
setA. N U has the formy = ¢dL.(x)/0z, for some functiorl., sinceA. is an
exact submanifold. We can write = L; + O(g). Then, the functioi; : Wy — R
is well-defined, that is, it neither depends on the farfily }, nor on the cotangent
coordinates. (Of coursd,; is determined except for an additive constant.)

(i) Assume thatV. is invariant under some exact map. LetS. = So +£51 + O(¢?)
be the generating function df., and Fi(p) = [0F.(p)/0¢]|-=0 be the first order
variation ine of the family{ F. }. Then,

S1(p) — ¢(Fo(p)[F1(p)] + constant =Ly (Fo(p)) — La(p), Vp € Wo.  (2.5)

Besides, the constant ¢€p..)[ F1(po)] — S1(Po), if poo € Wh is a fixed point of
Fo.

Remark 2.2.tis clear thatA. N U has the equation = 0L (x)/0z + O(e?). From (i),

the functionL; : Wy — R is a geometrical object associated to the fardily. },

and therefore its differential gives the first order variatios &t 0 of the family along
the coordinatey in any cotangent coordinates: (y). We will call L1 theinfinitesimal
generating functiorof the family { V. }.

Proof. (i) On the one hand, any two familigs\. }, {A.} coincide on a small neigh-
bourhood of the poing. This proves the independence on the family. On the other hand,
the independence on the cotangent coordinates for a fixed family is proved in [Tre94],
using coordinates.

Ageometric interpretation df,, usefulin order to prove below (ii) (and consequently
another proof of the fact thdi; : Wy — R is well-defined), is given now. It is inspired
in a similar construction that can be found in [AA89, p. 238].

Let€ C R be the small neighbourhood of 0 whereuns. Giverp € W, we denote
by p : £ — P any smooth curve such thafe) € W. which has a non-tangent contact
with W)y at p for ¢ = 0. Moreoverg(p, €) will denote the pathy(r), 0 < 7 < e. Given
D, q € Wo, let D(p, q, €) be any oriented 2-chain @ such that

8D(pa q, E) = 7(p7 q, E) - ’7(})7 q, O) +U(p7 E) - g(qa E)a

where~(p, ¢, €) is any path fronp(e) to ¢(e) in W.. Such a construction is possible,
provided thate| is small enough. Let us set
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Alp.g€) = //D( )w = eAs(p, g) + O(?).

This integral neither depends on the symplectic coordinates, nor on the choice of the
pathsy(p, ¢, €). In addition, its first order termh1(p, ¢) does not depend on the choice

of the curvesp and g, since such different choices only affect second order terms of
A(p, g €).

Now, it will be shown thatl.1(q) — L1(p) = A1(p, q), if p, ¢ € Wy are close enough
overWy, that is, if there exist an embedded disk C W, and an ope/ C P, where
cotangent coordinates (y) are defined, such thatq € Ao = {y = 0} NU. We denote
by 7w : U — Ag the projectionr(z) = p, if 2 = (x,y) andp = (z,0) are the cotangent
coordinates of andp, respectively. We determine the curyeg by imposingrop = p,
™o q = q, and we choose(p, ¢, ) in such a way that they are containedlinThen,

oL
A(p,q,e)= ydx=/ ydx=€/ °(z) dx
Y(p,q,€)—(p,q,0)+o(p,e)—0(q,€) v(p,9.¢€) m(v(p,q.¢€)) O

= e[Le((q()) — Le(x (@] = e[ L1(g) — La(@)] + O(?)-

Finally, if p,q € Wy are arbitrary, we consider a chain of points)f<,;<s such
thatro = p, r; = ¢, and two consecutive points of the chain are close enough so that
Li(rj) — Li(rj—1) = A1(rj—1,7;) holds. Then, a trivial argument with telescopic sums
shows thatl1(q) — Li(p) = A1(p, q), sinceA1(r, s) + A1(s,t) = Ay(r,t) holds for all
r, s,t € Wo.

(i) Given p € Wy, we setq = Fy(p). For any curvep like the previous ones, let

q(e) = F.(p(e)). If v = (dp/ de)(0), thenw = (dg/ de)(0) = dFp(p)[v] + Fi(p), sov
(i.e.,p) can be chosen in such a way tigas not tangent tdV, atq, due to the fact that
the mapv — w is bijective. Using (i), we get

L)~ L =~ fimet [ wtimet o
e=0 D(p,qe) 0 1(p,q,8)—7(p,q,01+0 (p,e)— 0 (q.)

Now, by equations (2.1) and (2.2), there exist constatl (independent of the
point p) such that

a(e) q
lim 5*1/ ¢=lime? ¢ — / ¢
e=0 1p.3.9)—(p,q.0) =0 W. J(e) Wop

= Eligwos‘l[Le(ﬁe)) — Le(p(e)) — Lo(q) + Lo(p)]
= iiLnOs*l[Ss(ﬁ(s)) +c(e) — So(p) — ¢(0)]
= S1(p) + dSo(p)[v] + (dc/ de)(0).

Finally, we use that§¢ — ¢ = dSp and consequently,

lim e~ / ¢=lim e~ / 5(¢@(T)) [(dp/ de)(7)] — #(q(7)) [(dg/ de)(r)]) dr
o(p,e)—o(q,e) 0

e—0 e—0

= o] — ¢(@)[w] = —dSo(P)[v] — ¢(Fo(p)[F1(R))],

and the proof follows. [



224 A. Delshams, R. Raim@z-Ros

Let Fp : P — P be an exact symplectic diffeomorphism with a hyperbolic fixed
point p, and invariant manifold3V;*°. Let us consider a family of exact symplectic
diffeomorphisms{ F. }, as a general perturbation of the situation above, and.let
Sp + 51 + O(?), be the generating function ét. In order to simplify some formulae
later, we introduce the function

S1:P =R, Si(p) = Sip) — dE@) AP, (2.6)

whereFi(p) = [0F.(p)/0¢]|e=o.

From the invariant manifold theory for maps [PM828], it follows that for smalle|
there exists a hyperbolic fixed poipd, (¢) of the perturbed map. nearp... Moreover,
Doo(€) lies in the intersection of two (connected) exact immersed submanifoits
and the families)V"s} are smooth (at = 0). We denote by}’ their infinitesimal

generating functions and, as usual, we deternsind.|*° by §1(poo) = L3%(p) = 0.

Proposition 2.2. Givenp"s € Wy®, letp,° = F§(p*S), for k € Z. Then,

N =D S0, L) = - Simh).

k<0 k>0

Proof. Identical to the proof of Proposition 2.1, but using Eq. (2.5) instead of Eq. (2.2).
(I

2.3. Melnikov potential. Assume now that the invariant manifoldfs;'® are doubled
thatis, WV := Wy = W;.

Then, we can consider three topologies®nthe one induced by the inclusidf C
P, and the two ones induced by the inclusionsc Wj'*. We define thevifurcation
setX and theseparatrixA of this problem as the subsetdf of points where the three
topologies do not coincide, amd := W \ X, respectively.

Lemma 2.5. The bifurcation set and the separatrix have the following properties:

(i) A is an exact submanifold ¢ andp,, € X.
(i) A andX are Fyp-invariant.

(iii) Let p, p’ be points on the same connected component dthen, the unperturbed
homoclinic orbits® and @’ generated by andp’, have the same action.

Proof. (i) On the one hand, using (ii) of Lemma 2.A,is a submanifold. It must be
exact, since it is contained in the exact immersed submanifogisNg.

Onthe other handyg andW; have a transverse intersectiopat, so their topology
atp., asimmersed submanifolds can not coincideands X (Indeed Y is just formed
by the points o/ where this set has self-intersections, considered as a sul¥8ét of

(i) Since W is Fyp-invariant, it is enough to see thatis invariant, and this follows
from the fact thatf is a diffeomorphism.

(iii) This is clear from Remark 2.1. We can conneandp’ by a path inA, and so
in Wy°, since their topologies coincide an. [

Remark 2.3.In the planar case with a double loogo], the bifurcation set is just the
hyperbolic fixed point. In general, for more dimensions the situation is not so simple. For
example, letp : R?" — R?" be the product of, planar mapg; : R? — R?, each one

with a double loof"; = {p/ } UA;, wherep’_ € R? stands for the fixed point of; and
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A are the two components bf \ {p’_},forj =1,...,n. Then,A = Ay x--- x A, has
2" connected components add= (I'; x - -- x ';,) \ A contains strictly the hyperbolic
fixed pointpe, = (P, . .., pL) € R?™. In particular,A Z Wy*°\ {ps }-

Remark 2.4.As the case of a planar map with a single loog €hows, the situation

Wg 7 W; does not exclude that/j N W5 can contaim-dimensional submanifolds.

For the sake of simplicity, we have defined the notion of separatrix only if the invariant
manifolds are doubled and then, from the arguments above, the separaatisfies:

(a) A is a doubly asymptotic exact submanifold, invariant & and (b) the three
topologies onA coincide (the ones induced by the inclusiahsC P, A C Wy, and

A C W). Since these properties are the only ones needed in this section, they can be
taken as a definition for a separatrix wheif* are partially doubledwV§ # W§. Thus,

with this definition, the analytical results of this paper also apply to this case.

By Remark 2.2, the differential of;"° gives the first order variation ofV** at
e = 0. Besides, sincé;*® is defined ovedV;° and A C Wj'®, the perturbed invariant
manifoldsW!-* can becomparedver the separatria. For this purpose, we introduce
the real-valued function

L:A—R, Lp)=Li0) - Li0) =D Sipw),  pe=F5(),  (27)

kEZ

called theMelnikov potentiabf the problem. The series above is absolutely convergent
since any orbit in the manifold. tends top., at an exponential rate 4| — oo and

§1(poo) = 0. Thus,L is well-defined, and its differential gives the first order distance,
along the coordinatgin any cotangent coordinates, (), between the perturbed invari-
ant manifolds. This geometric interpretation is the fundamental point to find conditions
for the splitting of the separatrices.

It still remains to check the smoothnesslobn A. It is clear thatL}’® are smooth
over Wy'®, but since the smooth structuresif, W3 do not coincideL{ — L$ could
be defined over the whole intersectigv but need not be smooth on the bifurcation set
Y. Thus, it is necessary to restrict ourselves to a subsgY afhere the two smooth
structures coincide, and because of this, we have defined the separatsixthe set
W\ X to get a smootiL on A.

Before stating our main analytical result, we must introduce the kind of perturbed
homaoclinic orbits that can be detected by “Melnikov methodshrnary homoclinic
orbit of the perturbed problem is a perturbed homoclinic othitof F., defined for¢]|
small enough and depending in a smooth wayeoifhis is a perturbative definition,
since in the multi-dimensional case (contrary to the planar case, see [Wig91)), it seems
difficult to give a geometric definition. Non-primary homoclinic orbits are invisible
for the standard Melnikov techniques. (However, a new Melnikov-like theory has been
recently developed in [Rom95], to study secondary homoclinic orbits for time-periodic
perturbations of integrable planar differential equations.)

Theorem 2.1. Under the above notations and hypothesis:
(i) Lis Fp-invariant (i.e.,L o Fp = L).

(i) If L is not locally constant, the manifoldd/t>s split for 0 < |¢] < 1, i.e., the
separatrixA is not preserved by the perturbation.

(i) If p € A is anon-degenerate critical point &f, the manifold$/V° are transverse
along a primary homoclinic orbi©). of F. for 0 < || < 1, withOg = (F§ (p))kez-
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Moreover, when all the critical points df are non-degenerate, all the primary
homoclinic orbits arising from\ are found in this way.

(iv) LetO. be a primary homoclinic orbit such théy = (F¥(p))rez for somep € A.
Then, the homoclinic action admits the asymptotic expred$ip@.] = W[Op] +
eL(p) + O(¢?). Given another orbitD’ such thatO} = (FE (p'))xez for somep’ in
the same connected componentads p, the homoclinic area is given by

AW[O., 0] = e[ L(p) — L)1 + O).

Proof. (i) A shift in the index of the sum does not change its valuel, $&Fp-invariant.

(i) If d L is not zero, the perturbed invariant manifolds do not coincide at first order,
so they split.

(iii) This result follows directly from the geometric interpretation of the Melnikov
potential and the Implicit Function Theorem.

(iv) Let O. = (Pr(e)rez, pr = Pe(0) = F§(p), andvy = (dpi/ de)(0). From
Eq. (2.3), by = o — o, and dFo(pr)[ve] = vier — Fi(px), we obtain:

WO =) S:(i(e)

kEZ

= > " {Sopr) +(Sa(px) + dSo(px)[vi]) + O(?)}

kEZ

= Z So(pr) +¢ Z{Sl(Pk-) + (pr+1) [ dFo(pi)vel] — ¢(pr)vr]} + O(e?)

kEZL keZ

= W06+ = Y {S1(p0) + dprslvnnl — 6@l } + OE?)

keZ
= W[Oo] + eL(p) + O(?).

Finally, the asymptotic formula for the homoclinic area follows from its definition,
using (iii) of Lemma 2.5. O

Remark 2.5.The actions of homoclinic orbits arising from different connected compo-
nents of the separatrix need not be equalat0, see Remark 2.1, whereas the splitting
size is of ordeiO(e). Thus, it seems inappropriate to measure the splitting comparing
the action of homoclinic orbits arising from different components\of-or instance,

in the planar case with a double loop, the geometric sense of the area between primary
homoclinic orbits arising from different loops is very unclear.

Remark 2.6.If L has some non-degenerate critical point, the perturbed invariant man-
ifolds of F. have a transverse intersection and, in particular, a topological crossing.
Thus, using some recent results contained in [BW95], the perturbed maps have positive
topological entropy, for &< || <« 1.

Let us see now that the Melnikov potential is invariant under additional diffeomor-
phisms, if the family{ F.} has suitable symmetries. We recall that given a diffeomor-
phismI : P — P the family {F.} is called I-symmetricif F. o I = I o F. and
F.(po) = I(poo) = oo, for all e.

Lemma 2.6. Assume that the famifyF. } is I-symmetric, and that the symplectic poten-

tialis preserved by the symmetily:¢p = ¢. Then, the Melnikov potentidlis I-invariant:
Lol=1L.
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Proof. Letp € W = Wy® andq = I(p). Using thatF} o I = T o F} for all k € Z, we
get

Jm £ = i 1) =1 (im FEG)) = 1) = pec

This proves thalV is I-invariant. Thus, the separatrix also is, by the same argument
as in (i) of Lemma 2.5, and the expressibre I makes sense oA.
FromE} ¢ — ¢ = dS., [*¢p = ¢, andF, o [ = I o F, we have

d(S. o) =I*(dS.)=I"Fr¢ — "¢ = F*I*¢ — ¢ = F'¢ — ¢ = dS..

Hence,S. o I — S. is a constant function that evaluatedpat vanishes, s&. (and in
particularS;) arel-invariant.

Thefirstorderterms af.o I = [ o F. give F1o1 = DI(Fp)[F1]. Using this equality,
we see that the function(Fo)[ F1] is alsol-invariant:

¢(Foo I)[FyoI]= ¢(I o Fo)[DI(Fo)[F1]] = 1" ¢(Fo)[F1] = ¢(Fo)[ Fi].

Thus, the differenc@l = SlA— O(Fo)[ 1] is I—invaAriant, too. R
Finally, Lol =3, ,(S10 Ffol)= > opez(S1olo Ff) = > kez(S1o FH=1L.
O

As we have seen, the differential 6fmeasures the distance between invariant mani-
folds and thus\/ = dL is called theMelnikov functionof the problem. It can be also
constructed in the non-symplectic case, although it is not longer the differential of a
function. We recall now this construction, but we will not go further in this direction,
since the non-symplectic framework is out of the spirit of this paper. For the sake of
simplicity, we only consideP = R?".

Assume that a diffeomorphisti, : R?* — R2" has a separatrid andn first
integralsHy, ..., H,, independent over the separatrix (but not necessarily in involution,
since this concept requires a symplectic structure), and.let Fy + ¢ F; + O(¢?) be a
general perturbation afp.

Givenp € A, let II,, be then-dimensional linear variety spanned by the pgint
and the vector&/ H;(p) (1 < j < n). Sincell, is transverse ta\ at p, there exist
p*S(e) € W2Sn I, depending in a smooth way ansuch thap*3(0) = p. A natural
measure of the distance between the invariant manifolds is given by the difference of
first integrals (“energies”)

Ap,e) = Hp'(e) — H@e) =eM(p) + O(?),  H =(Hy,....H,)",

whereM : A — R™ is the vector-valued Melnikov function of the problem. It is easy
to generalize (actually, rewrite) the proof given in [DR96] for the planar case to see that

M(@p) =Y DHpw)[Fa(@r)l,  pr = F3 (). (2.8)

kEZ

Remark 2.7.Some similar results can be found in [BGK95], although with a less geo-
metrical (and more functional) setting. They only can prove tha@essargondition

for the existence of primary homoclinic orbits is the existence of zeros\/foOur
geometrical construction shows that the existence of non-degenerate zeldssa
sufficientcondition for the existence of transverse primary homoclinic orbits, even in the
non-symplectic case. However, it should be noted that [BGK95] deals with a broader
range of maps; for example, the existence of first integrals is not needed.
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2.4. Twist maps.Now, we present another formulation of the method that is useful
for the physical problems that verify the twist condition, since the formula for the
Melnikov potential is simpler. For more details on twist maps, the reader is referred
to [Gol94a, Gol94b, BG96]. We follow closely the notations and definitions of the later
reference.

An exact symplectic twist mgpr simply, twist map)F’ is a map from a connected
subsetJ of the cotangent bundle of a manifald (which can be non-compact) inio,
which comes equipped with a twist generating function M x M — R that satisfies

F*(ydx) —ydz =Y dX — ydz = dL(z, X), (X,Y) = F(x,y),

where (, y) are any cotangent coordinates 'BiiM, that is,x are coordinates oMM,
extended to coordinates:(y) in the obvious way. The canonical forgy on 7% M
reads ag = y dx in cotangent coordinates. This can also be written in a coordinate free
manner. GiverC, one can retrieve the map (at least implicitly) franx —01L(z, X),
andY = 0,L(x, X). This can be done globally (i.el] = T*M) only when M is
diffeomorphic to a fiber of * M, for example when\ is the covering space af" or

a manifold of constant negative curvature.

The formF™*¢o— ¢ is exact, sd isexact. LetS : U — R be the generating function
of F, in the geometric sense of the previous definitions. T, y) = L(z, X). The
fact thatS can be written in terms of old and new coordinates: X), is the twist
condition. In a coordinate free formulation it reads as

Sp) = Lx(p), 7(F(@),  Vpel, (2.9)

wherer : T* M — M is the canonical projection.

Now, we carry out the generalization of (2.9) for families of twist maps, depending
(ina smooth way) on a small parametef hat is, we search for the relationship between
the first order variations in of the twist and geometric generating functions.

Lemma 2.7. Let {F.} be a smooth family of twist maps. L&t (resp.S.) be the
twist (resp. geometric) generating function Bf. Set£. = Lo + e£1 + O(¢?) and
Se =Sp+eS1+ O(EZ). Then,

S1(p) = Lalm(p), 7(Fo@)), VP e, (2.10)
where3; is the function givenin (2.6).

Proof. Fix p € U and let (¢, y) be cotangent coordinates in a neighbourhoodg. df
we denote K., Y.) = F.(x,y) = (Xo, Yo) + (X1, Y1) + O(?), the O(¢) terms of the
equality S (z,y) = L-(z, X:) give

S1(z,y) = La(z, Xo) + 02Lo(z, X0) X1 = La(x, Xo) + YoX1.
Thus, from the definition of; and usingpo = y dx we ge@l(x, y) = L1(z, Xo). ]

Assume now thafp has a hyperbolic fixed poini,, with a separatrixA c U

and thatF. : U — U are exact diffeomorphisms. The choifg(p.,) = O reads as
L1(T0, o) = 0 in the twist frame, where, = 7(p.o). From Eq. (2.10), it follows
directly that the Melnikov potential (2.7) can be written as

L) = La(wr, wper),  xx =7(k),  pr = Fo (). (2.11)

kEZ
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This formula is simpler than (2.7), since only the first order term of the twist generating
function L. appearsin it.

2.5. Hamiltonian mapsOne of the main ideas in dynamical systems is to study maps in
order to understand flows. For example, the description of Hamiltonian systems can be
carried out considering the timiEmaps of their flows, which are exact maps. Thus, itis
interesting to present the previous results from the Hamiltonian point of view. Besides,
this allows us to compare the discrete and continuous frameworks.

Recall that anon-autonomous Hamiltonian systemer an exact symplectic manifold
(P,w = — d¢) is given by a real-valued function (called tHamiltonian H : P xR —
R. Then, the equations of motion have the fopre Xy (p,t), p € P, t € R, where
for every fixedt, Xy(-,t) is the Hamiltonian field generated Wy (-,¢): dH(p,t) =
w(p)(Xg(p,t),), Yp € P. In symplectic coordinatese(y) on P, we havep = ydz,
w = dz A dy and the Hamiltonian equations take the canonical form

i=yn, iz
_ay yYs )y Y= 8.I‘ y Y, 1)

It is clear thatX y does not change if a function depending only on time is added to
the HamiltonianH. We will restrict ourselves to Hamiltonians such that generate a
Hamiltonian flow, i.e., all the trajectories of ; are defined for all time.

A Hamiltonian mapF’ is the time7" map of some Hamiltoniat/ and for some
T>0,ie,F=vT":P - P, where¥(p) stands for the solution of the Hamiltonian
equations ofH, with initial conditionp at¢ = 0. Obviously, Hamiltonian maps are
diffeomorphisms isotopic to the identity. Besides, they are exact over exact manifolds;
if i(X)w stands for the inner product of a fourby a fieldX, and® : PxR — P xR
is given by®(p, t) = (¥!(p), ), we get

T d
Fro—o= @y @ye= [ gwyoar

T T
= [ @it do diXma = d| [ oo - mer|

Thus, the generating functighof F' is given by

(F(p),T)
S(p) = N, A=¢é— Hdt, (2.12)
(»,0)

where the one-forn is the so-calledPoincare-Cartan invariant integraldefined on

the (extended) phase spa@ex R, and the path of integration is the trajectabyp, t),

0 <t < T, of the (extended) flow. Now, we carry out the generalization of Eq. (2.12)
for families of Hamiltonian maps, depending (in a smooth way) on a small parameter
e. That is, we look for the relationship between the first order variatiorssah the
Hamiltonians and the generating functions of their Hamiltonian maps.

Lemma 2.8. Let H. be a smooth family of non-autonomous Hamiltonians, &h¢b)
the solution of its Hamiltonian equations wit(p) = p. Let F. and S. be the Hamil-
tonian map\IIET and its generating function, respectively. $&t = Hy + e Hy + O(e?)
andS. = Sp + &St +0O(e?). Then
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N T
Si(p) = —/0 Hy(Wi(p), t) dt, Vp e P, (2.13)

where§1 is the function given in (2.6).

Proof. Let(p, €) be the path in the (extended) phase spadd),t), 0 < ¢t < T. Set

Ac(p,t) = SV P)WL(p)] — Ho(W(p), t), where the dot means the derivative with
respect to the time We will use through the proof the following notations for the first
variation of the considered objects:

OF.
5 @)

owt

Fp) = =(p)

, Vi) =

e=0 Oe

0A,
; Al(pa t) = p) (p7 t) .
e=0 € ce=0

Besides, we will prove below that
Ai(p,t) = Bi(p, 1),  Bup. 1) = p(¥o(p)[Wi(p)]. (2.14)
FromS.(p) = [, ,[¢ — Hodf], A1 = By, W] = F1 and¥{ = 0, we get

= _ _ 2
Se(p) = /7(p’5)[¢ Hodt] €L(p’€) Hpdt +0(e9)
T T
= / A:(p,t)dt — s/ Hy(WL(p),t)dt + O(c?)
0 0
T T
= So(p) + 6/0 Bi(p, t)dt — 6/0 Hl(‘-IJé(p), t)dt + 0(52)

T
= So(p) + e¢(Fo(@)F1(p)] — € /0 Hy(Wg(p), 1) dt +O(?),

and the term®(¢) in this equation give (2.13).
To end the proof, it only remains to check that (2.14) holds. For simplicity, we
prove it using symplectic coordinates. Givere P andt € R, let (x, y) be symplec-
tic coordinates in a neighbourhood ¥(p). We denote the coordinates &f (p) by
(l’s, ys) = (330, yO) + 6(1‘1, yl) + 0(52)' Thus,

As(pv t) = ysiﬂe - HO(I's, Ye, t)
= Ao(p, t) + e[yot1 + yaio — Ou Ho(wo, yo, t)x1 — 9y Ho(xo, yo, t)y1] + O(?)
= Ao(p, t) + £ d[yoza] / dt + O(e?),

where we have used the canonical form of Hamiltonian equations in symplectic coordi-
nates. Finally, since in these coordinaf®s= yoz1, EQ. (2.14) follows. O

Henceforth, we restrict ourselves to time-periodic Hamiltonipswith 7" their period.
Assume now thatp has a hyperbolic fixed point,, with a separatrixA. In the

Hamiltonian frame, the choic8:(p..) = 0 becomes, H1(¥)(p~), #) dt = 0. Indeed,

it is possible (and more usual) to determine the Hamiltonian in such a way that it verifies

the stronger conditiod?;(¥§(po.), ) = 0. From Eq. (2.13), it follows easily that the

Melnikov potential (2.7) can be written as

L(p) = —/RHl(\I/f)(p),t) dt, (2.15)
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sinceW§(F§ (p)) = 5™ (p), for all integerk and reat, andHj is T-periodic int. (This
is the reason to consider only periodic Hamiltonians.)

We want to emphasize that the Hamiltonian version of the Melnikov potential can be
deduced directly in the continuous frame, without appealing to discrete tools. However,
taking into account the theory already developed in this paper, it has been easier to work
directly on Hamiltonian maps.

Remark 2.8.Usually, the unperturbed Hamiltonidi, is time independent. In fact, in
most of the applications it is Liouville integrable.

Remark 2.9.Using the Lagrangian formalism instead of the Hamiltonian one, a similar
formula to (2.15) can be obtained faagrangian mapdi.e., time4’ maps of some
Euler-Lagrangian flow), but with- H; replaced by the first order inof the Lagrangian.

2.6. Lower Bounds.Along this subsection, we will assume without explicit mention
that: (a) the invariant manifolds are doubled, thatig, = W5, and (b) the bifurcation
setis minimal, i.e.X = {p~ }. (Remember that the hyperbolic fixed point is always
contained in the bifurcation sé&t, see (i) of Lemma 2.5.) These hypotheses are equivalent
to require that the separatrixds= W; °\ {p~ }. We will say that the invariant manifolds
arecompletely doubleéh this case. Besides, we also assume- 1, to avoid trivial
degenerate cases. (In particular, the separatrix is connected.)

To avoid a tedious exposition, several standard computations about Betti numbers
are omitted. The expert reader in differential and algebraic topology will be able to fill
in the gaps without difficulty, and we prefer to give the appropriate references for the
novice one, instead of writing here a treatise. Thus, for a general discussion of Morse
theory we refer to [Hir76], and for thorough discussions of homology the reader is urged
to consult [Swi75, GH81].

The quotient manifold\* := A / Fy, consisting of unperturbed homoclinic orbits of
A, will be called theeduced separatrikof the unperturbed map). It is shown below that
A* is a compact manifold without boundary. Since the Melnikov potetialinvariant
underFp, we can consider it defined over the reduced separatrix. (The new function is
called L, too.) We search for lower bounds of the number of homaoclinic orbits and the
main idea is to apply Morse’s inequalities to the mfapA™ — R.

The presence of symmetries and/or reversions usually leads to better results con-
cerning the existence of homoclinic orbits. Let us introduce the (anti)symmetries that
allow us to improve the lower bounds. We will say that the faify } is antisymmetric
if {F.}is I-symmetric, for some involutiofi preserving the symplectic potential such
thatDI(p) = —Id. Asitis well-known, involutions are locally conjugate to their linear
parts at fixed points. Thus, there exist coordinates(zy, . . ., 22,) in some neighbour-
hood of p,, such thatl(z) = —z, that is, the mapg". areoddin some coordinates
defined close tp... The definition above of antisymmetric maps is intended to translate
the main features of odd maps dR?(", dz A dy) to maps on general exact manifolds.

Underthese hypotheses, Lemma 2.6 claims that the Melnikov potertigdvariant.

Thus, we can considdr defined over the quotient manifoll; := A /{Fp, I'}, which
has a richer topological structure thar, in the sense that Morse theory gives better
lower bounds of the number of homoclinic orbits.

We recall that areal-valued smooth function over a compact manifold without bound-
ary is called aMorse functionwhen all its critical points are non-degenerate. It is very
well-known that the set of Morse functions is open and dense in the set of real-valued
smooth functions [Hir76, p. 147]. Thus, to be a Morse function is a condition of generic
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position. Now we can state a result about the number of primary homoclinic orbits that
persist under a general perturbation. In Sect. 3, we will verify the optimality of this result
for specific examples.

Theorem 2.2. Assume thaf. : A* — R is a Morse function. Then the number of
primary homoclinic orbits is at leagk If the family{ F. } is antisymmetric, there exist at
least2n antisymmetric pairs of primary homoclinic orbits, and so at leasfprimary
homoclinic orbits.

Proof. From the celebrated Morse inequalities, a Morse function ovedenensional
compact manifold without bounda#y has atleast B(X; R) := Z;LO B4(X; R) critical
points, where3,(X; R) are theR-Betti numberf X andR is any field. Let us recall
that 5,(X; R) is the dimension of thg-th singular homologyk-vector space ofX,
notedH, (X, R).

In the antisymmetric casd?(p) = p 7 I(p), for all p € A. Thus (A*,II) is a
covering space of\7 of two sheets, wherél : A* — A7 is the canonical projection
onto the quotient oA* by the antisymmetry. In particular,L : A7 — R is a Morse
function if and only if the same happensiia A* — R, and each critical poir® of L :

A% — R corresponds to an antisymmetric pair of critical poifts(Q) = {0, I(0)}
of L : A* — R, for some unperturbed homoclinic oridx € A*.

Now the theorem follows from the formul&B(A*; Z,) = 4 andSB(A7; Z3) = 2n.
The rest of the proof is devoted to check that these formulae hold.

Since Betti numbers are topological invariants, we look for topological spaces home-
omorphic toA™ and A7 whose homologies can be easily computed. To accomplish it,
let us consider the restrictioft's of Fy to W,'°, and denote3"s = D fS(p,.). SinceFy
is symplectic, detB") - det(B°) = 1, so det3") and detB®) have the same sign. When
these signs are positive (resp. negative) the igpreserves (resp. reverses) the orien-
tation of A, and we denote by = + (resp.c = —) the so-calledndex of orientationin
the following lemma it is shown that the topological classificatiorf'bbnly depends
ono. This will allow us to classifyA™ and A7 just in terms of.

Lemma 2.9. Let A4 : R™ — R™ be the linear isomorphisms given by:
Ay(x) =224, x=(x1,...,2,), x4 =(Fx1,22,...,%p).

Then, there exists a global topological conjugation betwgeand A,, that is, a home-
omorphismg : R™ — Wy such thatf' o g = g o A,. In the antisymmetric case, the
conjugationg can be chosen in such a way thgt-z) = I(g(x)).

Proof. We note thap.. is a hyperbolic fixed point ofY, and all the eigenvalues éf"

have modulus greater than one. From [PM82, Th. 5.85)] we get thatf" is locally
conjugated ap., to A, (resp.A_) in the orientation-preserving (resp. orientation-
reversing) case. This local conjugation can be extended to a global one, usirf§ that
and A, are global repulsors. The existence of an antisymmetric conjugation (certainly,
a very intuitive fact) follows the same lines. We omit the details. [

Thanks to Lemma 2.9, we now easily introddicee-energy coordinatds, a) on A.
First, we give some notations. We denoteiy T”, andP”, then-dimensional sphere,
then-dimensional torus, and thedimensional projective space, respectively. Besides,
we introduce the:-dimensional manifold

X" =R x S" 1,
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and the homeomorphism : X» — R" \ {0}, n(¢,a) = 2'a, whose inverse is given
by n~Y(z) = (tx),a(x)) = (log, ||, 2/ |x). Then,i(A+z) = #(2z) = #(x) + 1 and
a(A+z) =a(2z+) = (@(x))+, SOAL o =10 py, where the map.. : X» — X" is

p+(t,a) =t +1 ay), a=(ag,...,an), ax =(Fa1,az,...,a,).

Thus,Fy: A — A andp, : X® — X" are topologically conjugated hyo n, whereg
is the conjugation given in Lemma 2.9. This proves that= A/ Fp andX? := X" /p,
are homeomorphic. Henc8B(A*; Z;) = SB(XL; Zy).

Concerning the antisymmetric case, we note thay = —n, where

J- X" — Xna j(ta a) = (ta _a)'

Thus, the pairs of map&, I : A — A andp,, 7 : X" — X" aresimultaneouslyopo-
logically conjugated by o 7. This proves that; = A/{Fp, I} andY? := X" /{ps, 1}
are homeomorphic. Henc8B(A7T; Z2) = SB(Y?Z; Zy).
Consequently, it only remains to prove ttsaB (X'} ; Z,) = 4 andS B(Y"; Z,) = 2n.
First, we consider the case= +. In this caseX” = St x S*andY? = St x P*—1,
sinceSt =R/{t = t+1} andP"~! = S"~1/{a = —a}. Therefore, from the well-known
Zy-homologies

Zy if q=0,m
0 otherwise

Zpif0<qg<m

m . (=]
Hy(S ’ZZ)'{ 0 otherwise

iz = {
and Kinneth’s Formuldd (X x Y;Z,) ¥ 3):0 Hy(X;Zo) ® Hy—p(Y'; Z), we get

Zo ifq:0,2

. Lt n. Zoif ¢q=0,1,n—1,n
]:Iq(XZ L) = S LoD Lo if g = 1. ) I{zz(X L) = {0 otherwise
0 otherwise
foralln > 2, and
Zo if g=0,n
H(Y4Zo) % Zo® Zopifg=1,...,n =1,
0 otherwise

for all n > 1. Adding dimensions, we g&tB(X"; Zy) = 4 andSB(YY; Z) = 2n.
Finally, a standard Mayer-Vietoris sequence argument shows thasthemologies
of X andY? do not depend on, s0SB(X"”;Zy) = 4 andSB(Y"; Zy) = 2n. ]

Remark 2.10.Since the case = — is more intricate, one could believe that it is better

to replace the maps with their squares to get +. However, it should be noted that

the lower bounds obtained in this way are worse since a single homoclinic orbit consist
of two different ones for the square map: one gets 2 andristead of 4 and#, as

the number of homoclinic orbits. Thus, the case — deserves its own separate study.

We also remark that this case cannot appear in the continuous frame, since the maps
generated by a flow are isotopic to the identity.
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3. Standard-like Maps

As afirstexample we deal with standard-like maps over the symplectic marfifalg =

(R?", dz A dy), n > 1, which are ones of the most celebrated examples of twist maps.
Among them, we consider perturbations of maps wehtral symmetrysince then the
dynamics over the unperturbed separatrix is essentially one-dimensional and gives rise to
explicit computations, as already announced in [DR97c]. In the sequel, givea R™,

z "y and|z| stand for the scalar prodult -, z;y; and the Euclidean normz T z.

3.1. Central standard-like mapd.et V : R” — R be a function. The map' : R?* —
R?" with equationsF(z,y) = (y, —z + VV (y)) is called thestandard-like mapwith
potentialV. Itis immediate to check thdl(z, X) = —2 " X +V(X) is a twist generating
function of F', so F' is a twist map. Whely is even,F' is odd.

It is worth mentioning that standard-like maps are also expressed in the literature
asF(z',y') = (@' +y' + VU(2'),y + VU(z")), for some functior/. The symplectic
linear change of variables/, ') = (y, y — x) is the bridge between these two equivalent
formulations, and the relation between the potentials is givei @y = |y\2 + U(y).
Thus, it makes no difference which formulation is used, since we deal with symplectic
invariants.

A central standard-like mafs a standard-like map with a central potential, i.e.,
Vy) = Vc(|y|2) for some functiorl; : [0, c0) — R. Central standard-like maps are odd
and have the “angular momentd;;(x, y) = x;y; — x;y; as first integrals. We denote
by Ap*t = {(x,y) : Ai;(x,y) = 0} the (@ + 1)-dimensional manifold ilR?" of zero
angular momenta. Clearly5*! = {(ga,pa) : a € S"71, (¢, p) € R?}.

Let F' be a central standard-like map with potentiandf : R? — R2 the standard-
like area preserving map defined g, p) = (p, —q + 2V{(p?)p). We will call f the
reduced maygin .A3*1) of F. This definition becomes clear when it is noted that

f(a,p) = (Q,P) <= F(qa,pa) = (Qa, Pa),  Y(q,p) €R*, aeS™ L (3.1)

Our interest in central standard-like maps is motivated by the following lemma,
which follows easily from (3.1).

Lemma 3.1. Let F' be a central standard-like map arydits reduced map. Assume that
SpecP f(0)] = {e*"}, for someh > 0, and hence that the origin is a hyperbolic fixed
point of f. Then:

(i) The origin is a hyperbolic fixed point &f. Moreover,SpecD F(0)] = {e*"}.

(i) Suppose now thaf has a separatriX@. Then, the invariant manifolds df are
completely doubled, giving rise to the separatrix

A ={(qa,pa): (¢,p) €T, a € "7},
(iii) Let o = (¢,p) : R — T be anatural parametrizatioof the separatrix, i.e.,
o is a diffeomorphism that satisfig®c(t)) = o(t + h), for all t € R. Then, the
diffeomorphism\ : R x S"~1 — A defined by\(t, a) := (¢(t)a, p(t)a) satisfies

F(\(t,a)) = At +h,a), VteR, aecS" 1 (3.2)
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We note thaff is odd, so when it has a separatrix, it has in fact a double (symmetric)
loop.

The separatrix\ is analytically diffeomorphic t® x S*~1, by means of\. Thus,
from now on, the functions defined ovarwill be expressed as functions of the time-
energy coordinates (@) € R x S* 1,

Now, we introduce the McLachlan map [McL94] as the central standard-like map

with potentialVs(y) = pIn(1 + |y|2) (1 € R). It has the expression

2
Fo(x7y) = (ya —x+ 'uy2> . (33)
1+ly|

It is easy to check that for > 1 the reduced map of (3.3) — usually called the
McMillan map — has a separatrix to the origin. (See Fig. 2 for a representation of the
invariant curves.) In addition, the following natural parametrization of its separatrix
can be found in [GPB89, DR96%:(t) = (¢(t), p(t)), whereq(t) = p(t — h) andp(t) =
sinh(h) sech(). Thus, using Lemma 3.1, the McLachlan map has its invariant manifolds
completely doubled, and the functiorgiven by

A, a) = (p(t — h)a, p(t)a), p(t) =sinh@G)sechf), cosh@) = u(>1), (3.4)
verifies Eq. (3.2).

Remark 3.1.The McLachlan map has first integralsd; (j = 1,...,n), independent
over its separatrixH(x, y) = |x|2 + |y|2 + |x|2 |y|2 — 2ux Ty, and the angular momenta
H; =A1;(j =2,...,n). Thisis notimportant for our purposes, but it would be essential
for the study of non-symplectic perturbations with the Melnikov function (2.8).

3.2. Standard-like perturbationsLet us consider a general perturbation of (3.3) that
preserves the standard character, i.e.,

2
F.(o,y) = <y o+ ”f’lz +eVV(y)) . u>1c€R, (3.5)
+ly

whereV : R" — R. We determind” by imposingV/(0) = 0. Then, the twist generating
function of . that vanishes at the origin 5. = Lo +cL1, whereLo(z, X) = —2 " X +

pIn(l + X% andLy(z, X) = V(X).
Using formulae (2.7), (3.2) and (3.4), the Melnikov potential of the problem is

sinh()

L:RxS" 1R, L(ta)= Z V(p(t + hk)a), p(t) = cosh()’

keZ

(3.6)

Obviously, L is h-periodic int, so we can considérdefined moduld: and L as a
function overS* x S*~1, Henceforth it will be assumed that> 0, coshf) = p.

Now, we focus our attention on entire perturbations, i.e., maps (3.5)/wéh entire
function. The result about the splitting in this case is the following one.

Theorem 3.1. If V' is entire but not identically zero, then the manifold4-® of the
map (3.5) split, fol0 < |g| < 1.
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Proof. By Theorem 2.1, it is sufficient to check that the Melnikov potential (3.6) is not
constant.

First, we note that the only singularities ft) are simple poles at any poity
wi/2 +wiZ, and therefore it is analytic aj, + hk for k € Z \ {0}. Now, letV, f, :
R — R be the functions defined by, (¢) := V(ta) and f,(t) = V.(p(t)) = V(p(t)a)
(a € S*1). SinceV is a non-zero entire function, there exigts= S*~! such that
V-~ is a non-zero entire function. Thug; has non-removable singularities at any point
t, € wi/2 +wiZ, and however it is analytic &}, + hk for k € Z \ {0}. Consequently,
L~(t) = L(t,a) = Y,z fo(t + kh) has a non-removable singularity at any point in
mi/2 +hZ + wiZ. This proves thal is not constant.

Remark 3.2.The assumption of the entire function &nhas only been used to ensure
thatthere exist, € wi/2+riZanda € S"~1, such thalf~(¢) has an isolated singularity
att,, and however is analytic ot} + hk for k € Z \ {0}. Thus, this assumption dn
can be relaxed, although the entire case is the simplest case to study.

We observe that for evelr, the mapsE, are odd and hence the famifyF. } is
antisymmetric. Therefore, Theorem 2.2 gives the following corollary.

Corollary 3.1. Assume that the functiaigiven in (3.6) is a Morse function. Then, the
map (3.5) has at least 4 primary homoclinic orbits, bk || < 1. If, in addition, the
potential V' is an even function, there exist at le&st antisymmetric pairs of primary
homoclinic orbits, and so at leadt, primary homoclinic orbits.

3.3. Polynomial perturbations: Explicit computationale show here that explicit com-
putations of Melnikov potentials can be performed, for any polynomial perturbations of
the McLachlan map, i.e., maps (3.5) witi{(y) = Zﬁl Vi(y), for some finiteN, where
V, denotes a homogeneous polynomial of orfler

In this case, the Melnikov potential (3.6) turns out to be a linear combination of
products of certain elliptic function&) in the variablet € C (of periodsh, 2ri) and
the homogeneous polynomidls restricted tadS™—1:

N
L(t,a) =Y _sinf (W)Vi(a)Z(t),  Zu(t) =) [secht+hk)]‘.  (3.7)

=1 kEZ

Using theSummation Formulaf the Appendix, all the elliptic function&’, (and
consequently, the Melnikov potentials) can be explicitly computed. However, using the
Summation Formula to find’, for big values of? is rather tedious. It is better to use
an idea contained in [GPB89]. The point is to note that the odd (respectively, even)
powers of the hyperbolic function sech can be expressed as a linear combination, with
rational coefficients, of the even derivatives of sech (respectively?séitis allows us
to write X, as a linear combination, with rational coefficients, of the even derivatives
of X (if ¢ is odd) orX; (if ¢ is even). For example, sethx (sech—secH)/2 and
sech = [4seck —(sech)’]/6, s0 X3 = (21 — X¥)/2 and £, = (4%, — Y)/6.
Consequently, it is enough to compuik for £ = 1, 2. This is done in Lemma A.1 (see

the Appendix) and the result is:
X(t) = Shar M2 CN S ont ma. | +dn font Mar )

h h
)

h

2 ’
o(t) = (212”) {K” —1+drf (ZKh“t
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where, if K(m) and E(m) are the elliptic integrals of the first and second kind, the
parametern = mp (T = «, 2w) of the Jacobian elliptic functions is determined by
the equationk' (1 — my)/K(mr) = T/h; and Ky = K(mr), K. = K(1 — mr),
E7 = E(1—my). Itis equivalent to choosg= ¢ = e "T/h as the nome of the elliptic
functions. For the notations about elliptic functions we refer again to the Appendix.
Assume now that” = V5, i.e.,V is a quadratic form or, in other words, the perturba-
tion VV is linear. We can writ& (y) = y ' By, for some symmetria x n matrix B. Then,
there exists an orthogonal matGx = (¢1 - - - ¢,,) such that diadg, . .., b,) = Q" BQ,
whereb; are the eigenvalues @ andg; are their respective (normalized) eigenvectors.

Proposition 3.1. Supposealet(B) # 0 and thatB does not have multiple eigenvalues.
Then:

1. The invariant manifold3V!-* are transverse along exactf primary homoclinic
orbits O, +i(¢) (0 € {0,1},7 € {1,...,n}), for 0 < |¢| < 1. These perturbed
homoclinic orbits are created from the unperturbed ones

Oy.2:(0) = (A (oh/2 +kh, +¢;)) oce{0,1},ie{1,...,n}

keZ’

2. The homoclinic area between the primary homoclinic orits;;(¢) and O, 4 ;(¢)
is given by the asymptotic expression

AW [Oa7ii(5)a O‘nij(g)] = EAU,T,i,j + O(Ez)a

where
Aa,r,i,j = Acr,'r,i,j(h) = Slnhz(h)(zKﬂ'/h)z [bi(sa - bjé‘r} 9

withdp = E/ /K andéy = E. /K!. — m,.

Proof. We note thatQ(S"~1) = S"~1, so we can perform the change of variables
a < Qain S"~1and thenV (Qa) = Y-, bi(a;)?, whereb; 7 0, for alli, andb; # by,
for all ¢ # s. It is easy to check that the only critical points of the restrictiori/ofo
St—tare{+q; : 1 < i < n}, all of them being non-degenerate. Moreover, from the
properties of the Jacobian elliptic function dh), the real critical points of, are
{kh/2 : k € Z}, that are also non-degenerate. Consequehilya Morse function over
(R/hZ) x S"~* and its critical points ares(r/2, +¢;), for o € {0,1},i € {1,...,n}.
Now the first part of the proposition follows from Theorem 2.1.

For the second part, it is enough to observe that

AW [Oa,:l:i(g)7 OT,ij(E)} = E[L(Uh/27 i%) - L(Th/27 :tq])] + 0(52)7

and L(ch/2,+q;) = sintf(h)V (xq;)Za2(ch/2) = sintf(h)b;(2K . /h)26,, where we
have used that dn[@) = 1 and dnf|m) = v/1 — m. O

Finally, we study the linear potentials (constant perturbat\éig, that is,V = V.
Thus,V (y) = b"y, for some vectob € R™ \ {0}, and the critical points o in S*~1
are +q, whereq = b/ |b|. Of course, they are non-degenerate. Then, using the same
arguments as in the proof of the preceding proposition, we get the following result.
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Proposition 3.2. With the previous notations and assumptions:

1. The invariant manifold3/V:-* are transverse along exactly primary homoclinic
orbits, O, (¢) (o € {0,1}),for0 < |¢| < 1. These perturbed homoclinic orbits are

created from the unperturbed ones

O1,(0) = (Moh/2 + kh, +q)) o€ {0,1}.

keZ’

2. The homoclinic area between the primary homoclinic or@i@(s) and @h(a) is
given by the asymptotic expression

AW [015(0), 047(0)] = eRugar + O(?),

where
Binitr = Bagusr() = Sinh(:) b] (2Uar /1) [dr — s

with g:l:o- = :tgg, (0 S {0, 1}), andgo =1+./mo:, 3\1 =1-— /mo,.

The conditions def) # 0, B without multiple eigenvalues (for the quadratic po-
tentials) and # 0 (for the linear ones) are the conditions of generic position/foo
be a Morse function. The conditiaB without multiple eigenvalues is equivalent to the
complete breakdown of the central symmetry.

The examples of this subsection show that the lower bounds on the number of
homoclinic orbits provided by Theorem 2.2 are optimal.

3.4. Polynomial perturbations: weakly hyperbolic casésis a very well-known fact
that the splitting size for analytic area preserving maps in the plane is exponentially
small in the hyperbolicity parametér, for families of maps which degenerate to the
identity whenh = 0 [FS90]. Here, €" stands for the eigenvalues of the differential of
the perturbed map on the perturbeeaklyhyperbolic fixed point. Then, there arises the
natural question about whether a similar result holds for analytic and symplectic maps
in higher dimensions. We show here some results that lead us to believe that the answer
is affirmative.

For the sake of brevity, we restrict ourselves to the ddgg) = y' By, but the
same study can be carried out for any concrete polynomial perturbation. Using that

- = €™ /" and the formula/2K m1/2/x = 23>0 g2 [WW27, p. 479], we get
4

Ao,1,i.i(h) = 167%b;h 2 sint(h)e™ /" { S expl-n2k(k + 1)/ ]
k>0

Thus, the homoclinic area betweél 1;(c) andO1 +;(c) (2 € {1,...,n}), isa priori
exponentially smallir. A priori means thatthe first order termdis exponentially small
in h. Of course, this does not imply that the higher order terms are also exponentially
small in k. All the other homoclinic areas are not a priori exponentially small, or are
trivially zero because of the odd characterZof

Itis important to remark that this is only a partial result: we have assumed that
small enough, butixed ande — 0. If ¢ andh tend simultaneously to zero, then one
is confronted with the difficult problem of justifying that some errors that seem to be
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O(£?) can be neglected in front of the main term thao(ae"’z/h). Thus, the question
is whether some asymptotic formulae like

AW [Oo,+i(€), O1,.+i(e)] ~ Ao i(h) ~ 16m2b;ce~™ /",

hold, where andh tend to zero in any independent way. At the present moment, we do
not have an analytical proof of these asymptotic formulae, but, concerning the planar
casef = 1), in [DR97a] we have succeeded in proving that the Melnikov method gives
the correct asymptotic exponentially small behaviour under a generic assumption on
the perturbative potentidl (y), for ¢ = O(h?) andp > 6. Besides, there is numerical
evidence that the hypothesiss O(h?), p > 6, can be improved up to= 0o(1) [DR97b].

(It is important to remark here that such numerical experiments require an expensive
multiple-precision arithmetic in order to detect the exponentially small size of the split-
ting.)

Nevertheless, from the computations above, it turns out that the exponentially small
splitting can only take place along the direction of theoordinate overA, since a
directional derivative of. is exponentially small only in thedirection. (Recall that the
differential of L. measures the distance between the perturbed invariant manifolds.) This
leads us to propose an affirmative answer about the exponentially small character of the
splitting of the separatrices, at least in one direction. To give a dynamical interpretation
of this distinguished direction, we note thahif— 0 the action of the unperturbed map
over A tends to &@low whose orbits are the coordinate curdes= constan} of the
parametrization\(¢, a). It is important to observe that this direction does not depend on
the perturbation.

Moreover, the computations above show that the distinguished pairs of homoclinic
orbits which give a priori exponentially small splittings are just thierlaced pairs,

i.e., the pairs created from unperturbed orbits situated on the same coordinate curve
{a = constant (in a interlaced way) of the separatix

Finally, we want to stress that a priori exponentially small asymptotic expressions
can be computed for the splitting angles in thairection overA. However, it seems
better to work with the homoclinic area since it is an homoclinic invariant, whereas the
splitting angles are not.

4. A Magnetized Spherical Pendulum

Finally, as a second example, we focus our attention on Hamiltonian maps that arise
from perturbations of a central field. The exact manifold is the same as in the previous
example.

4.1. Unperturbed problemFirst, we give some well-known definitions and results. Let
T : R™ — R be the so-callettinetic energyl'(y) = % |y\2 andletV :R" xR — R
be thepotential energyThe Hamiltoniang? : R?* x R — R of the formH (x, v, t) =
T(y) + V(z,t), are callednatural. The Hamiltonian equations can be writtenaas ™
-0V (x,t)/0x. Notice that ifV(x, t) is even in the spatial variable the Hamiltonian
map is odd.

WhenV (z,t) = VC(|:c|2), for some functiori; : [0, o0) — R, the Hamiltonian field
is an (autonomousjentral field and hence the angular momenta are preserved. Let
As*t = {(ra,7a) : a € S"71,(r,7) € R?} be the manifold of zero angular momenta.
Using the central symmetry, we can reduce4§i! the Hamiltonian system to one
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degree of freedom: = —2V/(r?)r; that is, if r(t) is a solution of the reduced system,
then\(t, a) = (r(t)a, 7(t)a) is a solution of the original system, for alle S*—1.

In [Gru85], one of the first papers on the generalization of the Melnikov method for
high-dimensional (continuous) systems(andamped) magnetized spherical pendulum
was considered. It is given by the (autonomous) central field Witt?) = (4 — 2) /2.
Obviously, the cases > 2 have no real physical meaning and the cited reference
does not deal with them, but the generalization is trivial and it is interesting in order to
compare with the section before. The following lemma follows from a straightforward
computation on the reduced systers i — 213, i.e., a Duffing equation.

Lemma 4.1. Let ¥§(p) be the solution of the Hamiltonian equations of this magnetized
spherical pendulum, with initial conditiop at ¢ = 0. Givenh > 0, let Fy be the
Hamiltonian map¥} : R?* — R?". Then:

(i) The origin is a hyperbolic fixed point df. Moreover,SpecD Fy(0)] = {e*"}.
(i) The invariant manifolds of, are completely doubled, giving rise to the separatrix

A ={(ra,ra): 1> =r? —1* r #0,a € S"71}.
(iii)y The diffeomorphism\ : R x S*~1 — A defined by
A, a) = (r(t)a, r(t)a), r(t) = sech, (4.1)

verifies
Wi(A(t, a)) = At + s, a), Vt,s € R,a € S"7L. 4.2)

4.2. Perturbed problemLet us consider a perturbation that preserves the natural char-
acter, i.e., the perturbed Hamiltonians are

Ho(z,y,0) = T@) + (a|* — |2 /2 +eV(x,t/h),  h>0c€R,

whereV =V (z, ) is 1-periodic inp. We determiné’ by imposingV (0, ) = 0. Small
values ofh correspond to a rapidly forced pendulum of angular frequency (radians per
secondyw = 27/h. We denote byF. the Hamiltonian map¥”, where w!(p) is the
solution of the Hamiltonian equations &f., with initial conditionp. (The dependence
on the parameteér is omitted to simplify the notation.)

Using Egs. (2.15), (4.2) and (4.1), the Melnikov poteniialR x S"~! — R of the
problem turns out to be

L(t,a) = — /R V(r(t+s)a,s/h)ds = — /R V(r(s)a,(s —t)/h)ds, r(s)=sechs.

(4.3)
Now, we consider polynomial perturbations, that is, we assume that the Taylor-
Fourier expansion of the potenti&l has a finite number of terms. We write

V(z,9)= > [Cholw)cos(@ke) + Sk o(x) sin(2rke)], (4.4)
(k,0)eK

whereK is afinite subset of(k, £) € Z? : k > 0,¢ > 1} andC}, ¢, Sk, are homogeneous
polynomials of degreé In this case, the Melnikov potential can be explicitly computed.
The result is summarized in the following lemma, whose proof is straightforward.
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Lemma 4.2. Let P;(w) (¢ > 0) be the polynomials generated by the recurrences
P =L Pi)=w, Pal)= 20
ow) =4, 1\Ww) = w, E+1w_£(€+1)

Then, the Melnikov potential (4.3) with given in (4.4) is

L(t,a) =7 Z {sechfrkw/2)P;_1(kw)[Ck ¢(a) coslwt) — Sy ¢(a) sin(kwt)]},
(k,0)eK

Pra(w). (4.5)

(4.6)
wherew = 27 /h is the frequency of the perturbation.

A typical difference between the continuous and discrete frames is revealed here:
the Melnikov potential (4.6) is an entire periodic function in the complex varigble
whereas the Melnikov potential (3.6) is a doubly periodic one with singularities. An-
other difference is that a theorem like 3.1 does not hold for the pendulum, since there
exist perturbative potentialg’(x, ¢) such that the Melnikov potential (4.6) vanishes
identically.

We also notice that sechkw/2) = sechgn?/h) ~ e~ /" whenh — 0. Thus, a
discussion om priori exponentially small splittings for this rapidly forced magnetized
pendulum, along the lines of the previous section, can be given for any polynomial
perturbation. As in the previous section, the exponentially small asymptotic expressions
predicted by the Melnikov method are far from being provedifor 1. However, it is
well-known that for some perturbations of the rapidly forced planar pendulum [DS92],
the Melnikov method gives the right answer.

Finally, we consider the perturbative potential

2

V(wy, w2, 0) = — g wa(d +3) cos(@rg),
which was already studied in [Gru85]. In that paper, the general (non-Hamiltonian) case
is considered, and consequently the symplectic structure is not taken into account, even
inthe examples where it was possible, like the one above. Using the formula (4.6), we get
the Melnikov potentialL(t, a) = 7w sech™? sind coswt, wherea = (cosy, sinv) € St
Its gradient is just the vector-valued Melnikov function used in [Gru85] to measure the
splitting. Obviously, it is easier to compute a real-valued function than a vector-valued
one. For higher dimensional cases, the saving of work is even more.

Appendix: Elliptic Functions

Afunction that plays animportant role in the computation of the infinite sums that appear
in Melnikov potentials, is acomplex functiarsatisfying the following properties, where

T, h > 0 are given parameters:

(C1) x is meromorphic ort.

(C2) x is T'i-periodic and its derivative i&-periodic.

(C3) The set of poles of is hZ + T'iZ, and all of them are simple and of residue 1.
Remark A.1.Conditions (C1)—(C3) determine a function except for an additive constant:

if 1 satisfies also (C1)-(C3)x(— x1)’ is an entire doubly periodic function, and it must
be a constant; thug,(z) — x1(z) = az + b, buta = 0 due to thel'i-periodicity.
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The functiony can be expressed in terms of Jacobian elliptic functions, Theta func-
tions, or Weierstrassian functions. The Jacobian elliptic functions are well adapted to
pencil-and-paper computations, whereas the Theta functions are the best from the numer-
ical point of view, and the Weierstrassian functions are the natural choice for theoretical
work on account of their symmetry in the periods. Here, we deal with pencil-and-paper
computations, so our choice are the Jacobian elliptic functions.

For a general background on elliptic functions of any kind, we refer to [AS72,
WW27]. We follow the notation of the first reference.

Given theparametern € [0, 1], we recall that

/2 w/2
K= K(m) ::/ (- msing) Y249, B = E(m) :=/ (1 msing)¥2dy,
0 0

are thecomplete elliptical integrals of the first and second kamdl that
E(u) = E(u|m) := / dr?(v|m) dv,
0

is the incomplete elliptic integral of the second kindhere dn is one of the well-
known Jacobian elliptic functionsMoreover, introducings’ = K’(m) = K(1 — m),
E' = E'(m) := E(1 — m), we also recall that theomeg, |q| < 1, is defined by
q = q(m) := e ™X'/K _|f any of the numbersn, ¢, K, K', E, E' or K’ /K is given, all
the rest are determined. From a numerical point of view, it is better to fix first the nome
q, and after compute the rest of parameters and elliptic functions, singestbrées are
rapidly convergent.

It is not difficult to check (see [DR96]) that

xr(2) = QK7 /h)(Ely /Ky — 1)z + (2K1/h)EQRKrz/h + Kyi|myr)

verifies (C1)-(C3), where the nome is determined;by ¢ = e ™/" andmr, Kr,
K., Ep, E/. are the associated parameters. (The dependenéei®mot explicitly
written.) Thus,

Kp/Kr =n"*log(1/qr) = T/h. (A1)

Given an isolated singularityy € C of a functionf, let us denote:_;(f, zo) the
coefficient of ¢ —zp) ™7 in the Laurent expansion gfaroundzq. Obviously,a_;(f, zo) =
0if zg is a pole off andj is greater than its order.

Proposition A.1 (Summation Formula). Let f be a function verifying:

(P1) fis analytic inR and has only isolated singularities dh

(P2) fisTi-periodic for somd&” > 0.

(P3) |f()] < AeI®™I when|Rt| — oo, for some constantd, ¢ > 0.

Then,X(t) = 3., f(t + hk) is analytic inR, has only isolated singularities i,

and is doubly periodic with periodsand7'i. Moreover,X'(t) can be expressed by the
following sum

a_ien(f,2) o
S=— Y restr(—0r0,)=— S S unth oy
z€Sing, (f) z€Sing,(f) §>0 J:
(A.2)
whereSing,(f) is the set of singularites of inZr = {z € C: 0 < Sz < T'}.
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Proof. See [DR96, Prop. 3.1]. O
If fis meromorphic inC, the same happens 16, and thenY' is elliptic. From a

computational point of view, this is the interesting case, since then (A.2) is a finite sum
and can be explicitly computed, as the following lemma, used in Sect. 3, shows.

)]

LemmaA.l. LetXy(t) =3,y f(t +kh), wheref = sech Then:

2K, 4K, t 4K, t
El(t):< hz ){ mz,rcn< hz mzﬂ)+dn( hz

2 ’
St) = (ZK”) [ﬂ—1+dr?<2f2”t m)]

h K!
Proof. Clearly, f = sech satisfies properties (P1)-(P3) with= 27. Moreover, the
singularities off in I, = {z € C: 0 < 3z < 2} are simple polesri/2 and 3ri /2,
with a_1(f, 7wi/2) = —a_1(f, 371 /2) = —i. Thus, from (A.2) we get

21(t) =i [xor(mi/2 = t) — x2n(3mi/2 - 1)] .

From Eq. (A.1) withT' = 27, and using thaF(u + 2K'i) — E(u) is a constant, and that
E(—u) = —E(u), we have

Di(t) = i(2Kon /WKy — Bhy) — E(v/2+ Kb, i|maz) + E(v/2mas),

wherev = u — K5 _i andu = 4K,t/h.
In [WW27, pp. 520 and 508] we find the following formulae

B(v+K'i) — E) = i(K' — E') + cn@) ds),

cn(v/2) ds/2) = N+ )

sn@) = dsf) + cs@).

Therefore, we arrive at the following expression oy
21(t) = —i(2Kax /M)dSlu — Ko, i|mar) + CSlu — Koy imax)],

and the formula for¥; follows from ds{ — K’i) = iy/mcn() and cs¢ — K'i) =
i dn(w).

The formula forX; is easier, sincg? = secl also verifies the properties (P1)-(P3),
but with T = 7 instead ofl" = 2x. It has only one singularity i.: 7i /2. Moreover,
7i /2 is a double pole witlh_1(f?, i /2) = 0 anda_»(f?, 7i/2) = —1. Thus, by (A.2)
we getXs(t) = x.(wi/2 —t). But E'(u) = drf(u) is an even X”i-periodic function,
so the formula fo’; follows from (A.1) forT = . O
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