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Abstract: The splitting of separatrices of hyperbolic fixed points for exact symplectic
maps ofn degrees of freedom is considered. The non-degenerate critical points of a
real-valued function (called the Melnikov potential) are associated to transverse homo-
clinic orbits and an asymptotic expression for the symplectic area between homoclinic
orbits is given. Moreover, if the unperturbed invariant manifolds are completely dou-
bled, it is shown that there exist, in general, at least 4 primary homoclinic orbits (4n in
antisymmetric maps). Both lower bounds are optimal.

Two examples are presented: a 2n-dimensional central standard-like map and the
Hamiltonian map associated to a magnetized spherical pendulum. Several topics are
studied about these examples: existence of splitting, explicit computations of Melnikov
potentials, transverse homoclinic orbits, exponentially small splitting, etc.

1. Introduction

In a previous work [DR96], the authors were able to develop a general theory for per-
turbations of an integrable planar map with a separatrix to a hyperbolic fixed point.
The splitting of the perturbed invariant curves was measured, in first order with respect
to the parameter of perturbation, by means of a periodicMelnikov functionM defined
on the unperturbed separatrix. In case of area preserving perturbations,M has zero
mean and therefore there exists a periodic functionL (called theMelnikov potential)
such thatM = L′. Consequently, ifL is not identically constant (respectively, has non-
degenerate critical points), the separatrix splits (respectively, the perturbed curves cross
transversely). Moreover, under some hypothesis of meromorphicity, the Melnikov po-
tential is elliptic and there exists aSummation Formula(see the Appendix) to compute
it explicitly.

The aim of this paper is to develop a similar theory for more dimensions. The natural
frame is to consider exact symplectic perturbations of a 2n-dimensional exact map with
an-dimensional separatrix associated to a hyperbolic fixed point.
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Exact symplectic mapsF : P → P are defined on exact manifolds, i.e., 2n-dimen-
sional manifoldsP endowed with a symplectic formω which is exact:ω = − dφ; and
they are characterized by the equationF ∗φ − φ = dS for some functionS : P → R,
calledthe generating functionof F .

The typical example of an exact symplectic manifold is provided by a cotangent
bundleT ∗M, together with the canonical formsφ0, ω0, which in cotangent coordinates
(x, y) read asφ0 = y dx, ω0 = dx ∧ dy. Typical exact symplectic maps are the so-
calledtwist maps, which satisfyF ∗(y dx) − y dx = Y dX − y dx = dL(x, X), where
(X, Y ) = F (x, y). The fact that the generating functionS can be written in terms of old
and new coordinates:S(x, y) = L(x, X), is thetwist conditionthat gives the name to
these maps. The functionL is called a twist generating function. As in [Eas91], we will
not restrict ourselves to this typical case, since the results to be presented in this paper
are valid on arbitrary exact symplectic manifolds and the twist condition is not needed.

The exact symplectic structure plays a fundamental role in our construction, since it
allows us to work neatly with geometric objects. For example, it is used to introduce two
homoclinic invariants: the action of a homoclinic orbit and the symplectic area between
two homoclinic orbits, called simply the homoclinic area.

Namely, letp∞ ∈ P be a hyperbolic fixed point ofF , which lies in the intersection
of then-dimensional invariant manifoldsWu,s. Given ahomoclinic orbitO = (pk)k∈Z
of F , i.e.,O ⊂ (Wu ∩ Ws) \ {p∞} andF (pk) = pk+1, we define thehomoclinic action
of the orbitO as

W [O] :=
∑
k∈Z

S(pk),

where, in order to get an absolutely convergent series, the generating functionS has
been determined by imposingS(p∞) = 0. Given another homoclinic orbitO′ of F , the
homoclinic areabetween the two homoclinic orbitsO, O′ is defined as the difference of
homoclinic actions1W [O, O′] := W [O] − W [O′]. These two objects aresymplectic
invariants, i.e., they neither depend on the symplectic coordinates used, nor on the choice
of the one-formφ. It is worth noting that in the planar case, the homoclinic area is the
standard (algebraic) area of the lobes between the invariant curves [MMP84, Mat86,
Eas91] and also measures the flux along the homoclinic tangle, which is related to the
study of transport [MMP84, RW88, Mei92].

The unperturbed role will be played by an exact symplectic diffeomorphismF0 :
P → P, defined on a 2n-dimensional exact manifoldP, which possesses a hyperbolic
fixed pointp∞ and an-dimensionalseparatrix3 ⊂ Wu

0 ∩ Ws
0, whereWu,s

0 denote the
invariant manifolds associated top∞.

Consider now a family of exact symplectic diffeomorphisms{Fε}, as a general
perturbation of the situation above, and letSε = S0 + εS1 + O(ε2) be the generating
function ofFε.

The main analytical results of this paper are stated and proved in Sect. 2. There, the
Melnikov potential is introduced as the real-valued smooth functionL : 3 → R given
by

L(p) :=
∑
k∈Z

Ŝ1(pk), pk = F k
0 (p),

whereŜ1 : P → R is defined aŝS1(p) = S1(p) − φ(F0(p))[F1(p)], andF1 is the first
order variation inε of the family{Fε}, that is,F1(p) = [∂Fε(p)/∂ε]|ε=0. Obviously,S1

is determined by imposinĝS1(p∞) = 0, in order to get an absolutely convergent series.
In Theorem 2.1 it is established that



Melnikov Potential for Exact Symplectic Maps 215

(i) the Melnikov potentialL is F0-invariant:L ◦ F0 = L,

(ii) if L 6≡ constant, the perturbed invariant manifoldsWu,s
ε split for 0 < |ε| � 1,

(iii) the non-degenerate critical points ofL are associated to transverse intersections of
the perturbed invariant manifolds,

(iv) the above-mentioned homoclinic invariants are given in first order byL.

As a matter of fact, the perturbed homoclinic orbits detected by the Melnikov po-
tential are all of themprimary homoclinic orbitsOε of Fε, i.e., they are smooth inε for
|ε| small enough.

The Melnikov potential admits several reformulations. For example, ifFε is a twist
map on a cotangent bundleT ∗M, with twist generating functionLε = L0 +εL1 +O(ε2),
Ŝ1 has the simple form̂S1(p) = L1(π(p), π(F0(p))), whereπ : T ∗M → M is the natural
projection. Consequently, the Melnikov potential reads as [DRS97]

L(p) =
∑
k∈Z

L1(xk, xk+1), xk = π(pk),

whereL1 is determined by imposingL1(x∞, x∞) = 0, andx∞ = π(p∞). Another
interesting situation, that allows us to compare the continuous and discrete frames, is
to considerHamiltonian maps. Let Hε : P × R → R be a time-periodic Hamiltonian
of periodT , andFε = 9T

ε , where9t
ε(p) is the solution of the associated Hamilto-

nian equations with initial conditionp at t = 0. If Hε = H0 + εH1 + O(ε2), then
Ŝ1(p) = − ∫ T

0 H1(9t
0(p), t) dt, so the Melnikov potential takes the form (already known

to Poincaŕe)

L(p) = −
∫

R
H1(9t

0(p), t) dt,

whereH1 is determined by imposingH1(9t
0(p∞), t) ≡ 0, or simplyH1(p∞, t) ≡ 0, if

H0 is autonomous.
An essential ingredient for the proof of Theorem 2.1 is the fact that the invariant

manifoldsWu,s
ε are exact Lagrangian immersed submanifolds ofP and therefore can be

expressed in terms of generating functionsLu,s
ε . The Lagrangian property of the invariant

manifolds was already noticed by Poincaré [Poi99] for flows, although we learned it for
maps from E. Tabacman [Tab95], as well as the expression for the invariant manifolds
given in Proposition 2.1, in the twist frame. The relationship betweenLu,s

1 andS1, the first
order variations inε of the generating functionsLu,s

ε andSε, gives then the formula for the
Melnikov potential. The tools utilized are very similar to those of D. Treschev [Tre94].
However, D. Treschev considers autonomous Hamiltonian flows, and the conservation
of energy makes easier the deduction of the continuous version of Eq. (2.5).

In that frame (Hamiltonian-Lagrangian flows), it is worth noting that a variational
approach to the Melnikov method was carried out by S. Angenent [Ang93] for Hamilto-
nian systems with 112 degrees of freedom, and that a mechanism for finding homoclinic
orbits in positively definite symplectic diffeomorphisms is due to S. Bolotin [Bol95],
based on interpolating them by Hamiltonian flows.

Section 2 contains also some remarks on the non-symplectic case: a vector-valued
Melnikov functionM is then defined, whose non-degenerated zeros are associated to
transverse homoclinic orbits.

The last part of Sect. 2 is devoted to gain information on the number of primary
homoclinic orbits after perturbation. Since the Melnikov potentialL is F0-invariant,
it can be defined on thereduced separatrix3∗ := 3/F0, which is the quotient of the
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separatrix by the unperturbed map. The reduced separatrix is a compact manifold without
boundary, provided that the unperturbed invariant manifolds arecompletely doubled,
i.e., Wu

0 = Ws
0 andWu,s

0 \ {p∞} is a submanifold ofP and not only an immersed
submanifold ofP. This is equivalent to require that the separatrix is3 = Wu,s

0 \ {p∞}.
Several dynamical consequences of this fact can be pointed out using topological tools.
In particular, Morse theory gives lower bounds on the number of primary transverse
homoclinic orbits, under conditions of generic position: in Theorem 2.2 it is stated that
the number of primary homoclinic orbits is at least 4.

Moreover, if the mapsFε have a common symmetryI : P → P (Fε ◦I = I ◦Fε, and
Fε(p∞) = I(p∞) = p∞) such that the one-formφ is preserved byI: I∗φ = φ, then the
Melnikov potential isI-invariant (see Lemma 2.6). Consequently, it can be considered as
a function over the quotient manifold3∗

I := 3/{F0, I}. If, in addition,I is an involution
(I2 = Id) such thatDI(p∞) = −Id, the family{Fε} will be calledantisymmetric. In this
case, in Theorem 2.2 it is stated that the number of primary homoclinic orbits is at least
4n and that they appear coupled in (anti)symmetric pairs:Oε is a primary homoclinic
orbit if and only if I(Oε) also is.

It is worth mentioning that any family of odd mapsFε : R2n → R2n (with the
standard symplectic structure) is antisymmetric.

To prove Theorem 2.2, it is enough to check that the sum of theZ2-Betti numbers
of 3∗ and3∗

I are 4 and 2n, respectively. This is accomplished by computing theZ2-
homology of3∗ and3∗

I .
Both lower bounds are optimal, as it is shown in several perturbations of maps with

a central symmetry, so that the unperturbed invariant manifolds are completely doubled.
It is important to notice that the invariant manifolds of a product of uncoupled planar
maps with double loops are not completely doubled, see Remark 2.3, and hence, the
topological results do not hold in this case. Indeed, the number of primary homoclinic
orbits may be rather different under perturbation; for instance, it is possible to construct
explicitly perturbations with an infinite number of primary homoclinic orbits, all of them
being transverse. The study of this kind of phenomena is currently being researched.

In Sect. 3, as a first example, we consider the family of twist maps onR2n:

Fε(x, y) =

(
y, −x +

2µy

1 + |y|2 + ε∇V (y)

)
, µ > 1, ε ∈ R,

with V : Rn → R determined by imposingV (0) = 0. The map above is a perturbation
of the McLachlan map [McL94], which is a multi-dimensional generalization of the
McMillan map [McM71], which in its turn is a particular case of the standard-like
Suris integrable maps [Sur89]. The McLachlan map has a central symmetry that makes
the dynamics over the separatrix essentially one-dimensional. This is the key fact that
allow us to perform a complete analysis, since thenatural parametrizations(3.2) can
be introduced.

If the potentialV is entire and not identically zero, in Theorem 3.1 it is proved that
the manifoldsWu,s

ε of the mapFε split, for 0< |ε| � 1. This result is obtained simply
by checking that the Melnikov potential is not constant. Moreover, ifV is a polynomial,
the Melnikov potential can be computed explicitly.

In particular, ifV is a quadratic form:V (y) = y>By for some symmetricn×n matrix
B, in Proposition 3.1 it is stated that under generic conditions onB (det(B) 6= 0 and
B does not have multiple eigenvalues), the perturbed invariant manifolds are transverse
along exactly 4n primary homoclinic orbits.
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If V is linear:V (y) = b>y for some vectorb ∈ Rn \ {0}, in Proposition 3.2 it
is stated that the perturbed invariant manifolds are transverse along exactly 4 primary
homoclinic orbits.

The difference between both kinds of perturbations is that quadratic potentialsV give
rise to odd maps, whereas linear ones do not. Moreover, propositions 3.1 and 3.2 give
the unperturbed homoclinic orbits that survive and the first order (inε) of the homoclinic
areas between the different primary homoclinic orbits.

The weakly hyperbolic case 0< h � 1, cosh(h) := µ, is also studied for the case of
a quadratic potentialV , and asymptotic expressions for the homoclinic areas are given
at the end of Sect. 3. It turns out that, for some distinguished pairs, interlaced in the
same way as in the case of 1 degree of freedom, the homoclinic area predicted by the
Melnikov potential is exponentially small with respect to the hyperbolicity parameter
h. Of course, this does not prove that the splitting size is exponentially small in singular
cases, i.e., whenε andh tend simultaneously to zero.

The last section is devoted to the study of the Hamiltonian maps arising from time-
periodic perturbations of an (undamped) magnetized spherical pendulum. This model
was introduced by J. Gruendler [Gru85] as a first example of application of the Melnikov
method for high-dimensional (continuous) systems. The Hamiltonians considered have
the form [Gru85]

Hε : R2n × R → R, Hε(x, y, t) = v2/2 + (r4 − r2)/2 +εV (x, t/h), h > 0, ε ∈ R,

wherev = |y|, r = |x|, andV = V (x, ϕ) is 1-periodic inϕ. We determineV by imposing
V (0, ϕ) ≡ 0. Note that small values ofh correspond to a quick forcing.

General perturbations, and not only symplectic ones, are considered in [Gru85]. As
a consequence, the homoclinic orbits are given in the general case by non-degenerate
zeros of a vector-valued Melnikov function, instead of non-degenerate critical points
of the real-valued Melnikov potential. We have computed the Melnikov potential for
the Hamiltonian perturbations studied in [Gru85], and have verified that his Melnikov
function is the gradient of our Melnikov potential.

Most of the results stated above for the McLachlan map also hold for this Hamiltonian
map. There is, however, a significant difference. One cannot deduce a priori that the
Melnikov potential is not identically constant without computing it. This has to do with
the fact that the Melnikov potential is simply periodic and regular for the polynomial
perturbations considered, in contrast with the complex period and singularities that the
Melnikov potential has for the entire perturbations of the McLachlan map.

To finish the account of results, let us point out that a similar Melnikov analysis for
perturbed ellipsoidal billiards has not been included for the sake of brevity and will appear
elsewhere. Such billiards are a high-dimensional version of perturbed elliptic billiard
tables, which have already been studied in several papers [LT93, Tab94, DR96, Lom96a].

After this research was complete, we became aware of some recent papers [Lom97,
Lom96b] of H. Lomeĺı for twist maps on the annulusAn = T ∗Tn = Tn × Rn that
resemble our method. However, they do not contain explicit computations (i.e., in terms
of known functions) of the Melnikov potential, since complex variable methods are not
used. Besides, in those papers it is assumed that the separatrix is globally horizontal, a
condition that does not hold for homoclinics inR2n, since the separatrix must fold to go
back to the fixed point.

Other related papers are [Sun96, BGK95], but their approach is rather different, since
they deal, like [Gru85], with the general case, with no symplectic structure, and therefore
a vector-valued Melnikov function is needed. This makes an important difference not
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only from a computational point of view (there are not explicit (analytic) computations
in these works), but also from a theoretical point of view, sinceMorse theorycannot
be applied in the general situation. We also want to mention the work [BF96], where
perturbations ofn-dimensional maps having homo-heteroclinic connections to compact
normally hyperbolic invariant manifolds are considered.

2. Main Results

For the sake of simplicity, we will assume that the objects here considered are smooth.
For a general background on symplectic geometry we refer to [Arn76, GS77, AM78].
The basic properties of immersed submanifolds can be found in [GG73, pages 6–11].

2.1. Exact objects.A 2n-dimensional manifoldP together with an exact non-degenerate
two-form ω over it, is called anexact symplectic manifold. Then,ω = − dφ for some
one-formφ, usually calledLiouville form, symplectic potentialor action form.

A mapF : P → P is calledexact symplectic(or simply, exact) if
∮

γ
φ =

∮
Fγ

φ for
all closed pathγ ⊂ P or, equivalently, ifF ∗φ − φ = dS for some functionS : P → R,
calledgenerating functionof F .

A n-dimensional submanifold3 ⊂ P is called anexact Lagrangian submanifold
(or simply, an exact submanifold) if

∮
γ

φ = 0 for all closed pathγ ⊂ 3 or, equivalently,
if ı∗3φ = dL for some functionL : 3 → R, calledgenerating functionof 3. Here
ı3 : 3 ↪→ P stands for the inclusion map.

Unfortunately, the invariant manifolds that we will deal with are not submanifolds,
but just immersedsubmanifolds. Thus, the introduction of some technicalities seems
unavoidable in order to give a rigorous exposition of the subject, and more precisely, to
introduce the notion of separatrix, where the distance between the perturbed invariant
manifolds will be measured.

Given a manifoldN , we recall that a mapg : N → P is called animmersion
when its differential dg(z) has maximal rank at any pointz ∈ N . If g is one-to-one
onto its imageW = g(N ), there is a natural way to makeW a smooth manifold: the
topology onW is the one which makesg a homeomorphism and the charts onW are
the pull-backs viag−1 of the charts onN . The manifoldW constructed in this way is
called animmersed submanifoldof P and its dimension is equal to the dimension of
N . It is important to notice that the topology of the immersed manifold need not be the
same as the induced one via the inclusionW ⊂ P or, in other words, thatW need not
be a submanifold ofP in the usual sense.

Fig. 1 shows an example of a double loopW = g(R) to p∞ = limz→±∞ g(z) for an
immersiong : R → R2. At p∞, the induced topology onW via the inclusionW ⊂ R2 is
not the same as the induced one viag. Bothg(B), for all open bounded intervalsB ⊂ R,
andW \ {p∞} are submanifolds, but notW. This situation is a particular case of the
following elementary result [GG73, p. 11].

Lemma 2.1. Letg : N → P be a one-to-one immersion and setW = g(N ).

(i) Let B be an open subset ofN with compact closure. Then,g|B : B → P is
an embedding, that is, a homeomorphism onto its imageg(B). Thus,g(B) is a
submanifold ofP, which will be called anembedded diskin W.

(ii) Let Σ ⊂ W be the set of points where the two topologies onW (the one induced
by the inclusionW ⊂ P and the one that makesg a homeomorphism) differ. Then,



Melnikov Potential for Exact Symplectic Maps 219

W � 2

g

p1 = g(0)

�

1

R

R

Fig. 1.g = (g1, g2) : R → R2, whereg1(z) = 3
2z/(1 + z2), g2(z) = g1(2z)

3 = W \ Σ is a submanifold ofP. Indeed,W is not a submanifold ofP just at the
points ofΣ.

For the sake of clearness, submanifolds and immersed submanifolds will be denoted
by different letters, namely3 andW, respectively. For immersed submanifoldsW, the
mapıW : W → P stands for the inclusion map, as before. It should be noted thatıW is
smooth, even whenW is not a submanifold ofP, because of the differential structure
given toW. Moreover, ifγ ⊂ P is a (closed) path, we will say thatγ is a (closed) path
in the immersed submanifoldW if and only if γ is contained inW and it iscontinuous
in the topology ofW. For example, ifγ is one loop of Fig. 1, it is a closed path inR2

but not inW.
With these notations and definitions, we are naturally led to define exact immersed

submanifolds in the same way as exact submanifolds. An-dimensional immersed sub-
manifoldW ⊂ P is calledexactif

∮
γ

φ = 0 for all closed pathγ in W or, equivalently,
if ı∗Wφ = dL for some functionL : W → R, called agenerating functionof W.

The symplectic potentialφ is determined except for the addition of a closed zero-
form, and the generating functions of maps or (immersed) submanifolds are determined
except for an additive constant. Henceforth, the symbolW

∫ q

p
φ, with p, q ∈ W, will

denote the integral ofφ along an arbitrary path fromp to q in W. It only makes sense
for an exact immersed submanifoldW, since then the integral does not depend on the
path. The difference of values ofL can be expressed as an integral of this kind:

L(q) − L(p) =
∫ q

p

dL =
W

∫ q

p

φ, ∀p, q ∈ W. (2.1)

Lemma 2.2. LetW be a connected exact immersed submanifold ofP, invariant under
an exact mapF . LetL andS be their respective generating functions. Then,

S(p) + constant =L(F (p)) − L(p), ∀p ∈ W. (2.2)
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Moreover, ifp∞ ∈ W is a fixed point ofF , the constant is−S(p∞).

Proof. From dS = F ∗φ − φ and dL = ı∗Wφ we get

d
(
S|W

)
= ı∗W dS =

(
F|W

)∗
dL − dL = d

(
L ◦ F|W − L

)
,

whereS|W = S ◦ ıW andF|W = (ıW )−1 ◦ F ◦ ıW are the restrictions ofS andF to W.
Thus,S − L ◦ F + L is constant overW by connectedness and (2.2) is proved. To end
the proof we only need to evaluate Eq. (2.2) atp = p∞. �

Fig. 2. The invariant manifoldsWu andWs are different as smooth manifolds, and are not submanifolds of
R2. There exist no pathsγu,s in Wu,s from p to p′ such thatγu = γs

Let p∞ ∈ P be a hyperbolic fixed point ofF . The pointp∞ lies in the intersection
of then-dimensionalunstableandstableinvariant manifolds of the mapF associated
to p∞:

Wu :=

{
p ∈ P : lim

k→−∞
F k(p) = p∞

}
, Ws :=

{
p ∈ P : lim

k→+∞
F k(p) = p∞

}
.

The manifoldsWu,s need not be submanifolds ofP, but just connected immersed
submanifolds, see Fig. 2. In fact,Wu,s = gu,s(Rn) for some one-to-one immersions
gu,s : Rn → P, such thatgu,s(0) = p∞ anddgu,s(0)[Rn] is the tangent space toWu,s

at p∞ [PM82, II §6]. SinceF is exact, they are exact immersed submanifolds: ifγ
is a closed path inWu (Ws), then

∮
γ

φ =
∮

F kγ
φ −→ ∮

p∞
φ = 0, whenk → −∞

(k → +∞). It should be noted that ifγ ⊂ P is closed and contained inWu (resp.Ws),
but it isnota path inWu (resp.Ws), the above argument fails. (For instance, ifγ is one
loop of Fig. 2.)

We denote byLu,s the generating functions ofWu,s and we determine the generating
functionsS, Lu,s by imposingS(p∞) = Lu,s(p∞) = 0. The next proposition gives a nice
interpretation of the generating functions of the stable and unstable invariant manifolds
in terms of the generating function of the map.

Proposition 2.1. Givenpu,s ∈ Wu,s, let us denotepu,s
k = F k(pu,s), for k ∈ Z. Then,

Lu(pu) =
∑
k<0

S(pu
k), Ls(ps) = −

∑
k≥0

S(ps
k).
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Proof. From Lemma 2.2, one hasS(pu,s
k ) = Lu,s(pu,s

k+1) −Lu,s(pu,s
k ), for all k ∈ Z. To get

the formulae above, we simply consider the telescopic sums

Lu(pu) =
∑
k<0

[Lu(pu
k+1) − Lu(pu

k)] =
∑
k<0

S(pu
k),

Ls(ps) =
∑
k≥0

[Ls(ps
k) − Ls(ps

k+1)] = −
∑
k≥0

S(ps
k).

These series are absolutely convergent, sinceS(p∞) = 0 andpu
k (ps

k) tends top∞ at an
exponential rate ask tends to−∞ (+∞). �

LetO = (pk)k∈Z be ahomoclinic orbitofF , i.e.,O ⊂ (Wu∩Ws)\{p∞}andF (pk) =
pk+1. We define thehomoclinic actionof the orbitO asW [O] := Lu(pk) − Ls(pk).
This definition does not depend onk, since a direct application of Proposition 2.1 with
pu,s

k = pk yields an equivalentk-independent definition

W [O] :=
∑
k∈Z

S(pk). (2.3)

Let O′ be another homoclinic orbit ofF . Thehomoclinic areabetween the two homo-
clinic orbits O, O′ is defined as the difference of homoclinic actions1W [O, O′] :=
W [O] − W [O′]. For a motivation of this name, considerp ∈ O, p′ ∈ O′, γu,s a path
from p to p′ in Wu,s, γ = γu − γs, and suppose thatD is an oriented 2-chain such that
∂D = γ. Then, by Eq. (2.1) and Stokes’ formula, we have

1W [O, O′] =
∮

γ

φ = −
∫ ∫

D

ω. (2.4)

This formula shows clearly that the homoclinic area is asymplectic invariant, i.e., it
neither depends on the symplectic coordinates used, nor on the choice of the symplectic
potentialφ. The homoclinic action can be considered as the homoclinic area between the
homoclinic orbit at hand and the “orbit” of the fixed pointp∞. Thus, it is a symplectic
invariant, too.

In particular, ifP = R2 with the standard area as the symplectic structure, andp ∈ O,
p′ ∈ O′ are consecutive intersections of the invariant manifolds, then the homoclinic
area1W [O, O′] is simply the (algebraic) area of the associated lobe.

Remark 2.1.SetW = Wu ∩ Ws and letp, p′ be two points of the same connected
component ofW. When it is possible to choose the pathsγu,s in Wu,s from p to p′ such
thatγ = γu − γs = 0, 1W [O, O′] =

∫
γ

φ = 0, i.e., the actions coincide. They can be
different if p andp′ are not in the same component ofW. For instance, ifp, p′, D and
D′ are as in Fig. 2,W [O] = − ∫∫

D
ω > 0 andW [O′] =

∫∫
D′ ω < 0.

2.2. Families of exact objects.Now, we carry out the generalization of Lemma 2.2 and
Proposition 2.1 for families of exact immersed submanifolds and maps, depending (in a
smooth way) on a small parameterε. First, let us recall the following standard fact from
symplectic geometry [Wei73, GS77].

Lemma 2.3. In any pointp of any Lagrangian submanifold3 ofP there exists a neigh-
bourhoodp ∈ U ⊂ P and local coordinates(x, y) over U such thatφ = y dx (i.e.,
ω = dx ∧ dy) and the set3 ∩ U is given by the equationy = 0.
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We recall that an-dimensional submanifold3 is Lagrangian ifı∗3ω = 0. In partic-
ular, exact submanifolds are Lagrangian. The coordinates above are calledcotangent
coordinatessince they give a symplectic change of variables from the neighbourhood
U onto a neighbourhoodV of p in the cotangent spaceT ∗3.

Let gε : N → P be one-to-one immersions and setWε = gε(N ). We will say that
the family of immersed submanifolds{Wε} issmooth(atε = 0) when for any embedded
disk3 ⊂ W0 there exists a smooth family of embedded disks{3ε} such that3ε ⊂ Wε

and30 = 3. We remember that embedded disks are submanifolds ofP, and they are
exact if the immersed submanifolds are.

Lemma 2.4. Let {Wε} be a smooth (atε = 0) family of connected exact immersed
submanifolds.

(i) Let p ∈ W0 and 3 ⊂ W0 be an embedded disk containingp. Let {3ε} be a
smooth family of embedded disks such that3ε ⊂ Wε and 30 = 3. Let U be a
neighbourhood ofp in P, where cotangent coordinates(x, y) exist for3. Thus, the
set3ε ∩ U has the formy = ε∂Lε(x)/∂x, for some functionLε, since3ε is an
exact submanifold. We can writeLε = L1 + O(ε). Then, the functionL1 : W0 → R
is well-defined, that is, it neither depends on the family{3ε}, nor on the cotangent
coordinates. (Of course,L1 is determined except for an additive constant.)

(ii) Assume thatWε is invariant under some exact mapFε. LetSε = S0 + εS1 + O(ε2)
be the generating function ofFε, andF1(p) = [∂Fε(p)/∂ε]|ε=0 be the first order
variation inε of the family{Fε}. Then,

S1(p) − φ(F0(p))[F1(p)] + constant =L1(F0(p)) − L1(p), ∀p ∈ W0. (2.5)

Besides, the constant isφ(p∞)[F1(p∞)] − S1(p∞), if p∞ ∈ W0 is a fixed point of
F0.

Remark 2.2.It is clear that3ε ∩U has the equationy = ε∂L1(x)/∂x +O(ε2). From (i),
the functionL1 : W0 → R is a geometrical object associated to the family{Wε},
and therefore its differential gives the first order variation atε = 0 of the family along
the coordinatey in anycotangent coordinates (x, y). We will call L1 the infinitesimal
generating functionof the family{Wε}.

Proof. (i) On the one hand, any two families{3ε}, {3′
ε} coincide on a small neigh-

bourhood of the pointp. This proves the independence on the family. On the other hand,
the independence on the cotangent coordinates for a fixed family is proved in [Tre94],
using coordinates.

A geometric interpretation ofL1, useful in order to prove below (ii) (and consequently
another proof of the fact thatL1 : W0 → R is well-defined), is given now. It is inspired
in a similar construction that can be found in [AA89, p. 238].

Let E ⊂ R be the small neighbourhood of 0 whereε runs. Givenp ∈ W0, we denote
by p̂ : E → P any smooth curve such thatp̂(ε) ∈ Wε which has a non-tangent contact
with W0 at p for ε = 0. Moreover,σ(p, ε) will denote the patĥp(τ ), 0 ≤ τ ≤ ε. Given
p, q ∈ W0, let D(p, q, ε) be any oriented 2-chain ofP such that

∂D(p, q, ε) = γ(p, q, ε) − γ(p, q, 0) +σ(p, ε) − σ(q, ε),

whereγ(p, q, ε) is any path from̂p(ε) to q̂(ε) in Wε. Such a construction is possible,
provided that|ε| is small enough. Let us set
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1(p, q, ε) := −
∫ ∫

D(p,q,ε)
ω = ε11(p, q) + O(ε2).

This integral neither depends on the symplectic coordinates, nor on the choice of the
pathsγ(p, q, ε). In addition, its first order term11(p, q) does not depend on the choice
of the curveŝp and q̂, since such different choices only affect second order terms of
1(p, q, ε).

Now, it will be shown thatL1(q) − L1(p) = 11(p, q), if p, q ∈ W0 are close enough
overW0, that is, if there exist an embedded disk30 ⊂ W0 and an openU ⊂ P, where
cotangent coordinates (x, y) are defined, such thatp, q ∈ 30 = {y = 0} ∩ U . We denote
by π : U → 30 the projectionπ(z) = p, if z = (x, y) andp = (x, 0) are the cotangent
coordinates ofz andp, respectively. We determine the curvesp̂, q̂ by imposingπ◦ p̂ ≡ p,
π ◦ q̂ ≡ q, and we chooseγ(p, q, ε) in such a way that they are contained inU . Then,

1(p, q, ε)=
∫

γ(p,q,ε)−γ(p,q,0)+σ(p,ε)−σ(q,ε)
y dx =

∫
γ(p,q,ε)

y dx = ε

∫
π(γ(p,q,ε))

∂Lε

∂x
(x) dx

= ε[Lε(π(q̂(ε))) − Lε(π(p̂(ε)))] = ε[L1(q) − L1(q)] + O(ε2).

Finally, if p, q ∈ W0 are arbitrary, we consider a chain of points (rj)0≤j≤J such
that r0 = p, rJ = q, and two consecutive points of the chain are close enough so that
L1(rj) − L1(rj−1) = 11(rj−1, rj) holds. Then, a trivial argument with telescopic sums
shows thatL1(q) − L1(p) = 11(p, q), since11(r, s) + 11(s, t) = 11(r, t) holds for all
r, s, t ∈ W0.

(ii) Given p ∈ W0, we setq = F0(p). For any curvêp like the previous ones, let
q̂(ε) = Fε(p̂(ε)). If v = ( dp̂/ dε)(0), thenw = ( dq̂/ dε)(0) = dF0(p)[v] + F1(p), sov
(i.e., p̂) can be chosen in such a way thatq̂ is not tangent toW0 atq, due to the fact that
the mapv 7→ w is bijective. Using (i), we get

L1(q) − L1(p) = − lim
ε→0

ε−1
∫ ∫

D(p,q,ε)
ω = lim

ε→0
ε−1

∫
γ(p,q,ε)−γ(p,q,0)+σ(p,ε)−σ(q,ε)

φ.

Now, by equations (2.1) and (2.2), there exist constantsc(ε) (independent of the
pointp) such that

lim
ε→0

ε−1
∫

γ(p,q,ε)−γ(p,q,0)
φ = lim

ε→0
ε−1

{
Wε

∫ q̂(ε)

p̂(ε)
φ −

W0

∫ q

p

φ

}
= lim

ε→0
ε−1[Lε(q̂(ε)) − Lε(p̂(ε)) − L0(q) + L0(p)]

= lim
ε→0

ε−1[Sε(p̂(ε)) + c(ε) − S0(p) − c(0)]

= S1(p) + dS0(p)[v] + ( dc/ dε)(0).

Finally, we use thatF ∗
0 φ − φ = dS0 and consequently,

lim
ε→0

ε−1
∫

σ(p,ε)−σ(q,ε)
φ= lim

ε→0
ε−1

∫ ε

0

(
φ(p̂(τ ))

[
( dp̂/ dε)(τ )

] − φ(q̂(τ ))
[
( dq̂/ dε)(τ )

])
dτ

= φ(p)[v] − φ(q)[w] = − dS0(p)[v] − φ(F0(p)[F1(p))],

and the proof follows. �
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Let F0 : P → P be an exact symplectic diffeomorphism with a hyperbolic fixed
point p∞ and invariant manifoldsWu,s

0 . Let us consider a family of exact symplectic
diffeomorphisms{Fε}, as a general perturbation of the situation above, and letSε =
S0 + εS1 + O(ε2), be the generating function ofFε. In order to simplify some formulae
later, we introduce the function

Ŝ1 : P → R, Ŝ1(p) = S1(p) − φ(F0(p))[F1(p)], (2.6)

whereF1(p) = [∂Fε(p)/∂ε]|ε=0.
From the invariant manifold theory for maps [PM82, II§6], it follows that for small|ε|

there exists a hyperbolic fixed pointp∞(ε) of the perturbed mapFε nearp∞. Moreover,
p∞(ε) lies in the intersection of two (connected) exact immersed submanifoldsWu,s

ε ,
and the families{Wu,s

ε } are smooth (atε = 0). We denote byLu,s
1 their infinitesimal

generating functions and, as usual, we determineS1, Lu,s
1 by Ŝ1(p∞) = Lu,s

1 (p∞) = 0.

Proposition 2.2. Givenpu,s ∈ Wu,s
0 , let pu,s

k = F k
0 (pu,s), for k ∈ Z. Then,

Lu
1(pu) =

∑
k<0

Ŝ1(pu
k), Ls

1(ps) = −
∑
k≥0

Ŝ1(ps
k).

Proof. Identical to the proof of Proposition 2.1, but using Eq. (2.5) instead of Eq. (2.2).
�

2.3. Melnikov potential.Assume now that the invariant manifoldsWu,s
0 aredoubled,

that is,W := Wu
0 = Ws

0.
Then, we can consider three topologies onW: the one induced by the inclusionW ⊂

P, and the two ones induced by the inclusionsW ⊂ Wu,s
0 . We define thebifurcation

setΣ and theseparatrix3 of this problem as the subset ofW of points where the three
topologies do not coincide, and3 := W \ Σ, respectively.

Lemma 2.5. The bifurcation set and the separatrix have the following properties:

(i) 3 is an exact submanifold ofP andp∞ ∈ Σ.

(ii) 3 andΣ areF0-invariant.

(iii) Let p, p′ be points on the same connected component of3. Then, the unperturbed
homoclinic orbitsO andO′ generated byp andp′, have the same action.

Proof. (i) On the one hand, using (ii) of Lemma 2.1,3 is a submanifold. It must be
exact, since it is contained in the exact immersed submanifoldsWu

0, Ws
0.

On the other hand,Wu
0 andWs

0 have a transverse intersection atp∞, so their topology
atp∞ as immersed submanifolds can not coincide andp∞ ∈ Σ. (Indeed,Σ is just formed
by the points ofW where this set has self-intersections, considered as a subset ofP.)

(ii) SinceW is F0-invariant, it is enough to see thatΣ is invariant, and this follows
from the fact thatF0 is a diffeomorphism.

(iii) This is clear from Remark 2.1. We can connectp andp′ by a path in3, and so
in Wu,s

0 , since their topologies coincide on3. �

Remark 2.3.In the planar case with a double loop (∞), the bifurcation set is just the
hyperbolic fixed point. In general, for more dimensions the situation is not so simple. For
example, letF0 : R2n → R2n be the product ofn planar mapsfj : R2 → R2, each one
with a double loop0j = {pj

∞}∪3j , wherepj
∞ ∈ R2 stands for the fixed point offj and
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3j are the two components of0j \{pj
∞}, for j = 1, . . . , n. Then,3 = 31×· · ·×3n has

2n connected components andΣ = (01 × · · · × 0n) \ 3 contains strictly the hyperbolic
fixed pointp∞ = (p1

∞, . . . , pn
∞) ∈ R2n. In particular,3 6= Wu,s

0 \ {p∞}.

Remark 2.4.As the case of a planar map with a single loop (∝) shows, the situation
Wu

0 6= Ws
0 does not exclude thatWu

0 ∩ Ws
0 can containn-dimensional submanifolds.

For the sake of simplicity, we have defined the notion of separatrix only if the invariant
manifolds are doubled and then, from the arguments above, the separatrix3 satisfies:
(a) 3 is a doubly asymptotic exact submanifold, invariant byF0, and (b) the three
topologies on3 coincide (the ones induced by the inclusions3 ⊂ P, 3 ⊂ Wu

0, and
3 ⊂ Ws

0). Since these properties are the only ones needed in this section, they can be
taken as a definition for a separatrix whenWu,s

0 are partially doubled:Wu
0 6= Ws

0. Thus,
with this definition, the analytical results of this paper also apply to this case.

By Remark 2.2, the differential ofLu,s
1 gives the first order variation ofWu,s

ε at
ε = 0. Besides, sinceLu,s

1 is defined overWu,s
0 and3 ⊂ Wu,s

0 , the perturbed invariant
manifoldsWu,s

ε can becomparedover the separatrix3. For this purpose, we introduce
the real-valued function

L : 3 → R, L(p) := Lu
1(p) − Ls

1(p) =
∑
k∈Z

Ŝ1(pk), pk = F k
0 (p), (2.7)

called theMelnikov potentialof the problem. The series above is absolutely convergent
since any orbit in the manifold3 tends top∞ at an exponential rate as|k| → ∞ and
Ŝ1(p∞) = 0. Thus,L is well-defined, and its differential gives the first order distance,
along the coordinatey in any cotangent coordinates (x, y), between the perturbed invari-
ant manifolds. This geometric interpretation is the fundamental point to find conditions
for the splitting of the separatrices.

It still remains to check the smoothness ofL on 3. It is clear thatLu,s
1 are smooth

overWu,s
0 , but since the smooth structures onWu

0, Ws
0 do not coincide,Lu

1 − Ls
1 could

be defined over the whole intersectionW but need not be smooth on the bifurcation set
Σ. Thus, it is necessary to restrict ourselves to a subset ofW where the two smooth
structures coincide, and because of this, we have defined the separatrix3 as the set
W \ Σ to get a smoothL on3.

Before stating our main analytical result, we must introduce the kind of perturbed
homoclinic orbits that can be detected by “Melnikov methods”. Aprimary homoclinic
orbit of the perturbed problem is a perturbed homoclinic orbitOε of Fε, defined for|ε|
small enough and depending in a smooth way onε. This is a perturbative definition,
since in the multi-dimensional case (contrary to the planar case, see [Wig91]), it seems
difficult to give a geometric definition. Non-primary homoclinic orbits are invisible
for the standard Melnikov techniques. (However, a new Melnikov-like theory has been
recently developed in [Rom95], to study secondary homoclinic orbits for time-periodic
perturbations of integrable planar differential equations.)

Theorem 2.1. Under the above notations and hypothesis:

(i) L is F0-invariant (i.e.,L ◦ F0 = L).

(ii) If L is not locally constant, the manifoldsWu,s
ε split for 0 < |ε| � 1, i.e., the

separatrix3 is not preserved by the perturbation.

(iii) If p ∈ 3 is a non-degenerate critical point ofL, the manifoldsWu,s
ε are transverse

along a primary homoclinic orbitOε ofFε for 0 < |ε| � 1, withO0 = (F k
0 (p))k∈Z.
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Moreover, when all the critical points ofL are non-degenerate, all the primary
homoclinic orbits arising from3 are found in this way.

(iv) LetOε be a primary homoclinic orbit such thatO0 = (F k
0 (p))k∈Z for somep ∈ 3.

Then, the homoclinic action admits the asymptotic expressionW [Oε] = W [O0] +
εL(p) + O(ε2). Given another orbitO′

ε such thatO′
0 = (F k

0 (p′))k∈Z for somep′ in
the same connected component of3 asp, the homoclinic area is given by

1W [Oε, O′
ε] = ε[L(p) − L(p′)] + O(ε2).

Proof. (i) A shift in the index of the sum does not change its value, soL is F0-invariant.
(ii) If d L is not zero, the perturbed invariant manifolds do not coincide at first order,

so they split.
(iii) This result follows directly from the geometric interpretation of the Melnikov

potential and the Implicit Function Theorem.
(iv) Let Oε = (p̂k(ε))k∈Z, pk = p̂k(0) = F k

0 (p), andvk = ( dp̂k/ dε)(0). From
Eq. (2.3), dS0 = F ∗

0 φ − φ, and dF0(pk)[vk] = vk+1 − F1(pk), we obtain:

W [Oε] =
∑
k∈Z

Sε(p̂k(ε))

=
∑
k∈Z

{S0(pk) + ε(S1(pk) + dS0(pk)[vk]) + O(ε2)}

=
∑
k∈Z

S0(pk) + ε
∑
k∈Z

{S1(pk) + φ(pk+1) [ dF0(pk)[vk]] − φ(pk)[vk]} + O(ε2)

= W [O0] + ε
∑
k∈Z

{
Ŝ1(pk) + φ(pk+1)[vk+1] − φ(pk)[vk]

}
+ O(ε2)

= W [O0] + εL(p) + O(ε2).

Finally, the asymptotic formula for the homoclinic area follows from its definition,
using (iii) of Lemma 2.5. �

Remark 2.5.The actions of homoclinic orbits arising from different connected compo-
nents of the separatrix need not be equal atε = 0, see Remark 2.1, whereas the splitting
size is of orderO(ε). Thus, it seems inappropriate to measure the splitting comparing
the action of homoclinic orbits arising from different components of3. For instance,
in the planar case with a double loop, the geometric sense of the area between primary
homoclinic orbits arising from different loops is very unclear.

Remark 2.6.If L has some non-degenerate critical point, the perturbed invariant man-
ifolds of Fε have a transverse intersection and, in particular, a topological crossing.
Thus, using some recent results contained in [BW95], the perturbed maps have positive
topological entropy, for 0< |ε| � 1.

Let us see now that the Melnikov potential is invariant under additional diffeomor-
phisms, if the family{Fε} has suitable symmetries. We recall that given a diffeomor-
phism I : P → P the family {Fε} is calledI-symmetricif Fε ◦ I = I ◦ Fε and
Fε(p∞) = I(p∞) = p∞, for all ε.

Lemma 2.6. Assume that the family{Fε} isI-symmetric, and that the symplectic poten-
tial is preserved by the symmetry:I∗φ = φ. Then, the Melnikov potentialL isI-invariant:
L ◦ I = L.



Melnikov Potential for Exact Symplectic Maps 227

Proof. Let p ∈ W = Wu,s
0 andq = I(p). Using thatF k

0 ◦ I = I ◦ F k
0 for all k ∈ Z, we

get

lim
k→∞

F k
0 (q) = lim

k→∞
I(F k

0 (p)) = I

(
lim

k→∞
F k

0 (p)

)
= I(p∞) = p∞.

This proves thatW is I-invariant. Thus, the separatrix3 also is, by the same argument
as in (ii) of Lemma 2.5, and the expressionL ◦ I makes sense on3.

FromF ∗
ε φ − φ = dSε, I∗φ = φ, andFε ◦ I = I ◦ Fε we have

d(Sε ◦ I) = I∗( dSε) = I∗F ∗
ε φ − I∗φ = F ∗

ε I∗φ − φ = F ∗
ε φ − φ = dSε.

Hence,Sε ◦ I − Sε is a constant function that evaluated atp∞ vanishes, soSε (and in
particularS1) areI-invariant.

The first order terms ofFε ◦I = I ◦Fε giveF1◦I = DI(F0)[F1]. Using this equality,
we see that the functionφ(F0)[F1] is alsoI-invariant:

φ(F0 ◦ I)[F1 ◦ I] = φ(I ◦ F0)[DI(F0)[F1]] = I∗φ(F0)[F1] = φ(F0)[F1].

Thus, the differencêS1 = S1 − φ(F0)[F1] is I-invariant, too.
Finally, L ◦ I =

∑
k∈Z(Ŝ1 ◦ F k

0 ◦ I) =
∑

k∈Z(Ŝ1 ◦ I ◦ F k
0 ) =

∑
k∈Z(Ŝ1 ◦ F k

0 ) = L.
�

As we have seen, the differential ofL measures the distance between invariant mani-
folds and thusM = dL is called theMelnikov functionof the problem. It can be also
constructed in the non-symplectic case, although it is not longer the differential of a
function. We recall now this construction, but we will not go further in this direction,
since the non-symplectic framework is out of the spirit of this paper. For the sake of
simplicity, we only considerP = R2n.

Assume that a diffeomorphismF0 : R2n → R2n has a separatrix3 andn first
integralsH1, . . . , Hn, independent over the separatrix (but not necessarily in involution,
since this concept requires a symplectic structure), and letFε = F0 + εF1 + O(ε2) be a
general perturbation ofF0.

Given p ∈ 3, let Πp be then-dimensional linear variety spanned by the pointp
and the vectors∇Hj(p) (1 ≤ j ≤ n). SinceΠp is transverse to3 at p, there exist
pu,s(ε) ∈ Wu,s

ε ∩ Πp, depending in a smooth way onε, such thatpu,s(0) = p. A natural
measure of the distance between the invariant manifolds is given by the difference of
first integrals (“energies”)

1(p, ε) = H(pu(ε)) − H(ps(ε)) = εM (p) + O(ε2), H = (H1, . . . , Hn)>,

whereM : 3 → Rn is the vector-valued Melnikov function of the problem. It is easy
to generalize (actually, rewrite) the proof given in [DR96] for the planar case to see that

M (p) =
∑
k∈Z

DH(pk+1)[F1(pk)], pk = F k
0 (p). (2.8)

Remark 2.7.Some similar results can be found in [BGK95], although with a less geo-
metrical (and more functional) setting. They only can prove that anecessarycondition
for the existence of primary homoclinic orbits is the existence of zeros forM . Our
geometrical construction shows that the existence of non-degenerate zeros forM is a
sufficientcondition for the existence of transverse primary homoclinic orbits, even in the
non-symplectic case. However, it should be noted that [BGK95] deals with a broader
range of maps; for example, the existence of first integrals is not needed.
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2.4. Twist maps.Now, we present another formulation of the method that is useful
for the physical problems that verify the twist condition, since the formula for the
Melnikov potential is simpler. For more details on twist maps, the reader is referred
to [Gol94a, Gol94b, BG96]. We follow closely the notations and definitions of the later
reference.

An exact symplectic twist map(or simply, twist map)F is a map from a connected
subsetU of the cotangent bundle of a manifoldM (which can be non-compact) intoU ,
which comes equipped with a twist generating functionL : M × M → R that satisfies

F ∗(y dx) − y dx = Y dX − y dx = dL(x, X), (X, Y ) = F (x, y),

where (x, y) are any cotangent coordinates onT ∗M, that is,x are coordinates onM,
extended to coordinates (x, y) in the obvious way. The canonical formφ0 on T ∗M
reads asφ0 = y dx in cotangent coordinates. This can also be written in a coordinate free
manner. GivenL, one can retrieve the map (at least implicitly) fromy = −∂1L(x, X),
andY = ∂2L(x, X). This can be done globally (i.e.,U = T ∗M) only whenM is
diffeomorphic to a fiber ofT ∗M, for example whenM is the covering space ofTn or
a manifold of constant negative curvature.

The formF ∗φ0−φ0 is exact, soF is exact. LetS : U → R be the generating function
of F , in the geometric sense of the previous definitions. Then,S(x, y) = L(x, X). The
fact thatS can be written in terms of old and new coordinates: (x, X), is the twist
condition. In a coordinate free formulation it reads as

S(p) = L(π(p), π(F (p))), ∀p ∈ U, (2.9)

whereπ : T ∗M → M is the canonical projection.
Now, we carry out the generalization of (2.9) for families of twist maps, depending

(in a smooth way) on a small parameterε. That is, we search for the relationship between
the first order variations inε of the twist and geometric generating functions.

Lemma 2.7. Let {Fε} be a smooth family of twist maps. LetLε (resp. Sε) be the
twist (resp. geometric) generating function ofFε. SetLε = L0 + εL1 + O(ε2) and
Sε = S0 + εS1 + O(ε2). Then,

Ŝ1(p) = L1(π(p), π(F0(p))), ∀p ∈ U, (2.10)

whereŜ1 is the function given in (2.6).

Proof. Fix p ∈ U and let (x, y) be cotangent coordinates in a neighbourhood ofp. If
we denote (Xε, Yε) = Fε(x, y) = (X0, Y0) + ε(X1, Y1) + O(ε2), theO(ε) terms of the
equalitySε(x, y) = Lε(x, Xε) give

S1(x, y) = L1(x, X0) + ∂2L0(x, X0)X1 = L1(x, X0) + Y0X1.

Thus, from the definition of̂S1 and usingφ0 = y dx we getŜ1(x, y) = L1(x, X0). �

Assume now thatF0 has a hyperbolic fixed pointp∞ with a separatrix3 ⊂ U

and thatFε : U → U are exact diffeomorphisms. The choicêS1(p∞) = 0 reads as
L1(x∞, x∞) = 0 in the twist frame, wherex∞ = π(p∞). From Eq. (2.10), it follows
directly that the Melnikov potential (2.7) can be written as

L(p) =
∑
k∈Z

L1(xk, xk+1), xk = π(pk), pk = F k
0 (p). (2.11)
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This formula is simpler than (2.7), since only the first order term of the twist generating
functionLε appears in it.

2.5. Hamiltonian maps.One of the main ideas in dynamical systems is to study maps in
order to understand flows. For example, the description of Hamiltonian systems can be
carried out considering the time-T maps of their flows, which are exact maps. Thus, it is
interesting to present the previous results from the Hamiltonian point of view. Besides,
this allows us to compare the discrete and continuous frameworks.

Recall that anon-autonomous Hamiltonian systemover an exact symplectic manifold
(P, ω = − dφ) is given by a real-valued function (called theHamiltonian) H : P ×R →
R. Then, the equations of motion have the form ˙p = XH (p, t), p ∈ P, t ∈ R, where
for every fixedt, XH (·, t) is the Hamiltonian field generated byH(·, t): dH(p, t) =
ω(p)(XH (p, t), ·), ∀p ∈ P. In symplectic coordinates (x, y) on P, we haveφ = y dx,
ω = dx ∧ dy and the Hamiltonian equations take the canonical form

ẋ =
∂H

∂y
(x, y, t), ẏ = −∂H

∂x
(x, y, t).

It is clear thatXH does not change if a function depending only on time is added to
the HamiltonianH. We will restrict ourselves to Hamiltonians such that generate a
Hamiltonian flow, i.e., all the trajectories ofXH are defined for all time.

A Hamiltonian mapF is the time-T map of some HamiltonianH and for some
T > 0, i.e.,F = 9T : P → P, where9t(p) stands for the solution of the Hamiltonian
equations ofH, with initial condition p at t = 0. Obviously, Hamiltonian maps are
diffeomorphisms isotopic to the identity. Besides, they are exact over exact manifolds;
if i(X)ω stands for the inner product of a formω by a fieldX, and8 : P ×R → P ×R
is given by8(p, t) = (9t(p), t), we get

F ∗φ − φ = (9T )∗φ − (90)∗φ =
∫ T

0

d
dt

[(9t)∗φ] dt

=
∫ T

0
8∗{i(XH ) dφ + d(i(XH )φ)} dt = d

[∫ T

0
8∗(i(XH )φ − H) dt

]
.

Thus, the generating functionS of F is given by

S(p) =
∫ (F (p),T )

(p,0)
λ, λ = φ − H dt, (2.12)

where the one-formλ is the so-calledPoincaŕe-Cartan invariant integral, defined on
the (extended) phase spaceP × R, and the path of integration is the trajectory8(p, t),
0 ≤ t ≤ T , of the (extended) flow. Now, we carry out the generalization of Eq. (2.12)
for families of Hamiltonian maps, depending (in a smooth way) on a small parameter
ε. That is, we look for the relationship between the first order variations inε of the
Hamiltonians and the generating functions of their Hamiltonian maps.

Lemma 2.8. Let Hε be a smooth family of non-autonomous Hamiltonians, and9t
ε(p)

the solution of its Hamiltonian equations with90
ε(p) = p. LetFε andSε be the Hamil-

tonian map9T
ε and its generating function, respectively. SetHε = H0 + εH1 + O(ε2)

andSε = S0 + εS1 + O(ε2). Then
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Ŝ1(p) = −
∫ T

0
H1(9t

0(p), t) dt, ∀p ∈ P, (2.13)

whereŜ1 is the function given in (2.6).

Proof. Let γ(p, ε) be the path in the (extended) phase space (9t
ε(p), t), 0 ≤ t ≤ T . Set

Aε(p, t) = φ(9t
ε(p))[9̇

t
ε(p)] − H0(9t

ε(p), t), where the dot means the derivative with
respect to the timet. We will use through the proof the following notations for the first
variation of the considered objects:

F1(p) =
∂Fε

∂ε
(p)

∣∣∣∣
ε = 0

, 9t
1(p) =

∂9t
ε

∂ε
(p)

∣∣∣∣
ε = 0

, A1(p, t) =
∂Aε

∂ε
(p, t)

∣∣∣∣
ε = 0

.

Besides, we will prove below that

A1(p, t) = Ḃ1(p, t), B1(p, t) = φ(9t
0(p))[9t

1(p)]. (2.14)

FromSε(p) =
∫

γ(p,ε)[φ − Hε dt], A1 = Ḃ1, 9T
1 = F1 and90

1 ≡ 0, we get

Sε(p) =
∫

γ(p,ε)
[φ − H0 dt] − ε

∫
γ(p,ε)

H1 dt + O(ε2)

=
∫ T

0
Aε(p, t) dt − ε

∫ T

0
H1(9t

ε(p), t) dt + O(ε2)

= S0(p) + ε

∫ T

0
Ḃ1(p, t) dt − ε

∫ T

0
H1(9t

0(p), t) dt + O(ε2)

= S0(p) + εφ(F0(p))[F1(p)] − ε

∫ T

0
H1(9t

0(p), t) dt + O(ε2),

and the termsO(ε) in this equation give (2.13).
To end the proof, it only remains to check that (2.14) holds. For simplicity, we

prove it using symplectic coordinates. Givenp ∈ P andt ∈ R, let (x, y) be symplec-
tic coordinates in a neighbourhood of9t

0(p). We denote the coordinates of9t
ε(p) by

(xε, yε) = (x0, y0) + ε(x1, y1) + O(ε2). Thus,

Aε(p, t) = yεẋε − H0(xε, yε, t)

= A0(p, t) + ε[y0ẋ1 + y1ẋ0 − ∂xH0(x0, y0, t)x1 − ∂yH0(x0, y0, t)y1] + O(ε2)

= A0(p, t) + ε d[y0x1]/ dt + O(ε2),

where we have used the canonical form of Hamiltonian equations in symplectic coordi-
nates. Finally, since in these coordinatesB1 = y0x1, Eq. (2.14) follows. �

Henceforth, we restrict ourselves to time-periodic HamiltoniansHε, with T their period.
Assume now thatF0 has a hyperbolic fixed pointp∞ with a separatrix3. In the

Hamiltonian frame, the choicêS1(p∞) = 0 becomes
∫ T

0 H1(9t
0(p∞), t) dt = 0. Indeed,

it is possible (and more usual) to determine the Hamiltonian in such a way that it verifies
the stronger conditionH1(9t

0(p∞), t) ≡ 0. From Eq. (2.13), it follows easily that the
Melnikov potential (2.7) can be written as

L(p) = −
∫

R
H1(9t

0(p), t) dt, (2.15)
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since9t
0(F k

0 (p)) = 9t+kT
0 (p), for all integerk and realt, andH1 isT -periodic int. (This

is the reason to consider only periodic Hamiltonians.)
We want to emphasize that the Hamiltonian version of the Melnikov potential can be

deduced directly in the continuous frame, without appealing to discrete tools. However,
taking into account the theory already developed in this paper, it has been easier to work
directly on Hamiltonian maps.

Remark 2.8.Usually, the unperturbed HamiltonianH0 is time independent. In fact, in
most of the applications it is Liouville integrable.

Remark 2.9.Using the Lagrangian formalism instead of the Hamiltonian one, a similar
formula to (2.15) can be obtained forLagrangian maps(i.e., time-T maps of some
Euler-Lagrangian flow), but with−H1 replaced by the first order inε of the Lagrangian.

2.6. Lower Bounds.Along this subsection, we will assume without explicit mention
that: (a) the invariant manifolds are doubled, that is,Wu

0 = Ws
0, and (b) the bifurcation

set is minimal, i.e.,Σ = {p∞}. (Remember that the hyperbolic fixed pointp∞ is always
contained in the bifurcation setΣ, see (i) of Lemma 2.5.) These hypotheses are equivalent
to require that the separatrix is3 = Wu,s

0 \{p∞}. We will say that the invariant manifolds
arecompletely doubledin this case. Besides, we also assumen > 1, to avoid trivial
degenerate cases. (In particular, the separatrix is connected.)

To avoid a tedious exposition, several standard computations about Betti numbers
are omitted. The expert reader in differential and algebraic topology will be able to fill
in the gaps without difficulty, and we prefer to give the appropriate references for the
novice one, instead of writing here a treatise. Thus, for a general discussion of Morse
theory we refer to [Hir76], and for thorough discussions of homology the reader is urged
to consult [Swi75, GH81].

The quotient manifold3∗ := 3/F0, consisting of unperturbed homoclinic orbits of
3, will be called thereduced separatrix(of the unperturbed map). It is shown below that
3∗ is a compact manifold without boundary. Since the Melnikov potentialL is invariant
underF0, we can consider it defined over the reduced separatrix. (The new function is
calledL, too.) We search for lower bounds of the number of homoclinic orbits and the
main idea is to apply Morse’s inequalities to the mapL : 3∗ → R.

The presence of symmetries and/or reversions usually leads to better results con-
cerning the existence of homoclinic orbits. Let us introduce the (anti)symmetries that
allow us to improve the lower bounds. We will say that the family{Fε} is antisymmetric
if {Fε} is I-symmetric, for some involutionI preserving the symplectic potential such
thatDI(p∞) = −Id. As it is well-known, involutions are locally conjugate to their linear
parts at fixed points. Thus, there exist coordinatesz = (z1, . . . , z2n) in some neighbour-
hood ofp∞ such thatI(z) = −z, that is, the mapsFε areodd in some coordinates
defined close top∞. The definition above of antisymmetric maps is intended to translate
the main features of odd maps on (R2n, dx ∧ dy) to maps on general exact manifolds.

Under these hypotheses, Lemma 2.6 claims that the Melnikov potential isI-invariant.
Thus, we can considerL defined over the quotient manifold3∗

I := 3/{F0, I}, which
has a richer topological structure than3∗, in the sense that Morse theory gives better
lower bounds of the number of homoclinic orbits.

We recall that a real-valued smooth function over a compact manifold without bound-
ary is called aMorse functionwhen all its critical points are non-degenerate. It is very
well-known that the set of Morse functions is open and dense in the set of real-valued
smooth functions [Hir76, p. 147]. Thus, to be a Morse function is a condition of generic
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position. Now we can state a result about the number of primary homoclinic orbits that
persist under a general perturbation. In Sect. 3, we will verify the optimality of this result
for specific examples.

Theorem 2.2. Assume thatL : 3∗ → R is a Morse function. Then the number of
primary homoclinic orbits is at least4. If the family{Fε} is antisymmetric, there exist at
least2n antisymmetric pairs of primary homoclinic orbits, and so at least4n primary
homoclinic orbits.

Proof. From the celebrated Morse inequalities, a Morse function over an-dimensional
compact manifold without boundaryX has at leastSB(X; R) :=

∑n
q=0 βq(X; R) critical

points, whereβq(X; R) are theR-Betti numbersof X andR is any field. Let us recall
that βq(X; R) is the dimension of theq-th singular homologyR-vector space ofX,
notedHq(X, R).

In the antisymmetric case,I2(p) = p 6= I(p), for all p ∈ 3. Thus (3∗, Π) is a
covering space of3∗

I of two sheets, whereΠ : 3∗ → 3∗
I is the canonical projection

onto the quotient of3∗ by the antisymmetryI. In particular,L : 3∗
I → R is a Morse

function if and only if the same happens toL : 3∗ → R, and each critical pointQ of L :
3∗

I → R corresponds to an antisymmetric pair of critical pointsΠ−1(Q) = {O, I(O)}
of L : 3∗ → R, for some unperturbed homoclinic orbitO ∈ 3∗.

Now the theorem follows from the formulaeSB(3∗; Z2) = 4 andSB(3∗
I ; Z2) = 2n.

The rest of the proof is devoted to check that these formulae hold.
Since Betti numbers are topological invariants, we look for topological spaces home-

omorphic to3∗ and3∗
I whose homologies can be easily computed. To accomplish it,

let us consider the restrictionfu,s of F0 toWu,s
0 , and denoteBu,s = Dfu,s(p∞). SinceF0

is symplectic, det(Bu) · det(Bs) = 1, so det(Bu) and det(Bs) have the same sign. When
these signs are positive (resp. negative) the mapF0 preserves (resp. reverses) the orien-
tation of3, and we denote byσ = + (resp.σ = −) the so-calledindex of orientation. In
the following lemma it is shown that the topological classification offu only depends
onσ. This will allow us to classify3∗ and3∗

I just in terms ofσ.

Lemma 2.9. LetA± : Rn → Rn be the linear isomorphisms given by:

A±(x) = 2x±, x = (x1, . . . , xn), x± = (±x1, x2, . . . , xn).

Then, there exists a global topological conjugation betweenfu andAσ, that is, a home-
omorphismg : Rn → Wu

0 such thatfu ◦ g = g ◦ Aσ. In the antisymmetric case, the
conjugationg can be chosen in such a way thatg(−x) = I(g(x)).

Proof. We note thatp∞ is a hyperbolic fixed point offu, and all the eigenvalues ofBu

have modulus greater than one. From [PM82, Th. 5.5, II§5], we get thatfu is locally
conjugated atp∞ to A+ (resp.A−) in the orientation-preserving (resp. orientation-
reversing) case. This local conjugation can be extended to a global one, using thatfu

andAσ are global repulsors. The existence of an antisymmetric conjugation (certainly,
a very intuitive fact) follows the same lines. We omit the details. �

Thanks to Lemma 2.9, we now easily introducetime-energy coordinates(t, a) on3.
First, we give some notations. We denote bySn, Tn, andPn, then-dimensional sphere,
then-dimensional torus, and then-dimensional projective space, respectively. Besides,
we introduce then-dimensional manifold

Xn := R × Sn−1,
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and the homeomorphismη : Xn → Rn \ {0}, η(t, a) = 2ta, whose inverse is given
by η−1(x) = (t̂(x), â(x)) = (log2 |x| , x/ |x|). Then,t̂(A±x) = t̂(2x±) = t̂(x) + 1 and
â(A±x) = â(2x±) = (â(x))±, soA± ◦ η = η ◦ ρ±, where the mapρ± : Xn → Xn is

ρ±(t, a) = (t + 1, a±), a = (a1, . . . , an), a± = (±a1, a2, . . . , an).

Thus,F0 : 3 → 3 andρσ : Xn → Xn are topologically conjugated byg ◦ η, whereg
is the conjugation given in Lemma 2.9. This proves that3∗ = 3/F0 andXn

σ := Xn/ρσ

are homeomorphic. Hence,SB(3∗; Z2) = SB(Xn
σ; Z2).

Concerning the antisymmetric case, we note thatη ◦  = −η, where

 : Xn → Xn, (t, a) = (t, −a).

Thus, the pairs of mapsF0, I : 3 → 3 andρσ,  : Xn → Xn aresimultaneouslytopo-
logically conjugated byg ◦ η. This proves that3∗

I = 3/{F0, I} andYn
σ := Xn/{ρσ, }

are homeomorphic. Hence,SB(3∗
I ; Z2) = SB(Yn

σ; Z2).
Consequently, it only remains to prove thatSB(Xn

±; Z2) = 4 andSB(Yn
±; Z2) = 2n.

First, we consider the caseσ = +. In this case,Xn
+ = S1×Sn−1 andYn

+ = S1×Pn−1,
sinceS1 = R/{t = t + 1} andPn−1 = Sn−1/{a = −a}. Therefore, from the well-known
Z2-homologies

Hq(Sm; Z2) ∼=
{

Z2 if q = 0, m
0 otherwise Hq(Pm; Z2) ∼=

{
Z2 if 0 ≤ q ≤ m
0 otherwise ,

and Künneth’s FormulaHq(X × Y ; Z2) ∼= ⊕q
p=0 Hp(X; Z2) ⊗ Hq−p(Y ; Z2), we get

Hq(X2
±; Z2) ∼=

Z2 if q = 0, 2
Z2 ⊕ Z2 if q = 1
0 otherwise

, Hq(Xn
±; Z2) ∼=

{
Z2 if q = 0, 1, n − 1, n
0 otherwise

for all n > 2, and

Hq(Yn
±; Z2) ∼=

Z2 if q = 0, n
Z2 ⊕ Z2 if q = 1, . . . , n − 1
0 otherwise

,

for all n > 1. Adding dimensions, we getSB(Xn
+ ; Z2) = 4 andSB(Yn

+ ; Z2) = 2n.
Finally, a standard Mayer-Vietoris sequence argument shows that theZ2-homologies

of Xn
σ andYn

σ do not depend onσ, soSB(Xn
−; Z2) = 4 andSB(Yn

−; Z2) = 2n. �

Remark 2.10.Since the caseσ = − is more intricate, one could believe that it is better
to replace the maps with their squares to getσ = +. However, it should be noted that
the lower bounds obtained in this way are worse since a single homoclinic orbit consist
of two different ones for the square map: one gets 2 and 2n, instead of 4 and 4n, as
the number of homoclinic orbits. Thus, the caseσ = − deserves its own separate study.
We also remark that this case cannot appear in the continuous frame, since the maps
generated by a flow are isotopic to the identity.
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3. Standard-like Maps

As a first example we deal with standard-like maps over the symplectic manifold (P, ω) =
(R2n, dx ∧ dy), n > 1, which are ones of the most celebrated examples of twist maps.
Among them, we consider perturbations of maps withcentral symmetry, since then the
dynamics over the unperturbed separatrix is essentially one-dimensional and gives rise to
explicit computations, as already announced in [DR97c]. In the sequel, givenx, y ∈ Rn,
x>y and|x| stand for the scalar product

∑n
i=0 xiyi and the Euclidean norm

√
x>x.

3.1. Central standard-like maps.Let V : Rn → R be a function. The mapF : R2n →
R2n with equationsF (x, y) = (y, −x + ∇V (y)) is called thestandard-like mapwith
potentialV . It is immediate to check thatL(x, X) = −x>X +V (X) is a twist generating
function ofF , soF is a twist map. WhenV is even,F is odd.

It is worth mentioning that standard-like maps are also expressed in the literature
asF (x′, y′) = (x′ + y′ + ∇U (x′), y′ + ∇U (x′)), for some functionU . The symplectic
linear change of variables (x′, y′) = (y, y−x) is the bridge between these two equivalent
formulations, and the relation between the potentials is given byV (y) = |y|2 + U (y).
Thus, it makes no difference which formulation is used, since we deal with symplectic
invariants.

A central standard-like mapis a standard-like map with a central potential, i.e.,
V (y) = Vc(|y|2) for some functionVc : [0, ∞) → R. Central standard-like maps are odd
and have the “angular momenta”Aij(x, y) = xiyj − xjyi as first integrals. We denote
by An+1

0 = {(x, y) : Aij(x, y) = 0} the (n + 1)-dimensional manifold inR2n of zero
angular momenta. Clearly,An+1

0 = {(qa, pa) : a ∈ Sn−1, (q, p) ∈ R2}.
LetF be a central standard-like map with potentialV , andf : R2 → R2 the standard-

like area preserving map defined byf (q, p) = (p, −q + 2V ′
c (p2)p). We will call f the

reduced map(in An+1
0 ) of F . This definition becomes clear when it is noted that

f (q, p) = (Q, P ) ⇐⇒ F (qa, pa) = (Qa, Pa), ∀(q, p) ∈ R2, a ∈ Sn−1. (3.1)

Our interest in central standard-like maps is motivated by the following lemma,
which follows easily from (3.1).

Lemma 3.1. LetF be a central standard-like map andf its reduced map. Assume that
Spec[Df (0)] = {e±h}, for someh > 0, and hence that the origin is a hyperbolic fixed
point off . Then:

(i) The origin is a hyperbolic fixed point ofF . Moreover,Spec[DF (0)] = {e±h}.

(ii) Suppose now thatf has a separatrix0. Then, the invariant manifolds ofF are
completely doubled, giving rise to the separatrix

3 = {(qa, pa) : (q, p) ∈ 0, a ∈ Sn−1}.

(iii) Let σ = (q, p) : R → 0 be a natural parametrizationof the separatrix0, i.e.,
σ is a diffeomorphism that satisfiesf (σ(t)) = σ(t + h), for all t ∈ R. Then, the
diffeomorphismλ : R × Sn−1 → 3 defined byλ(t, a) := (q(t)a, p(t)a) satisfies

F (λ(t, a)) = λ(t + h, a), ∀t ∈ R, a ∈ Sn−1. (3.2)
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We note thatf is odd, so when it has a separatrix, it has in fact a double (symmetric)
loop.

The separatrix3 is analytically diffeomorphic toR × Sn−1, by means ofλ. Thus,
from now on, the functions defined over3 will be expressed as functions of the time-
energy coordinates (t, a) ∈ R × Sn−1.

Now, we introduce the McLachlan map [McL94] as the central standard-like map
with potentialV0(y) = µ ln(1 + |y|2) (µ ∈ R). It has the expression

F0(x, y) =

(
y, −x +

2µy

1 + |y|2
)

. (3.3)

It is easy to check that forµ > 1 the reduced map of (3.3) – usually called the
McMillan map – has a separatrix to the origin. (See Fig. 2 for a representation of the
invariant curves.) In addition, the following natural parametrization of its separatrix
can be found in [GPB89, DR96]:σ(t) = (q(t), p(t)), whereq(t) = p(t − h) andp(t) =
sinh(h) sech(t). Thus, using Lemma 3.1, the McLachlan map has its invariant manifolds
completely doubled, and the functionλ given by

λ(t, a) = (p(t − h)a, p(t)a), p(t) = sinh(h) sech(t), cosh(h) = µ(> 1), (3.4)

verifies Eq. (3.2).

Remark 3.1.The McLachlan map hasn first integralsHj (j = 1, . . . , n), independent
over its separatrix:H1(x, y) = |x|2 + |y|2 + |x|2 |y|2 − 2µx>y, and the angular momenta
Hj = A1j (j = 2, . . . , n). This is not important for our purposes, but it would be essential
for the study of non-symplectic perturbations with the Melnikov function (2.8).

3.2. Standard-like perturbations.Let us consider a general perturbation of (3.3) that
preserves the standard character, i.e.,

Fε(x, y) =

(
y, −x +

2µy

1 + |y|2 + ε∇V (y)

)
, µ > 1, ε ∈ R, (3.5)

whereV : Rn → R. We determineV by imposingV (0) = 0. Then, the twist generating
function ofFε that vanishes at the origin isLε = L0 + εL1, whereL0(x, X) = −x>X +
µ ln(1 + |X|2) andL1(x, X) = V (X).

Using formulae (2.7), (3.2) and (3.4), the Melnikov potential of the problem is

L : R × Sn−1 → R, L(t, a) =
∑
k∈Z

V (p(t + hk)a), p(t) =
sinh(h)
cosh(t)

. (3.6)

Obviously,L is h-periodic int, so we can considert defined moduloh andL as a
function overS1 × Sn−1. Henceforth it will be assumed thath > 0, cosh(h) = µ.

Now, we focus our attention on entire perturbations, i.e., maps (3.5) withV an entire
function. The result about the splitting in this case is the following one.

Theorem 3.1. If V is entire but not identically zero, then the manifoldsWu,s
ε of the

map (3.5) split, for0 < |ε| � 1.



236 A. Delshams, R. Raḿırez-Ros

Proof. By Theorem 2.1, it is sufficient to check that the Melnikov potential (3.6) is not
constant.

First, we note that the only singularities ofp(t) are simple poles at any pointtp ∈
π i/2 + π iZ, and therefore it is analytic attp + hk for k ∈ Z \ {0}. Now, letVa, fa :
R → R be the functions defined byVa(t) := V (ta) andfa(t) = Va(p(t)) = V (p(t)a)
(a ∈ Sn−1). SinceV is a non-zero entire function, there existsâ ∈ Sn−1 such that
V

â
is a non-zero entire function. Thus,f

â
has non-removable singularities at any point

tp ∈ π i/2 + π iZ, and however it is analytic attp + hk for k ∈ Z \ {0}. Consequently,
L

â
(t) := L(t, â) =

∑
k∈Z f

â
(t + kh) has a non-removable singularity at any point in

π i/2 +hZ + π iZ. This proves thatL is not constant. �
Remark 3.2.The assumption of the entire function onV has only been used to ensure
that there existtp ∈ π i/2+π iZ andâ ∈ Sn−1, such thatf

â
(t) has an isolated singularity

at tp, and however is analytic ontp + hk for k ∈ Z \ {0}. Thus, this assumption onV
can be relaxed, although the entire case is the simplest case to study.

We observe that for evenV , the mapsFε are odd and hence the family{Fε} is
antisymmetric. Therefore, Theorem 2.2 gives the following corollary.

Corollary 3.1. Assume that the functionL given in (3.6) is a Morse function. Then, the
map (3.5) has at least 4 primary homoclinic orbits, for0 < |ε| � 1. If, in addition, the
potentialV is an even function, there exist at least2n antisymmetric pairs of primary
homoclinic orbits, and so at least4n primary homoclinic orbits.

3.3. Polynomial perturbations: Explicit computations.We show here that explicit com-
putations of Melnikov potentials can be performed, for any polynomial perturbations of
the McLachlan map, i.e., maps (3.5) withV (y) =

∑N
`=1 V`(y), for some finiteN , where

V` denotes a homogeneous polynomial of order`.
In this case, the Melnikov potential (3.6) turns out to be a linear combination of

products of certain elliptic functionsΣ` in the variablet ∈ C (of periodsh, 2π i) and
the homogeneous polynomialsV` restricted toSn−1:

L(t, a) =
N∑
`=1

sinh`(h)V`(a)Σ`(t), Σ`(t) =
∑
k∈Z

[sech(t + hk)]` . (3.7)

Using theSummation Formulaof the Appendix, all the elliptic functionsΣ` (and
consequently, the Melnikov potentials) can be explicitly computed. However, using the
Summation Formula to findΣ` for big values of̀ is rather tedious. It is better to use
an idea contained in [GPB89]. The point is to note that the odd (respectively, even)
powers of the hyperbolic function sech can be expressed as a linear combination, with
rational coefficients, of the even derivatives of sech (respectively, sech2). This allows us
to write Σ` as a linear combination, with rational coefficients, of the even derivatives
of Σ1 (if ` is odd) orΣ2 (if ` is even). For example, sech3 = (sech− sech′′)/2 and
sech4 = [4 sech2 −(sech2)′′]/6, so Σ3 = (Σ1 − Σ′′

1 )/2 andΣ4 = (4Σ2 − Σ′′
2 )/6.

Consequently, it is enough to computeΣ` for ` = 1, 2. This is done in Lemma A.1 (see
the Appendix) and the result is:

Σ1(t) =

(
2K2π

h

) [√
m2π cn

(
4K2πt

h

∣∣∣∣ m2π

)
+ dn

(
4K2πt

h

∣∣∣∣ m2π

)]
,

Σ2(t) =

(
2Kπ

h

)2 [
E′

π

K ′
π

− 1 + dn2
(

2Kπt

h

∣∣∣∣ mπ

)]
,
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where, if K(m) andE(m) are the elliptic integrals of the first and second kind, the
parameterm = mT (T = π, 2π) of the Jacobian elliptic functions is determined by
the equationK(1 − mT )/K(mT ) = T/h; andKT = K(mT ), K ′

T = K(1 − mT ),
E′

T = E(1−mT ). It is equivalent to chooseq = qT = e−πT/h as the nome of the elliptic
functions. For the notations about elliptic functions we refer again to the Appendix.

Assume now thatV = V2, i.e.,V is a quadratic form or, in other words, the perturba-
tion∇V is linear. We can writeV (y) = y>By, for some symmetricn×n matrixB. Then,
there exists an orthogonal matrixQ = (q1 · · · qn) such that diag(b1, . . . , bn) = Q>BQ,
wherebi are the eigenvalues ofB andqi are their respective (normalized) eigenvectors.

Proposition 3.1. Supposedet(B) 6= 0 and thatB does not have multiple eigenvalues.
Then:

1. The invariant manifoldsWu,s
ε are transverse along exactly4n primary homoclinic

orbits Oσ,±i(ε) (σ ∈ {0, 1}, i ∈ {1, . . . , n}), for 0 < |ε| � 1. These perturbed
homoclinic orbits are created from the unperturbed ones

Oσ,±i(0) =
(
λ

(
σh/2 +kh, ±qi

))
k∈Z , σ ∈ {0, 1}, i ∈ {1, . . . , n}.

2. The homoclinic area between the primary homoclinic orbitsOσ,±i(ε) andOτ,±j(ε)
is given by the asymptotic expression

1W
[Oσ,±i(ε), Oτ,±j(ε)

]
= ε1σ,τ,i,j + O(ε2),

where

1σ,τ,i,j = 1σ,τ,i,j(h) = sinh2(h)(2Kπ/h)2
[
biδσ − bjδτ

]
,

with δ0 = E′
π/K ′

π andδ1 = E′
π/K ′

π − mπ.

Proof. We note thatQ(Sn−1) = Sn−1, so we can perform the change of variables
a ↔ Qa in Sn−1 and then,V (Qa) =

∑n
i=1 bi(ai)2, wherebi 6= 0, for all i, andbi 6= bs,

for all i 6= s. It is easy to check that the only critical points of the restriction ofV to
Sn−1 are{±qi : 1 ≤ i ≤ n}, all of them being non-degenerate. Moreover, from the
properties of the Jacobian elliptic function dn(u|m), the real critical points ofΣ2 are
{kh/2 : k ∈ Z}, that are also non-degenerate. Consequently,L is a Morse function over
(R/hZ) × Sn−1 and its critical points are (σh/2, ±qi), for σ ∈ {0, 1}, i ∈ {1, . . . , n}.
Now the first part of the proposition follows from Theorem 2.1.

For the second part, it is enough to observe that

1W
[Oσ,±i(ε), Oτ,±j(ε)

]
= ε[L(σh/2, ±qi) − L(τh/2, ±qj)] + O(ε2),

and L(σh/2, ±qi) = sinh2(h)V (±qi)Σ2(σh/2) = sinh2(h)bi(2Kπ/h)2δσ, where we
have used that dn(0|m) = 1 and dn(K|m) =

√
1 − m. �

Finally, we study the linear potentials (constant perturbations∇V ), that is,V = V1.
Thus,V (y) = b>y, for some vectorb ∈ Rn \ {0}, and the critical points ofV in Sn−1

are±q, whereq = b/ |b|. Of course, they are non-degenerate. Then, using the same
arguments as in the proof of the preceding proposition, we get the following result.
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Proposition 3.2. With the previous notations and assumptions:

1. The invariant manifoldsWu,s
ε are transverse along exactly4 primary homoclinic

orbits,Ô±σ(ε) (σ ∈ {0, 1}), for 0 < |ε| � 1. These perturbed homoclinic orbits are
created from the unperturbed ones

Ô±σ(0) =
(
λ(σh/2 +kh, ±q)

)
k∈Z , σ ∈ {0, 1}.

2. The homoclinic area between the primary homoclinic orbitsÔ±σ(ε) andÔ±τ (ε) is
given by the asymptotic expression

1W
[
Ô±σ(ε), Ô±τ (ε)

]
= ε1̂±σ,±τ + O(ε2),

where

1̂±σ,±τ = 1̂±σ,±τ (h) = sinh(h) |b| (2K2π/h)
[
δ̂±σ − δ̂±τ

]
,

with δ̂±σ = ±δ̂σ, (σ ∈ {0, 1}), andδ̂0 = 1 +
√

m2π, δ̂1 = 1− √
m2π.

The conditions det(B) 6= 0, B without multiple eigenvalues (for the quadratic po-
tentials) andb 6= 0 (for the linear ones) are the conditions of generic position forL to
be a Morse function. The conditionB without multiple eigenvalues is equivalent to the
complete breakdown of the central symmetry.

The examples of this subsection show that the lower bounds on the number of
homoclinic orbits provided by Theorem 2.2 are optimal.

3.4. Polynomial perturbations: weakly hyperbolic cases.It is a very well-known fact
that the splitting size for analytic area preserving maps in the plane is exponentially
small in the hyperbolicity parameterh, for families of maps which degenerate to the
identity whenh = 0 [FS90]. Here, e±h stands for the eigenvalues of the differential of
the perturbed map on the perturbedweaklyhyperbolic fixed point. Then, there arises the
natural question about whether a similar result holds for analytic and symplectic maps
in higher dimensions. We show here some results that lead us to believe that the answer
is affirmative.

For the sake of brevity, we restrict ourselves to the caseV (y) = y>By, but the
same study can be carried out for any concrete polynomial perturbation. Using that
qπ = e−π2/h and the formula

√
2Km1/2/π = 2

∑
k≥0 q(k+1/2)2 [WW27, p. 479], we get

10,1,i,i(h) = 16π2bih
−2 sinh2(h)e−π2/h

∑
k≥0

exp[−π2k(k + 1)/h]


4

.

Thus, the homoclinic area betweenO0,±i(ε) andO1,±i(ε) (i ∈ {1, . . . , n}), is a priori
exponentially small inh. A priori means that the first order term inε is exponentially small
in h. Of course, this does not imply that the higher order terms are also exponentially
small inh. All the other homoclinic areas are not a priori exponentially small, or are
trivially zero because of the odd character ofFε.

It is important to remark that this is only a partial result: we have assumed thath is
small enough, butfixed, andε → 0. If ε andh tend simultaneously to zero, then one
is confronted with the difficult problem of justifying that some errors that seem to be
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O(ε2) can be neglected in front of the main term that isO(e−π2/h). Thus, the question
is whether some asymptotic formulae like

1W
[O0,±i(ε), O1,±i(ε)

] ∼ ε10,1,i,i(h) ∼ 16π2biεe−π2/h,

hold, whenε andh tend to zero in any independent way. At the present moment, we do
not have an analytical proof of these asymptotic formulae, but, concerning the planar
case (n = 1), in [DR97a] we have succeeded in proving that the Melnikov method gives
the correct asymptotic exponentially small behaviour under a generic assumption on
the perturbative potentialV (y), for ε = O(hp) andp > 6. Besides, there is numerical
evidence that the hypothesisε = O(hp), p > 6, can be improved up toε = o(1) [DR97b].
(It is important to remark here that such numerical experiments require an expensive
multiple-precision arithmetic in order to detect the exponentially small size of the split-
ting.)

Nevertheless, from the computations above, it turns out that the exponentially small
splitting can only take place along the direction of thet coordinate over3, since a
directional derivative ofL is exponentially small only in thet direction. (Recall that the
differential ofL measures the distance between the perturbed invariant manifolds.) This
leads us to propose an affirmative answer about the exponentially small character of the
splitting of the separatrices, at least in one direction. To give a dynamical interpretation
of this distinguished direction, we note that ifh → 0 the action of the unperturbed map
over 3 tends to aflow whose orbits are the coordinate curves{a = constant} of the
parametrizationλ(t, a). It is important to observe that this direction does not depend on
the perturbation.

Moreover, the computations above show that the distinguished pairs of homoclinic
orbits which give a priori exponentially small splittings are just theinterlacedpairs,
i.e., the pairs created from unperturbed orbits situated on the same coordinate curve
{a = constant} (in a interlaced way) of the separatrix3.

Finally, we want to stress that a priori exponentially small asymptotic expressions
can be computed for the splitting angles in thet-direction over3. However, it seems
better to work with the homoclinic area since it is an homoclinic invariant, whereas the
splitting angles are not.

4. A Magnetized Spherical Pendulum

Finally, as a second example, we focus our attention on Hamiltonian maps that arise
from perturbations of a central field. The exact manifold is the same as in the previous
example.

4.1. Unperturbed problem.First, we give some well-known definitions and results. Let
T : Rn → R be the so-calledkinetic energyT (y) = 1

2 |y|2 and letV : Rn × R → R
be thepotential energy. The HamiltoniansH : R2n × R → R of the formH(x, y, t) =
T (y) + V (x, t), are callednatural. The Hamiltonian equations can be written as ¨x =
−∂V (x, t)/∂x. Notice that ifV (x, t) is even in the spatial variablex, the Hamiltonian
map is odd.

WhenV (x, t) = Vc(|x|2), for some functionVc : [0, ∞) → R, the Hamiltonian field
is an (autonomous)central field, and hence the angular momenta are preserved. Let
An+1

0 = {(ra, ṙa) : a ∈ Sn−1, (r, ṙ) ∈ R2} be the manifold of zero angular momenta.
Using the central symmetry, we can reduce onAn+1

0 the Hamiltonian system to one
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degree of freedom: ¨r = −2V ′
c (r2)r; that is, if r(t) is a solution of the reduced system,

thenλ(t, a) = (r(t)a, ṙ(t)a) is a solution of the original system, for alla ∈ Sn−1.
In [Gru85], one of the first papers on the generalization of the Melnikov method for

high-dimensional (continuous) systems, an(undamped) magnetized spherical pendulum
was considered. It is given by the (autonomous) central field withVc(r2) = (r4 − r2)/2.
Obviously, the casesn > 2 have no real physical meaning and the cited reference
does not deal with them, but the generalization is trivial and it is interesting in order to
compare with the section before. The following lemma follows from a straightforward
computation on the reduced system ¨r = r − 2r3, i.e., a Duffing equation.

Lemma 4.1. Let9t
0(p) be the solution of the Hamiltonian equations of this magnetized

spherical pendulum, with initial conditionp at t = 0. Givenh > 0, let F0 be the
Hamiltonian map9h

0 : R2n → R2n. Then:

(i) The origin is a hyperbolic fixed point ofF0. Moreover,Spec[DF0(0)] = {e±h}.

(ii) The invariant manifolds ofF0 are completely doubled, giving rise to the separatrix

3 = {(ra, ṙa) : ṙ2 = r2 − r4, r 6= 0, a ∈ Sn−1}.

(iii) The diffeomorphismλ : R × Sn−1 → 3 defined by

λ(t, a) = (r(t)a, ṙ(t)a), r(t) = secht, (4.1)

verifies
9s

0(λ(t, a)) = λ(t + s, a), ∀t, s ∈ R, a ∈ Sn−1. (4.2)

4.2. Perturbed problem.Let us consider a perturbation that preserves the natural char-
acter, i.e., the perturbed Hamiltonians are

Hε(x, y, t) = T (y) + (|x|4 − |x|2)/2 + εV (x, t/h), h > 0, ε ∈ R,

whereV = V (x, ϕ) is 1-periodic inϕ. We determineV by imposingV (0, ϕ) ≡ 0. Small
values ofh correspond to a rapidly forced pendulum of angular frequency (radians per
second)ω = 2π/h. We denote byFε the Hamiltonian map9h

ε , where9t
ε(p) is the

solution of the Hamiltonian equations ofHε, with initial conditionp. (The dependence
on the parameterh is omitted to simplify the notation.)

Using Eqs. (2.15), (4.2) and (4.1), the Melnikov potentialL : R × Sn−1 → R of the
problem turns out to be

L(t, a) = −
∫

R
V (r(t + s)a, s/h) ds = −

∫
R

V (r(s)a, (s − t)/h) ds, r(s) = sechs.

(4.3)
Now, we consider polynomial perturbations, that is, we assume that the Taylor-

Fourier expansion of the potentialV has a finite number of terms. We write

V (x, ϕ) =
∑

(k,`)∈K
[Ck,`(x) cos(2πkϕ) + Sk,`(x) sin(2πkϕ)], (4.4)

whereK is a finite subset of{(k, `) ∈ Z2 : k ≥ 0, ` ≥ 1}andCk,`,Sk,` are homogeneous
polynomials of degreè. In this case, the Melnikov potential can be explicitly computed.
The result is summarized in the following lemma, whose proof is straightforward.
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Lemma 4.2. LetP`(ω) (` ≥ 0) be the polynomials generated by the recurrences

P0(ω) = 1, P1(ω) = ω, P`+1(ω) =
ω2 + `2

`(` + 1)
P`−1(ω). (4.5)

Then, the Melnikov potential (4.3) withV given in (4.4) is

L(t, a) = π
∑

(k,`)∈K
{sech(πkω/2)P`−1(kω)[Ck,`(a) cos(kωt) − Sk,`(a) sin(kωt)]},

(4.6)
whereω = 2π/h is the frequency of the perturbation.

A typical difference between the continuous and discrete frames is revealed here:
the Melnikov potential (4.6) is an entire periodic function in the complex variablet,
whereas the Melnikov potential (3.6) is a doubly periodic one with singularities. An-
other difference is that a theorem like 3.1 does not hold for the pendulum, since there
exist perturbative potentialsV (x, ϕ) such that the Melnikov potential (4.6) vanishes
identically.

We also notice that sech(πkω/2) = sech(kπ2/h) ∼ e−π2/h, whenh → 0. Thus, a
discussion ona priori exponentially small splittings for this rapidly forced magnetized
pendulum, along the lines of the previous section, can be given for any polynomial
perturbation. As in the previous section, the exponentially small asymptotic expressions
predicted by the Melnikov method are far from being proved forn > 1. However, it is
well-known that for some perturbations of the rapidly forced planar pendulum [DS92],
the Melnikov method gives the right answer.

Finally, we consider the perturbative potential

V (x1, x2, ϕ) =
2

ω2 + 1
x2(x2

1 + x2
2) cos(2πϕ),

which was already studied in [Gru85]. In that paper, the general (non-Hamiltonian) case
is considered, and consequently the symplectic structure is not taken into account, even
in the examples where it was possible, like the one above. Using the formula (4.6), we get
the Melnikov potentialL(t, a) = π sechπω

2 sinϑ cosωt, wherea = (cosϑ, sinϑ) ∈ S1.
Its gradient is just the vector-valued Melnikov function used in [Gru85] to measure the
splitting. Obviously, it is easier to compute a real-valued function than a vector-valued
one. For higher dimensional cases, the saving of work is even more.

Appendix: Elliptic Functions

A function that plays an important role in the computation of the infinite sums that appear
in Melnikov potentials, is a complex functionχsatisfying the following properties, where
T, h > 0 are given parameters:

(C1) χ is meromorphic onC.

(C2) χ is T i-periodic and its derivative ish-periodic.

(C3) The set of poles ofχ is hZ + T iZ, and all of them are simple and of residue 1.

Remark A.1.Conditions (C1)–(C3) determine a function except for an additive constant:
if χ1 satisfies also (C1)-(C3), (χ−χ1)′ is an entire doubly periodic function, and it must
be a constant; thus,χ(z) − χ1(z) = az + b, buta = 0 due to theT i-periodicity.
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The functionχ can be expressed in terms of Jacobian elliptic functions, Theta func-
tions, or Weierstrassian functions. The Jacobian elliptic functions are well adapted to
pencil-and-paper computations, whereas the Theta functions are the best from the numer-
ical point of view, and the Weierstrassian functions are the natural choice for theoretical
work on account of their symmetry in the periods. Here, we deal with pencil-and-paper
computations, so our choice are the Jacobian elliptic functions.

For a general background on elliptic functions of any kind, we refer to [AS72,
WW27]. We follow the notation of the first reference.

Given theparameterm ∈ [0, 1], we recall that

K = K(m) :=
∫ π/2

0
(1 − m sinϑ)−1/2 dϑ, E = E(m) :=

∫ π/2

0
(1 − m sinϑ)1/2 dϑ,

are thecomplete elliptical integrals of the first and second kindand that

E(u) = E(u|m) :=
∫ u

0
dn2(v|m) dv,

is the incomplete elliptic integral of the second kind, where dn is one of the well-
knownJacobian elliptic functions. Moreover, introducingK ′ = K ′(m) := K(1 − m),
E′ = E′(m) := E(1 − m), we also recall that thenomeq, |q| < 1, is defined by
q = q(m) := e−πK′/K . If any of the numbersm, q, K, K ′, E, E′ or K ′/K is given, all
the rest are determined. From a numerical point of view, it is better to fix first the nome
q, and after compute the rest of parameters and elliptic functions, since theq-series are
rapidly convergent.

It is not difficult to check (see [DR96]) that

χT (z) = (2KT /h)2(E′
T /K ′

T − 1)z + (2KT /h)E(2KT z/h + K ′
T i |mT )

verifies (C1)-(C3), where the nome is determined byq = qT = e−πT/h, andmT , KT ,
K ′

T , ET , E′
T are the associated parameters. (The dependence onh is not explicitly

written.) Thus,
K ′

T /KT = π−1 log(1/qT ) = T/h. (A.1)

Given an isolated singularityz0 ∈ C of a functionf , let us denotea−j(f, z0) the
coefficient of (z−z0)−j in the Laurent expansion off aroundz0. Obviously,a−j(f, z0) =
0 if z0 is a pole off andj is greater than its order.

Proposition A.1 (Summation Formula). Letf be a function verifying:

(P1) f is analytic inR and has only isolated singularities onC.

(P2) f is T i -periodic for someT > 0.

(P3) |f (t)| ≤ Ae−c|<t| when|<t| → ∞, for some constantsA, c ≥ 0.

Then,Σ(t) :=
∑

k∈Z f (t + hk) is analytic inR, has only isolated singularities inC,
and is doubly periodic with periodsh andT i . Moreover,Σ(t) can be expressed by the
following sum

Σ(t) = −
∑

z∈SingT (f )

res(χT (· − t)f (·), z) = −
∑

z∈SingT (f )

∑
j≥0

a−(j+1)(f, z)
j!

χ(j)
T (z − t),

(A.2)
whereSingT (f ) is the set of singularities off in IT = {z ∈ C : 0 < =z < T}.
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Proof. See [DR96, Prop. 3.1]. �

If f is meromorphic inC, the same happens toΣ, and thenΣ is elliptic. From a
computational point of view, this is the interesting case, since then (A.2) is a finite sum
and can be explicitly computed, as the following lemma, used in Sect. 3, shows.

Lemma A.1. LetΣ`(t) =
∑

k∈Z f `(t + kh), wheref = sech. Then:

Σ1(t) =

(
2K2π

h

) [√
m2π cn

(
4K2πt

h

∣∣∣∣ m2π

)
+ dn

(
4K2πt

h

∣∣∣∣ m2π

)]
,

Σ2(t) =

(
2Kπ

h

)2 [
E′

π

K ′
π

− 1 + dn2
(

2Kπt

h

∣∣∣∣ mπ

)]
.

Proof. Clearly, f = sech satisfies properties (P1)-(P3) withT = 2π. Moreover, the
singularities off in I2π = {z ∈ C : 0 < =z < 2π} are simple poles:π i/2 and 3π i/2,
with a−1(f, π i/2) = −a−1(f, 3π i/2) = − i. Thus, from (A.2) we get

Σ1(t) = i
[
χ2π(π i/2 − t) − χ2π(3π i/2 − t)

]
.

From Eq. (A.1) withT = 2π, and using thatE(u + 2K ′ i) − E(u) is a constant, and that
E(−u) = −E(u), we have

Σ1(t) = i(2K2π/h)[ i(K ′
2π − E′

2π) − E(v/2 +K ′
2π i |m2π) + E(v/2|m2π)],

wherev = u − K ′
2π i andu = 4K2πt/h.

In [WW27, pp. 520 and 508] we find the following formulae

E(v + K ′i) − E(v) = i(K ′ − E′) + cn(v) ds(v),

cn(v/2) ds(v/2) =
dn(v) + cn(v)

sn(v)
= ds(v) + cs(v).

Therefore, we arrive at the following expression forΣ1

Σ1(t) = − i(2K2π/h)[ds(u − K ′
2π i |m2π) + cs(u − K ′

2π i |m2π)],

and the formula forΣ1 follows from ds(u − K ′ i) = i
√

m cn(u) and cs(u − K ′ i) =
i dn(u).

The formula forΣ2 is easier, sincef2 = sech2 also verifies the properties (P1)-(P3),
but with T = π instead ofT = 2π. It has only one singularity inIπ: π i/2. Moreover,
π i/2 is a double pole witha−1(f2, π i/2) = 0 anda−2(f2, π i/2) = −1. Thus, by (A.2)
we getΣ2(t) = χ′

π(π i/2 − t). But E′(u) = dn2(u) is an even 2K ′ i-periodic function,
so the formula forΣ2 follows from (A.1) forT = π. �
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J. Ortega, C. Siḿo, E. Tabacman and D. Treschev for very stimulating discussions and fruitful remarks.



244 A. Delshams, R. Raḿırez-Ros
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