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Introduction GAC 1.0 / Maxwell Equations

Gauss (1777‐1855), Ampère (1775‐1836), Faraday (1791‐1867), Maxwell (1831.1879), Gibbs (1839‐1903), Hetz (1857‐1894), Heaviside (1850‐1925), Lorentz (1853‐1928)  

∇ · E = ρ (Gauss law for E ) (1)

∇×B − ∂tE = j (Ampère-Maxwell law) (2)

∇× E + ∂tB = 0 (Faraday’s induction law) (3)

∇ ·B = 0 (Gauss law for B) (4)

∂tρ + ∇ · j = 0 (Charge conservation) (5)

F = q(E + v ×B) (Lorentz force law) (6)

N
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Introduction GAC 1.0 / 4-vectors

4-Vector Meaning

r = [r , t] Position

u = dr
dτ

= [γu, γ] Velocity

p = m0u = [m0γu,m0γ] = [mu,m] = [p,E ] Momentum-energy

a = du
dτ

= [γ4u · a + γ2a, γ4u · a] Acceleration

f = dp
dτ

= m0a = [γf , γṁ] Force

j = [j , ρ] = ρ0u Current density

a = [A, φ] Potential

2a = −j Wave equation

k = [k , ω] Wave vector
N
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GAC 2.0
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GAC 2.0 / General notions

E real vector space of dimension n.

∧kE : k-th exterior power of E .

∧E : exterior algebra of E .

q: metric on E of signature (r , s). Notations: q(x , y),
q(x) = q(x , x).

Natural extension of q to ∧E (still denoted q), uniquely

determined by requiring that ∧jE and ∧kE are orthogonal for
j 6= k and that, for example,

q(x1 ∧ x2) =

∣∣∣∣ q(x1) q(x1, x2)
q(x2, x1) q(x2)

∣∣∣∣ . (7)

If e1, . . . , en is an orthonormal basis of E (so q(e i , e j) = 0 when
i 6= j and q(e i) = ±1), then the

(
n
k

)
blades e Î = e i1 ∧ · · · ∧ e ik ,

where 1 6 i1 < · · · < ik 6 n, form an orthonormal basis of ∧kE .
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GAC 2.0 / Hodge duality

Hodge linear isomorphism: ∗ : ∧kE → ∧n−kE , determined by

α ∧ β = q(∗α, β)eN̂ , α ∈∧k
E , β ∈∧n−k

E (8)

Practical calculation:

∗ e Î = σIeˆ̄I
, Ī = N − I , σI = (−1)t(I ,Ī )+sqI , (9)

where t(I , Ī ) is the number of inversions in the permutation I , Ī of N .

Note: ∗ is an isometry if qN = 1 and an antiisometry if qN = −1.

Original reference: Hodge-1941 [1]
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GAC 2.0 / Electromagnetism

Let (t, x , y , z) be the lab coordinates of an inertial frame
et , ex , ey , ez (an orthonormal basis of the Minkowski space E1,3).
We define Λ = 〈dt, dx , dy , dz〉, which is nothing but the space of
linear maps E1,3 → R, and its exterior powers

Λ0 = R

Λ1 = Λ = 〈dt, dx , dy , dz〉
Λ2 = 〈dx ∧ dt, dy ∧ dt, dz ∧ dt, dy ∧ dz , dz ∧ dx , dx ∧ dy〉
Λ3 = 〈dx ∧ dy ∧ dz , dt ∧ dy ∧ dz , dt ∧ dz ∧ dx , dt ∧ dx ∧ dy〉
Λ4 = 〈dt ∧ dx ∧ dy ∧ dz〉.
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GAC 2.0 / Electromagnetism

A 3-vector k = (kx , ky , kz) is represented in Λ1 and Λ2 as follows:

k̂ = kxdx + kydy + kzdz ∈ Λ1

k̃ = kxdy ∧ dz + kydz ∧ dx + kzdx ∧ dy ∈ Λ2.

For example, if f = f (x , y , z), then ∇f is the 3-gradient of f and

∇̂f = df .

In addition we have:

d k̂ = ∇̃× k − ∂̂tk ∧ dt, d k̃ = (∇ · k )dx ∧ dy ∧ dz + ∂̃tk ∧ dt.
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GAC 2.0 / Electromagnetism

Given a 4-vector k = [k , κ], let

k] = k̂ − κdt ∈ Λ1.

This form is Lorentz invariant. In particular we have

j] = ĵ − ρdt, a] = Â− φdt.
It follows that the 2-form F = da] is Lorentz invariant. A short
computation using the tools developed so far shows that

F = Ê ∧ dt + B̃. (10)

The Lorentz invariance of F , which deserves being called the
electromagnetic form, is equivalent to the textbook relations
expressing E and B in terms of the E ′ and B ′ as seen in another lab.
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GAC 2.0 / Electromagnetism

In this approach, we have the tautological relation dF = 0, because
d2 = 0. But in terms of Eq. (10) we have

dF = d(Ê ∧ dt + B̃)

= d(Ê ) ∧ dt + dB̃

= ∇̃× E ∧ dt + (∇ ·B)dx ∧ dy ∧ dz + ∂̃tB ∧ dt

and so the vanishing of dF is equivalent to Maxwell’s equations (3)
and (4) (the homogeneous pair).
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GAC 2.0 / Electromagnetism

The two non-homogeneous Maxwell’s equations, (1) and (2), can
also be recast as a single equation, namely

δF = −j],
where δ, the codiferential operator, stands for ∗d∗ : Λ2 → Λ1 (it is in
fact the adjoint of d with repect to the Minkowski metric). Indeed,
Eq. (9) implies that ∗ : Λ2 → Λ2 is determined by the relations

∗k̃ = −k̂ ∧ dt, ∗(k̂ ∧ dt) = k̃

and ∗ : Λ3 → Λ1 by the relations

∗(k̃ ∧ dt) = k̂ , ∗(dx ∧ dy ∧ dz) = dt,

from which we deduce

∗F = Ẽ − B̂ ∧ dt

d ∗ F = (∇ · E )dx ∧ dy ∧ dz + ∂̃tE ∧ dt − ∇̃×B ∧ dt

= −
(
∇̃×B − ∂̃tE

)
∧ dt + (∇ · E )dx ∧ dy ∧ dz
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GAC 2.0 / Electromagnetism

Finally

δF = −
(
∇̂×B − ∂̂tE

)
+ (∇ · E )dt = −(ĵ − ρdt) = −j].

Subtracting δF = −j] from df = 0, which makes sense in Λ, we get
that the Maxwell’s equations are equivalent to the single equation

(d − δ)F = j]

which is getting closer to GAC 3.0, but not quite because the
operator d − δ does not have a representation as an element of the
algebra Λ.

References: [2], [3].
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GAC 3.0
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GAC 3.0

GA GC

q(x, y) x · y

Geometric Product

Metric
product

Inner
product

Ausdehnungs-

lehre

Grassmann Algebra

A constructive view of GAC N
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GAC 3.0 / Gr,s

Er ,s = (E , q), real vector space with a quadratic form q of
signature (r , s) and dimension n = r + s.

G = Gr ,s GA of Er ,s

1. G is a unital associative real algebra. Its product is called
geometric product and is denoted by juxtaposition of the factors.

2 (Clifford’s relations). For any x , y ∈ E = G1,

xy + yx = 2q(x , y) = 2x · y , x2 = q(x).

In particular, xy = −yx if and only if x and y are q-orthogonal.

3 (The map ∧kE → G). There is a canonical linear map ∧kE → G
x1 ∧ · · · ∧ xk 7→ g(x1, . . . , xk)

where g(x1, . . . , xk) = 1
k!

∑
p(−1)t(p)xp1 · · · xpk , the sum extended to

all permutations p = [p1, . . . , pk ] of 1, . . . , k . Note that
x ∧ y 7→ 1

2
(xy − yx).
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GAC 3.0 / Gr,s

4. Let e1, . . . , en be a basis of E . For each subset I = {i1, . . . , ik} of
N = {1, . . . , n}, let e I = e i1 · · · e ik . Then B = {e I}I⊆N is a linear
basis of G.

5. If e1, . . . , en is an orthogonal basis of E , then

e Î = e i1 ∧ · · · ∧ e ik 7→ e I ,

so g : ∧kE ' Gk , Gk = 〈Bk〉, Bk = {e I}|I |=k .

In particular, Gk does not depend on the orthogonal basis used to
describe it and therefore the linear grading

G = G0 ⊕ G1 ⊕ G2 ⊕ · · · ⊕ Gn,
is canonical. Any x ∈ G can be uniquely written in the form
x = 〈x〉0 + 〈x〉1 + · · ·+ 〈x〉n, with xj ∈ G j (j = 0, 1, . . . , n), or just
x = x0 + x1 + · · ·+ xn.

We have dimGk =
(
n
k

)
and dimG = 2n.
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GAC 3.0 / Gr,s

6 (Outer product). The isomorphism 5 allow us to graft the exterior
product of ∧E to a product of G, which will be called exterior or
outer product of G and will be denoted with the same symbol ∧. By
the very definition, it is a unital and associative product and the basic
rule for its computation is that

x1 ∧ · · · ∧ xk = g(x1, . . . , xk).

In particular, x ∧ y = 1
2
(xy − yx) for any x , y ∈ E and e Î = e I

whenever e1, . . . , en is orthogonal.

Note that

e I ∧ eJ =

{
0 if I ∩ J 6= ∅
(−1)t(I ,J)e I+J otherwise

where t(I , J) is the number of order inversions in the sequence I , J
and I + J is the result of reordering I , J in increasing order.
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GAC 3.0 / Gr,s

7 (Artin’s formula). If I , J are multiindices, then

e IeJ = (−1)t(I ,J)qI∩J e I M J ,

where I M J is the symmetric difference of I and J , and

qK = q(ek1) · · · q(ekl )

for any index sequence K = k1, . . . , kl . In particular,

e2
J = (−1)|J|//2qJ .

Note that the minimum grade m of e IeJ , given k = |I | and l = |J |,
is obtained precisely when either I ⊆ J or J ⊆ I , and that in these
cases m = |k − l |.
Commutation formula: eJe I = (−1)|I |·|J|+c , c = |I ∩ J |.
Clifford’s group of an orthonormal basis. Artin’s formula shows that
the set B± = {±e I}I⊆N is a group if e1, . . . , en is orthonormal. Its
order is 2n+1.
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GAC 3.0 / Gr,s

8 (Grades of a geometric product). Let x ∈ Gk and y ∈ G l . If
p ∈ {0, 1, . . . , n} and (xy)p 6= 0, then p = |k − l |+ 2i with i > 0 and
p 6 k + l . Moreover, (xy)k+l = x ∧ y .

Next we introduce the inner product, but it has to be stressed that it
is not the metric product on G induced from the metric product q of
E (see 12 below).

9 (Inner product). If k = 0 or l = 0, the only grade appearing in xy
is k + l = |k − l |, and xy = x ∧ y . On the other hand, if k , l > 0,
then |k − l | 6 k + l − 2 and so we can define the bilinear product
x · y by the relation x · y = (xy)|k−l |. In this case we have
xy = x · y + · · ·+ x ∧ y , where · · · stands for terms of grade p such
that |k − l |+ 2 6 p 6 k + l − 2, if any. In order to insure that this
equality also holds for k = 0 or l = 0, we are bound to set x · y = 0
in any of these cases.
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GAC 3.0 / Gr,s

For example, if e ∈ E and x ∈ Gk , then ex = e · x + e ∧ x , even for
k = 0. Similarly, xe = x · e + x ∧ e.

Since the inner product is bilinear, its computation is straightfoward
on noticing that if e1, . . . , en is an orthogonal basis of E and I , J are
non-empty multiindices, then we get, using 7,

e I · eJ =

{
e IeJ if I ⊆ J or J ⊆ I

0 otherwise

This, together with the commutation formula in 7, gives the
commutation property of the inner product of x ∈ Gk and y ∈ G l :

y · x = (−1)kl+mx · y , m = min(k , l). (11)

In particular x · y = y · x if k = l . In general, x · y = y · x precisely
when k and l have the same parity or else m is even. Otherwise,
which means that k and l have different parity and m is odd, we have
x · y = −y · x .
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GAC 3.0 / Gr,s

10 (Parity involution). The linear map G → G, x 7→ x̂ , such that
x̂ = (−1)kx for x ∈ Gk , is an involution (i.e, ˆ̂x = x for all x ∈ G) and

x̂y = x̂ ŷ , x̂ ∧ y = x̂ ∧ ŷ , x̂ · y = x̂ · ŷ
for all x , y ∈ G. We say that it is an automorphism of G.

Among the properties of the inner product related to the parity
involution, let us mention that for any vector e and any x , y ∈ G,

e · (xy) = (e · x)y + x̂(e · y) and e · (x ∧ y) = (e · x)∧ y + x̂ ∧ (e · y).

In other words, the map G → G, x 7→ e · x , is a (left) skew-derivation
of both the geometric and the outer products. And x 7→ x · e is a
right skew-derivation of both products:

(xy) · e = x(y · e) + (x · e)ŷ .

and similarly for the outer product. This can be established by using
the left skew-derivation property and the reverse involution
introduced next.
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GAC 3.0 / Gr,s

11 (Reverse involution). The linear map G → G, x 7→ x̃ , such that
x̃ = (−1)k//2x for x ∈ Gk , is an involution (i.e, ˜̃x = x for all x ∈ G)
and satisfies the relations

x̃y = ỹ x̃ , x̃ ∧ y = ỹ ∧ x̃ , x̃ · y = ỹ · x̃
for all x , y ∈ G. We say that it is an anti-automorphism of G.

12 (Metric formulas 3.0). The metric on G obtained by grafting the
metric q on ∧E given by the Gram rule (cf. Eq. (7)) is determined
by the geometric product and the grading as follows: For all x , y ∈ G,

q(x , y) = (x̃y)0 = (xỹ)0. (12)

In particular we have q(x) = (x̃x)0 = (xx̃)0 for all x ∈ G.

In the case that x , y ∈ Gk , (x̃y)0 = x̃ · y = (−1)k//2x · y . Thus we
conclude that x · y = (−1)k//2q(x , y). Note finally that if x ∈ Gk ,
y ∈ G l and k 6= l , then q(x , y) = 0 but x · y need not be zero.
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GAC 3.0 / Gr,s

13 (Invertible blades). If X = x1 ∧ · · · ∧ xk 6= 0 (we say that X is a
k-blade), then X̃X and XX̃ are scalars, because we can express X in
the form y 1 · · · y k with y 1, . . . , y k pairwise orthogonal, and hence
X̃X = y 2

1 · · · y 2
k = XX̃ . Therefore

q(X ) = X̃X = XX̃ = (−1)k//2X 2.

In particular we see that X is invertible if and only if X 2 6= 0, or if
and only if q(X ) 6= 0, and if this is the case,

X−1 = X/X 2 = X̃/q(X ).

Example. Let e = e1, . . . , en be an orthonormal basis of E = Er ,s

and define
ωe = e1 ∧ · · · ∧ en ∈ Gn.

We will say that ωe is the pseudoescalar associated to e. Note that
the metric formula gives us that

q(ωe) = q(e1) · · · q(en) = (−1)s .
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GAC 3.0 / Gr,s

If e′ = e ′1, . . . , e
′
n is another orthonormal basis of E , then

ωe′ = δωe,

where δ = dete(e′) is the determinant of the matrix of the vectors e′

with respect to the basis e. Now the equalities

q(ωe) = q(ωe′) = q(δωe) = δ2q(ωe)

allow us to conclude that δ = ±1. This means that, up to sign, there
is a unique pseudoscalar. The distinction of one of them amounts to
choose an orientation for E .
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GAC 3.0 / Gr,s

14 (Properties of the pseudoscalar). Let ω ∈ Gn be a pseudoescalar
and G× the group of invertible multivectors with respect to the
geometric product. Then

(1) ω ∈ G× , ω−1 = (−1)s ω̃ = (−1)s(−1)n//2ω,
ω2 = (−1)n//2(−1)s .

(2) Hodge duality 3.0. For any x ∈ Gk , ωx , xω ∈ Gn−k and the
maps x 7→ ωx and x 7→ xω are linear isomorphisms Gk → Gn−k .
The inverse maps are given by x 7→ ω−1x and x 7→ xω−1,
respectively.

(3) If n is odd, ω commutes with all the elements of G (this is
expressed by saying that ω is a central element of G). If n is
even, ω commmutes (anticommutes) with even (odd)
multivectors.

(4) If q(ω) = 1 (q(ω) = −1), the Hodge duality maps are isometries
(antiisometries).
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GAC 3.0 / Gr,s

What relation it there between Hodge duality 3.0 and Hodge duality
2.0? The quickest answer is to use Eq. (9), which now can be written

∗e I = (−1)t(I ,Ī )+sqIe Ī , Ī = N − I .

Comparing with e Iω = e IeN = (−1)t(I ,N)qIe Ī , we immediately get

xω = (−1)k//2+s(∗x)

for all x ∈ Gk . We note that the condition that ∗ : Gk → Gn−k is an
isometry (antiisometry) agrees with the condition that x 7→ xω
(x ∈ Gk) is an isometry or an antiisometry (the sign (−1)k//2+s is
irrelevant for this question), but that the latter was considerable
easier to establish (with 3.0 tools!).
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GAC 3.0 / Gr,s

15 (Spinr ,s). This is the group of spinors, i.e. the group of elements
u of G that can be expressed as a product u = u1 · · ·u2k of an even
number of unit vectors of Er ,s (thus, by definition, q(uj) = ±1 for
j = 1, 2, . . . , 2k).

The map G → G, x 7→ uxu−1 is an automorphism of G and it is easy
to see that it is a grade-preserving isometry of G. In particular it
induces an isometry u of Er ,s : u(x) = uxu−1. So we have a map
Spinr ,s → SOr ,s , u 7→ u, which turns out to be surjective and with
kernel ±1, i.e, u′ = u if and only if u′ = ±u.

For any spinor u, ũu = uũ = εu, with εu = ±1. If εu = 1, u is called
a rotor, and rotors form a subgroup Spin

+

r ,s of Spinr ,s . Since εu = −1
does not occur for Euclidean or anti-Euclidean signatures, we have

Spinn = Spin
+

n = Spinn̄.

For n > 3, this group is simply connected and SOn is connected.
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GAC 3.0 / Gr,s

If r , s > 1, and r + s > 3, Spin
+

r ,s is simply connected and its image

SO
+

r ,s in SOr ,s is the connected component of the identity.

An important especial case is that Spin3 = SU2, the group of unit
quaternions, and the map Spin3 → SO3 is the familiar construction of
rotations by means of unit quaternions.
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GAC 3.0 / Gr,s

Another important case is that L = SO
+

1,3 is the restricted Lorentz
group (orthochronous orientation-preserving isometries) and

Spin
+

1,3 = SL2(C). The 2:1 map Spin
+

1,3 → SO
+

1,3 is represented as the
map SL2(C)→ L, U 7→ U , such that

h(Ua) = Uh(a)U−1

where h is the familiar representation of a vector

a = a0e0 + a1e1 + a2e2 + a3e3 ∈ E1,3

by the Hermitian matrix

h(a) =

(
a0 + a1 a2 + ia3

a2 − ia3 a0 − a1

)
.
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GAC 3.0 / Gr,s

16 (Classification of Gr ,s). We summarize the results on the
classification of Gr ,s in terms of ν = s − r mod 8.

ν 0, 6 1, 5 2, 4 7 3

Fν R C H 2R 2H

m m0 m1 m2 m1 m3

Label M D± Mσ M± M±σ

Synopsis of the Gr ,s forms in terms of ν = s − r mod 8. By
definition, mk = 2(n−k)/2 (n = r + s), the order of the matrices in the
algebra class or the dimension of the ground space on which these
matrices act. In the lables, M and D stand for Majorana and Dirac,
respectively.
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GAC 3.0 / Gr,s

R

R

2R

C

H

2HH

C

ν Clock

0
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m2
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M

M

M±
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On WARJr work
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On WR Jr work WR’s perspectives

In general terms, the scientific endeavors of WR Jr were physically
motivated and aimed at raising the established practices in
differential geometry (DG), quite successful in mathematics, and to a
good extend also in physics, to the 3.0 level.

We will try to illustrate this assessment by explaining the main ideas
of his approach to the study of gravity and it particuly its analogies
with Mawwell’s equation

∂F = J .

N

S. Xambó, S. Wainer (UPC & Unicamp) A unifying philosophy 23 July, 2018 34 / 43



A brief glossary Manifolds

Manifolds are ubiquitous. Even in restricted contexts, they may
appear as submanifolds, as symmetry groups, as auxiliary structures
to understand simple objects or transformations, as parameter spaces
of the configurations of some system, or to provide theoretical
possibilities to carry on research.

Around each point, a manifold M is similar to a small open set of a
real vector space, and with a little care a number of related concepts
and operations can be conceived. Among them, the algebra of
smooth functions defined on an open set U of M , the vector space
TxM of tangent vectors to M at x ∈ M , or its dual, T ∗xM , the space
of tangent covectors. All structures that can be defined for a real
vector space (the exterior algebras, for example) can be defined at
each point of a manifold.
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A brief glossary Fields

A field ψ on a manifold M is a map that assigns to each point x ∈ M
and object ψ(x) of some kind that varies smoothly with x . If
ψx ∈ TxM , we have a vector field.

If ψx ∈ ∧kT ∗xM , we have a field of k-forms, or simply a k-form. A
metric q is a field such that qx is a metric of TxM . In this case, we
can consider fields such that ψ(x) ∈ G(TxM) (multivector fields), or
ψ(x) ∈ G+

(TxM) (even multivector fields), or ψ(x) ∈ G2(TxM)
(bivector fields).

Since a metric on TxM defines a metric on T ∗xM , we may also
consider multicovector fields. In any case, the linear graded
isomorphism ∧(TxM) ' G(TxM) allows us to use all the machinery
of GA as explained before, including the geometric, outer and inner
products and the involutions.
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A brief glossary Vector bundles

We can ‘bundle’ the tangent spaces TxM into TM = txTxM , so
that we may imagine a point of TM as a pair (x , v) with x ∈ M and
v ∈ TxM . Then we have a map π : TM → M , (x , v) 7→ x , and a
vector field ψ is a section of π (or of TM), as ψ(x) ∈ TxM = π−1(x).

The same can be applied to the other linear constructions and we get
vector bundles like T ∗M , ∧k(TM), ∧(TM), G+

(TM), and so on.

In general, a vector bundle is a ‘bundle’ of vector spaces E = tEx ,
where Ex is a vector space, maybe with some extra structure (a
metric, for example).

The simplest case is a trivial bundle, which is a product E = M × F ,
F a vector space, possibly with some extra structure. This is
sufficient in many interesting situations, like when M is an Euclidean
or a Minkowskian affine space. In general, however, vector bundles
are required to be locally trivial.
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A brief glossary Vector bundles

When the ‘fiber’ F stands for the internal states of some system,
possibly quantum states (for example spin states), then the sections
of E are fields with (locally) values in that space. Examples of that
are the Pauli, Dirac, or Hestenes-Dirac fields.

We will write ΓE to denote the vector space of the vector bundle E .
In the case of the sections of Gr ,s(T ∗M), we will simply write
Γr ,s(T

∗M), with obvious adaptations in other similar cases, like for
example Γk

r ,s(T
∗M) for the sections of Gkr ,s(T ∗M)
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Gravity WRJr approach

Background: M a parallelizable 4-dimensional manifold.

Potentials: g 0, g 1, g 2, g 3 ∈ Γ1(T ∗M) such that
ω = g 0 ∧ g 1 ∧ g 2 ∧ g 3 is non-zero everywhere.

Metric η: The unique metric for which g is an orthonormal frame
of signature (1, 3) at any point. Note that ω is the pseudoscalar
of this metric.

Field strength: If we g = [g 0, g 1, g 2, g 3] ∈ Γ1(T ∗M)4, the field
strength is f = dg ∈ Γ2(T ∗M)4.

Tautological equation: df = 0.

Lagrangian density: L = Lg +Lm, L ∈ Γ4(T ∗M). Lg is a Lorentz
invariant expression of the potentials only (and using only 2.0
tools). Lm = ρω, where function ρ encodes the energy density.

For simplicity, today we will consider only pure gravity (Lm = 0).
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Gravity WRJr approach

Euler-Lagrange equations of L: δf = −Jg ∈ Γ1(T ∗M), where Jg is
an explicit expression of the potentials (using 2.0 tools).

The equations df = 0 and δf = Jg (WR equations)can be
combined as single equation in the G bundle.

(d − δ)f = Jg (13)

Lg is equivalent to the Hilbert-Einstein Lagrangian density, which
implies that equation (13) is equivalent to the Einstein’s
equations:

Ricci− 1
2
Rg = 0 (orT )
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Gravity WR equations 3.0

d − δ = gµ∇gµ = ∂, so Einsteins equations can can be written in
the Maxwell-like form

∂f = J .
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Notes P1

One of Professor Waldyr’s notable contributions, was how he used
Clifford’s bundle to explore striking similarities between the Maxwell,
Dirac, Einstein, and Navier-Stokes equations.

In this talk we will try to explain some basic concepts concurring in
this unification and state a small sample of his main results

If one wants to make a unified theory, the first thing one should try
is to represent these fields as objects of the same mathematical nature.

W.A. Rodrigues Jr, 1.1.2017 (private communication)

P
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Notes P3

Originated by Gibbs and Heaviside by recyling a few remnants of
Hamilton’s quaternions. The basic mathematical tools are Euclidean
vector space E3 and the differential and integral calculus of vector
fields. Maxwell’s equations are still written in that formalism in many
textbooks on classical electromagnetism, e.g [4].

Equation (5) is an immediate consequence of (1) and (2). Note also
that equation (3) implies that 0 = ∇ · (∂tB) = ∂t(∇ ·B), and this
implies that ∇ ·B is constant at any point in space. If there was
reason to believe that this divergence vanishes for some remote past
or future time at any given point, it would be 0 and hence Eq. (4)
would be a consequence of Faraday’s law (3).

P
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Notes Note from P4

The formalism was adapted to the 4-vector treatment of special
relativity and relativistic eletromagnetism. Proper time is denoted by
τ . Time and position in the lab frame are denoted by t and r . The
Lorentz factor for velocity u is γ = (1− u2)−1/2 = dt/dτ . The rest
mass is denoted m0, the relativistic mass by m = γm0, and E = m is
the energy by Einstein’s relation. References: [4], [5].

For example, the vector potential A and the scalar potential φ satisfy
B = ∇×A and E = −∇φ− ∂tA. These potentials can be chosen
(gauged) to satisfy the Lorentz condition ∇ ·A + ∂tφ = 0, and then
the 4-vectors a = [A, φ] and j = [j , ρ] satisfy the wave equation
2a = −j, out of which the relativistic transformations of the E and
B can be obtained.

P

S. Xambó, S. Wainer (UPC & Unicamp) A unifying philosophy 23 July, 2018 3 / 7



Notes Note from P15

This is the level whose design has been lead by David Hestenes and
in which WR Jr, like many others, decided to live and work long ago.
One figure should suffice: In the book [6], the name Hestenes appears
in about fifteen entries in the table of contents and over one hundred
fifty times in the text (without counting headers, nor titles of sections
and subsections, nor appearences in the alphabetical index), mostly in
the forms of Dirac-Hestenes (DH) equation, DH spinors, DH spinor
fields, DH Lagrangian, and of course in several references.

P
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Notes P31

Ahead of the arrow of any hour ν, we have the form Fν of Gr ,s , where
ν = s − r mod 8. Therefore the form Fν−1 of G+

r ,s can be read at
the tail of the ν-arrow.

To specify the order m of the matrices it is convenient to use the
notation mk = 2(n−k)/2. Here k = 0, . . . , 3, but later we will also
need m4. For example, G3,1 ' F6(m) = R(m0), where m0 = 24/2 = 4,
which tells us that G3,1 is isomorphic, as an algebra, to the matrix
algebra R(4). On the other hand, G+

3,1 is isomorphic to

C(m1) = C(2), because ν = 6, F5 = C, and m1 = 2(3−1)/2 = 2. The
values ν = 1, 2, 5, 6 (or ν = 1, 2 mod 4) have been marked with an
overbar to indicate the ω2 = −1. The labels M and Mσ stand for real
and symplectic (or quaternionic) Majorana, respectively, and D for
Dirac, and their significance is summarized in next slide. P
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Notes P34

Chapter 4 discusses aspects of differential geometry that
are essential for a reasonable understanding of spacetime the-
ories [...]. [MF, p. 4].

[...] the main objective of Chap. 4 is to introduce a
Clifford bundle formalism, which can efficiently be used in
the study of the differential geometry of manifolds an also
to give an unified mathematical description of the Maxwell,
Dirac and gravitational fields. [...] we also recall Cartan’s
formulation of differential geometry, extending it to a general
Riemann-Cartan-Weyl space or spacetime (hereafter denoted
RCWS) [MF, p. 6].
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Notes P34

Chapter 5 gives a Clifford bundle approach to the Rieman-
nian or semi-Riemannian differential geometry of branes un-
derstood as submanifolds of a Euclidean or pseudo-Euclidean
space of large dimension. We introduce the important con-
cept of the projection operator and define some other oper-
ators associated to it, as the shape operator and the shape
biform. The shape operator is essential to define the con-
cept of bending of a submanifold (as introduced above) and
to leave it clear that a surface can be bended and yet the
Riemann curvature of a connection defined in it may be null
(as already mentioned for the case of the Nunes connection).
[MF, p. 8]

Remark 4.131 It is important to observe that the opera-
tors sdel ·sdel and sdel ∧sdel do not have anything analogous
in the formulation of the differential geometry in the Cartan
and Hodge bundles.

P
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