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Abstract. After presenting in contemporary terms an outline of the kinematics and dynamics 

of systems of particles, with emphasis in the kinematics and dynamics of rigid bodies, we will 

consider briefly the main points of the historical unfolding that produced this understanding 

and, in particular, the decisive role played by Euler. In our presentation the main role is not 

played by inertial (or Galilean) observers, but rather by observers that are allowed to move in 

an arbitrary (smooth, non-relativistic) way. 

 

0. Notations and conventions 

The material in sections 0-6 of this paper is an adaptation of parts of the Mechanics 

chapter of XAMBÓ-2007. The mathematical language used is rather standard. The read-

er will need a basic knowledge of linear algebra, of Euclidean geometry (see, for exam-

ple, XAMBÓ-2001) and of basic calculus.   

0.1. If we select an origin  in Euclidean 3-space , each point   can be specified by a 

vector , where  is the Euclidean vector space associated with 

. This sets up a one-to-one correspondence between points  and vectors . The 

inverse map is usually denoted .  

Usually we will speak of “the point ”, instead of “the point ”, implying that some 

point  has been chosen as an origin. Only when conditions on this origin become re-

levant will we be more specific. From now on, as it is fitting to a mechanics context, 

any origin considered will be called an observer. 

When points are assumed to be moving with time, their movement will be assumed to 

be smooth. This includes observers , for which we do not put any restriction on its 

movement (other than it be smooth). This generality, which we find necessary for our 

analysis, is not considered in the classical mechanics texts, where  is allowed to have 

a uniform movement or to be some special point of a moving body. Another feature of 

our presentation is that it is coordinate-free. Coordinate axes are used only as an aux-

iliary means in cases where it makes possible a more accessibly proof of a coordinate 

free statement (for an example, see §4.2). 

 

0.2. The derivative  is the velocity, or speed, of  

relative to . Similarly,  is the accele-

ration of  relative to .  

Let us see what happens to speeds and accelerations when 

they are referred to another observer, say , 

where  is any (smooth) function of . If   (the  
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position vector of  with respect to ), then   and hence . In oth-

er words, the velocity with respect to  is the (vector) sum of the velocity with respect 

to  and the velocity of  with respect to . Taking derivative once more, we see 

that , which means that the acceleration with respect to  is the (vector) 

sum of the acceleration with respect to  and the acceleration of  with respect to .  

As a corollary we see that the velocity (acceleration) of  with respect to  is the same 

as the velocity (acceleration) of  with respect  if and only if  ( ). Note that 

the condition for  to be at rest with respect to  for some temporal interval is that 

 in that interval. Similarly,  for some temporal interval if and only if  is 

constant on that interval, or , where  is also constant. In other words, 

 for a temporal interval means that the movement of  relative to  is uniform 

for that interval. 

1. The momentum principle 

Since we refer points to an observer , velocities, accelerations and other vector 

quantities defined using them (like momentum, force and energy) will also be relative 

to . Our approach is non-relativistic, as masses are assumed to be invariable and 

speeds are not bounded.  

1.1. Consider a system  of point masses  located at the points . The 

total mass of  is . The velocity of  is   and its (li-

near) momentum is  . The acceleration of  is . The force 

acting on  is  (all observers accept Newton’s second law). In particular 

we have that  for some temporal interval if and only if the movement of  

relative to  is uniform on that interval (cf. §0.2). This is Galileo’s inertia principle, or 

Newton’s first law, relative to . 

The force with respect to the observer   is 

  ,  

as  . 

1.2. The centre of mass of   is the point  with 

  . 

The point  is also called inertia centre or barycenter. It does not depend on the ob-
server , and hence it is a point intrinsically associated with . Indeed, if  is 
another observer, then  is the position vector of  with respect to ,  
and  

 , 

which just says that 
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  .  

Note that the argument also shows that the position vector of  with respect to  is  

 . 

The velocity  of  is 

. 

The relation  implies that if  denotes the velocity of  with respect to 

another origin , then , with  the velocity of  with respect to .  

 

1.3. The (linear) momentum of  is . By §1.2 we can write 

  . 

Note that if  denotes the momentum referred to another observer , and 

 is the velocity of  with respect to , then  

  . 

Indeed, . 

 

1.4. If  denotes the force acting on , the total or resultant force acting on  is 

defined as 

 . 

From the definitions if follows immediately that 

 . 

In fact, .  

Unfortunately the equation   is not very useful, as we do not yet have informa-

tion on  other than the formal definition using Newton’s second law. 

1.5. In the analysis of the force, it is convenient to set , where  and  

denote the external and internal forces acting on , so that , with 

 and .  

The internal force is construed as due to some form of “interaction” between the 

masses, and is often represented as , with  the force “produced” by  

on  (with the convention ). Here we further assume that  only depends 

on , which implies that  does not depend on the observer. One example of 

interaction is the given by Newton’s law for the gravitation force, for which 

  .  
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The external force usually models interaction forces of  with systems that are “ex-

ternal” to , as, for example, the Earth gravitation force on the particle . 

Since the internal force is independent of the observer, the transformation law for the 

external force is the same as for the force and total force:  

  ,  . 

We may say that observer  sees that the movement of  is driven by the force  

and therefore that  will experience this force as an external force . In particular 

we see that  at a given instant (or temporal interval) if and only if  

(  in that interval, which means that  is moving uniformly with respect to ). 

1.6. We will say that the system is Eulerian if . It is thus clear that for Eulerian 

systems , and so they satisfy the law 

 . 

This law is called the momentum principle. In particular we see that for Eulerian sys-

tems the momentum  is constant if there are no external forces, and this is the prin-

ciple of conservation of momentum. Notice, however, that external forces may vanish 

for an observer but not for another (cf. §1.5).  

1.7. We will say that a discrete system is Newtonian if  (cf. §1.5) and 

, where  are real quantities such that  for any . Note 

that this implies that  for all pairs , which is what we expect 

if  is thought as the force “produced” by  on  and Newton’s third law is cor-

rect.  

The main point here is that Newtonian systems are Eulerian, for 

 . 

1.8. A (discrete) rigid body is a Newtonian system  in which the distances 

 are constant. The intuition for this model is provided by situations in which 

we imagine that the force of  on  is produced by some sort of inextensible mass-

less rod connecting the two masses. The inextensible rod ensures that the distance 

between  and  is constant. The force  has the form  because that 

force is parallel to the rod, and  by Newton’s third law and the identity  

. For real rigid bodies, atoms play the role of particles and inter-

atomic electric forces the role of rods. 

Since a rigid body is Newtonian, it is also Eulerian. Therefore a rigid body satisfies the 

momentum principle (cf. §1.6). 
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2. The angular momentum principle 

2.1. With the same notations as in the Section 1, we define the angular momentum  

of   relative to  by 

  , 

and the angular momentum  of  with respect to  by 

  . 

If we choose another observer , the angular momentum  of  with re-

spect to  is related to  as follows: 

  

        . 

Summing with respect to  we obtain that 

  . 

Note that 

  .  

Note also that  if either  has a uniform motion with respect to  or 

else  (in this case ).  

 

2.2. The moment or torque  of the force  with respect to  is defined by 

   , 

and the total (or resultant) moment or torque  of the forces by 

  . 

If we choose another observer , then  

  

         . 

Summing with respect to , we get  

  . 

Note that  if either  has a uniform movement with respect to  or if 

 (in this case ). 

2.3. We have the equation 

 . 

Indeed, since ,  
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  . 

2.4. Now , where  and  are the momenta of the external and inter-

nal forces, respectively. We will say that  is strongly Eulerian if it is Eulerian and 

. For strongly Eulerian systems we have (§2.3) the equation 

 , 

which is called the angular momentum principle. 

Newtonian systems, hence in particular rigid bodies, are strongly Eulerian. Indeed, 

since they are Eulerian, it is enough to see that , and this can be shown as fol-

lows: 

  

     . 

We have used that , with , for a Newtonian system. 

Remark. If we consider the observer , then of course we have , 

and here we point out that this equation is, for an strongly Eulerian system, consistent 

with the relations  in §2.1 and §2.2. Since these relations are  

 , 

 , 

the consistency amounts to the relation , which is true because an 

Eulerian system satisfies  (momentum principle). 

 

 

3. Energy 

3.1. Kinetic energy. This is also a quantity that depends on the observer  and which 

can be defined for general systems . The kinetic energy of ,  as measured by , is  

 . 

If  is another observer, and  is the kinetic energy of  as measured by , 

then we have: 

 , 

where  (  times the speed of  with respect to ). Indeed, with the usual 

notations, 

,  , and 

 ,  
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which yields the claim because the first summand is , the second is  and in the 

third  . 

The power  of the forces , as measured by , is defined as . If we define 

in an analogous way the power  of the external forces and the power  of the in-

ternal forces, then the instantaneous variation of  is given by 

 . 

The proof is a short computation:  

 . 

3.2. Conservative systems. The system  is said to be conservative if there is a smooth 

function  that depends only of the differences  and such that 

, where  denotes the gradient of  as a function of . The function 

 is independent of the observer and it is called the potential of . 

Example. The Newtonian gravitational forces 

  

are conservative, with potential  

  , 

as . 

Conservative systems satisfy the relation 

 . 

Indeed,  (the latter equality is by the chain 

rule). 

For a conservative system , the sum  is called the energy. As a corollary of 

§3.1 and §3.2, we have that  

 . 

In particular  is a conserved quantity if there are no external forces. This is the case, 

for example, for a system of particles with only gravitational interaction. 

 

4. Kinematics of rigid bodies 

To study the kinematics of a rigid body , it is convenient to modify a little the nota-

tions of the previous sections.  
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4.1. Angular velocity. We will let  denote an observer 

fixed in relation to the body (not necessarily a point of the 

body) and let  be the position vector with respect 

to  of any moving point , so that . If we fix a 

positively oriented orthonormal basis (also called a Carte-

sian reference)  to the body at , then  

  

       (matrix notation), 

with , . We define the velocity of  (or of ) with respect to  as the 

vector 

 . 

It is easy to see that   does not depend on the Cartesian basis  used to define it, nor 

on the observer  fixed with respect to the body. Indeed, let  be another Cartesian 

reference fixed to the body, and  the matrix of  with respect to  (defined so that 

). Let  be the components of  with respect to . Then , 

for  , and  . This shows that  does 

not depend on the Cartesian reference used. That it does not depend on the observer 

at rest with respect to the body is because two such observers differ by a vector that 

has constant components with respect to a Cartesian basis fixed to the body and so it 

disappears when we take derivatives. 

Now a key fact is that there exists  such that 

[ ]  . 

To establish this, note first that  

  . 

Since  is Cartesian, we have that  (the identity matrix of order 3), and on 

taking derivatives of both sides we get  

 . 

Thus  is a skew-symmetric matrix, because . There-

fore  

  

(the signs are chosen for later convenience), where . Since the rows of  

are the components of  with respect to , we can write  and conse-

quently 

O 

P 
G 
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   ,  

with . Here we have used that the components of  

with respect to a Cartesian basis are . 

The formula  says that the instantaneous variation of  is the sum of the instanta-

neous variation of  with respect to  and, assuming , the velocity of  under 

the rotation of angular velocity  (the modulus of ) about the axis  (this will 

be explained later in a different way). The vector  is called the rotation velocity of  

and , if , the rotation axis relative to . The points  that are at rest 

with respect to  (i.e., with ) lie on the rotation axis (i.e., ) if and only if 

they are at instantaneous rest with respect to , for . 

If we let  be the position vector of  with respect to an unspecified observer (you 

may think about it as a worker in the lab), so that  

 , 

and set , , we have 

  . 

 

4.2. The inertia tensor. The inertia tensor of  with respect to  is the linear map 

 defined with respect to any Cartesian basis  by the matrix  

  , 

where  are the components of the position vector  of  with respect 

to . This does not depend on the Cartesian basis , because it is easy 

to check that the matrix in the expression is the matrix of the linear map  such 

that . Notice, for example, that for  we get 

  ,  

which is the first row of the matrix. In particular we have a coordinate-free description 

of , namely 

 . 

The main reason for introducing the inertia tensor is that it relates the angular mo-

mentum relative to , , and : 

 . 
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Indeed, since  is fixed with respect to  (i.e., ),  

  

      . 

In the last step we have used the formula  for the 

double cross product. 

4.3. Kinetic energy. The kinetic energy relative to   is given by the formula 

  . 

The proof is again a short computation: . But 

 and hence 

  , 

which establishes the claim because .  

Remark. If we let  be the distance of  to the rotation axis , then 

. Indeed, , 

with , and the claim follows from Pythagoras’ theorem, as  is the or-

thogonal projection of  to the rotation axis. Note that this shows that  is indeed the 

rotation kinetic energy of the solid.   

The kinetic energy with respect to an observer  for which   is, according to 

the second formula in §3.1 (with  playing the role of ) 

  , 

where ,  (the linear momentum of a point mass  moving with ), 

and  is the velocity of  with respect to . This formula can also be established di-

rectly, for the kinetic energy in question is 

 , 

and the first term of last expression is the kinetic energy relative to  and the third is 

. 

As a corollary we get, taking , that the kinetic energy with respect to  is, setting 

, 

 . 
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In other words, the kinetic energy of a rigid body is, for any observer, the sum of the 

kinetic energy  of a point particle of mass  moving as the braycenter of the 

body, and the rotation energy  of the rotation about the axis  

with angular velocity . 

4.4. Moments of inertia. Let  be an observer that is stationary with respect to the 

solid . Let  be a unit vector. If we let  turn with angular velocity  about the 

axis , the rotation kinetic energy is 

 , 

where  is called the moment of inertia with respect to the axis . 

4.5. Inertia axes. The inertia tensor  is symmetric (i.e., its matrix with respect to a rec-

tangular basis is symmetric), and hence there is an Cartesian basis  with re-

spect to which  has a diagonal matrix, say 

  . 

The axes  are then called principal axes (of inertia) relative to  and the quan-

tities , principal moments of inertia (note that  is the moment of inertia with respect 

to the corresponding principal axis). The axes are uniquely determined if the principal 

moments of inertia are distinct. In case two are equal, but the third is different, say 

 and , then the  axis is uniquely determined but the other two may be 

any pair of axis through  that are orthogonal and orthogonal to . In this case we 

say that the solid is a gyroscope with axis . Finally, if , then any 

orthonormal basis gives principal axes through  and we say that  is a spherical gy-

roscope. 

Remark that if  with respect to the principal axes, then 

 , 

  . 

5. Dynamics of rigid bodies  

5.1. We have established the fundamental equations that rule the dynamics of a rigid 

body  for any observer : the momentum principle and the angular momentum prin-

ciple. If  and  are the total external force and total external moment of  relative to 
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, and  and  are the linear and angular mo-

ments of  relative to , those principles state 

that 

 Momentum principle (§1.6) 

    

 Angular momentum principle (§2.4) 

   

We also have proved that  

   , 

where  and  are the energy of  and the pow-

er of the external forces acting of . We may call 

this the “energy principle”.  

5.2. Euler’s equation. Let  be an observer that is at rest with respect the solid . Let  

and  be the inertia tensor and the total external moment of  relative to . Then we 

have  

[ ]  . 

We know that  (§5.1) and  (§4.2). Thus we have 

  

Since  is independent of the motion,   (note that , because 

 and ), and this completes the proof. 

5.3. As a corollary we have that in the absence of external forces the angular velocity 

can be constant only if it is parallel to a principal axis. Indeed, if  is constant and 

there are no external forces, then , and this relation is equivalent to say 

that  is an eigenvector of . 

As another corollary we obtain that 

     , 

for    

(in the second step we have used that  is symmetric).  

5.4. Euler’s equations. Writing the equation [ ] in the principal axes through  we get 

the equations  

  

[ ]  
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6. Continuous systems 

 

Let us indicate how can one proceed to extend the theory to continuous systems. In-

stead of a finite number of masses located at some points, we consider a mass distri-

bution  on a region  in , that is, a positive continuous function  . We 

will say that  is a material system (or a material body).  

 

6.1. The total mass of  is , where  is the volume element of . More 

generally, if  is a subregion of  (usually called a part of ) we say that 

 is the mass of, or contained in, .  

The intuition behind this model is that  represents the (infinitesimal) mass con-

tained in the volume element  and so the mass contained in  is the “sum” of all 

the . But the “sum” of infinitesimal terms is just the integral. 

6.2. The center of mass  of   is the point  with 

  .  

The point  does not depend on the observer  used to calculate it. The proof is similar 

to the discrete case. 

 

6.3. The instantaneous motion of the material system is represented by a vector field 

 defined on . We will say that  is the velocity field of the system, and that the ve-

locity of the mass element  is . In general, both  and  are dependent on 

time. 
 

6.4. The momentum of  is  and the momentum of the region  is  

 . 

The momentum principle states that the instantaneous variation with time of , 

for any part , is equal to the external force  acting on .  The external forces 

include those that the exterior of  in  exert on  along the boundary of . 

 

6.5. The angular momentum of  is  and the momentum of 

the region  is  

 . 

The angular momentum principle states that the instantaneous variation with time of 

, for any part , is equal to the external torque  acting on . The external 

torque includes that produced by the exterior of  in  along the boundary of . 

6.6. The inertia tensor of a rigid continuous body  with respect to the observer  is 

defined as 
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        . 

Here  is the position vector of a point on the body relative to ,  denotes the 

linear map  and the coordinates  are Cartesian coordinates with 

origin . 

6.7. Angular velocity is defined as in the discrete case, so that we still have, if the prin-

ciples of momentum and angular momentum are true, all the relations that were es-

tablished for discrete rigid bodies. In particular we have Euler’s equation 

  . 

 

  

7. Historical notes  

 
7.1. Mechanica.  Euler published his treatise on Mechanics in 1736, in two volumes. 
They can be found through http://math.dartmouth.edu/~euler/, both in the original Latin 
and in English (translation by Ian Bruce). For our purposes, it is appealing to quote a 
few striking sentences of the translators preface to the English version: 

... while Newton's Principia was fundamental in giving us our understanding of at least 
a part of mechanics, it yet lacked in analytical sophistication, so that the mathematics 
required to explain the physics lagged behind and was hidden or obscure, while with 
the emergence of Euler's Mechanica a huge leap forwards was made to the extend 
that the physics that could now be understood lagged behind the mathematical appa-
ratus available. A short description is set out by Euler of his plans for the future, which 
proved to be too optimistic. However, Euler was the person with the key into the mag-
ic garden of modern mathematics, and one can savour a little of his enthusiasm for the 
tasks that lay ahead : no one had ever been so well equipped for such an undertaking. 
Although the subject is mechanics, the methods employed are highly mathematical 
and full of new ideas. 

It is also interesting to reproduce, in Euler’s own words, what “his plans for the future” 
in the field of Mechanics were (vid. §98 of EULER-1936):  

The different kinds of bodies will therefore supply the primary division of our work. 
First … we will consider infinitely small bodies... Then we will approach those bodies of 
finite magnitude which are rigid… Thirdly, we will consider flexible bodies. Fourthly, … 
those which allow extension and contraction. Fifthly, we will examine the motions of 
several separated bodies, some of which hinder each other from their own motions… 
Sixthly, at last, the motion of fluids… 

These words are preceded, however, by the acknowledgement that  

… this hitherto … has not been possible … on account of the insufficiency of principles 
… 

http://math.dartmouth.edu/~euler/
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7.2. Motion of rigid bodies. Daniel Bernoulli states in a letter to Euler dated 12 De-
cember 1745 that the motion of a rigid bodies is “and extremely difficult problem that 
will not be easily solved by anybody…” (quotation extracted from TRUESDELL-1975). 

The prediction was not very sharp, as fifteen years later Euler had completed the mas-
terpiece EULER-1965-a that collects a systematic account of his findings in the interven-
ing years and which amount to a complete and detailed solution of the problem. 

Euler’s earliest breakthrough was his landmark paper EULER-1952, which “has dominat-
ed the mechanics of extended bodies ever since”. This quotation, which is based in 
TRUESDELL-1954, is from the introduction to E177 in [1] and it is fitting that we repro-
duce it here:  

In this paper, Euler begins work on the general motion of a general rigid body.  Among 
other things, he finds necessary and sufficient conditions for permanent rotation, 
though he does not look for a solution.  He also argues that a body cannot rotate freely 
unless the products of the inertias vanish.  As a result of his researches in hydraulics 
during the 1740s, Euler is able, in this paper, to present a fundamentally different ap-
proach to mechanics, and this paper has dominated the mechanics of extended bodies 
ever since.  It is in this paper that the so-called Newton's equations   in rectan-
gular coordinates appear, marking the first appearance of these equations in a general 
form since when they are expressed in terms of volume elements, they can be used for 
any type of body.  Moreover, Euler discusses how to use this equation to solve the 
problem of finding differential equations for the general motion of a rigid body (in par-
ticular, three-dimensional rigid bodies).  For this application, he assumes that any in-
ternal forces that may be within the body can be ignored in the determination of tor-
que since such forces cannot change the shape of the body. Thus, Euler arrives at "the 
Euler equations" of rigid dynamics, with the angular velocity vector and the tensor of 
inertia appearing as necessary incidentals. 

For example, on p. 213 (of the original version, or p. 104 in OO II 1) we find the equa-
tions 

 

 

 

They can be decoded in terms of our presentation as follows: 

   

   

 ,  

and in this way we get equations that are equivalent to Euler’s equation (§5.2)  
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written in a reference tied to the body, but with general axis. 

It will also be informative to the reader to summarize here the introductory sections of 

E177. Rigid bodies are defined in §1, and the problems of their kinematics and dynam-

ics are compared with those of fluid dynamics and of elasticity. Then in §2 and §3 the 

two basic sorts of movements of a solid (translations and rotations) are explained. The 

“mixed” movements are also mentioned, with the Earth movement as an example. The 

main problem to which the memoir is devoted is introduced in §4: up to that time, 

only rotation axes fixed in direction had been considered, “faute de principles suffi-

sants”, and Euler suggests that this should be overcome. Then it is stated (§5) that any 

movement of a rigid body can be understood as the composition of a translation and a 

rotation. The role of the barycenter is also stressed, and the fact that the translation 

movement plays no role in the solution of the rotation movement. The momentum 

principle is introduced in §6. It is used to split the problem in two separate problems: 

 … on commencera par considérer … comme si toute la masse étoit réunie dans son 

centre de gravité, et alors on déterminera par les principes connues de la Mécanique le 

mouvement de ce point produit par les forces sollicitantes ; ce sera le mouvement 

progressif du corps. Après cela on mettra ce mouvement … a part, et on considérera ce 

même corps, comme si le centre de gravité étoit immobile, pour déterminer le mou-

vement de rotation …  

The determination of the rotation movement for a rigid body with a fixed barycenter is 

outlined in §7. In particular, the instantaneous rotation axis is introduced and its key 

role explained  

… quel que soit le mouvement d’un tel corps, ce sera pour chaque instant non seule-

ment le centre de gravité qui demeure en repos, mais il y aura aussi toujours une infi-

nité de points situés dans une ligne droite, qui passe par le centre de gravité, dont tous 

ce trouveront également sans mouvement. C'est à dire, quel que soit le mouvement 

du corps, il y aura en chaque instant un mouvement de rotation, qui se fait autour d’un 

axe, qui passe par le centre de gravité, et toute la diversité qui pourra avoir lieu dans 

ce mouvement, dépendra, outre la diversité de la vitesse, de la variabilité de cet axe …          

In §8 the main goal of the memoir is explained in detail: 

… je remarque que les principes de la Mécanique, qui ont été établis jusqu’à présent, 

ne sont suffisants, que pour le cas, où le mouvement de rotation se fait continuelle-

ment autour du même axe. … Or dès que l’axe de rotation ne demeure plus le même, 

… alors les principes de Mécanique connues jusqu’ici ne sont plus suffisants à détermi-

ner ce mouvement. Il s’agit donc de trouver et d’établir de nouveaux principes, qui 

soient propres a ce dessin ; et cette recherche sera le sujet de ce Mémoire, dont je suis 

venu à bout après plusieurs essais inutiles, que j’ai fait depuis long-tems.  
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The principle that is missing, and which is established in E177,  is the angular momen-

tum principle, and with it he can finally arrive at Euler’s equations that give the relation 

between the instantaneous variation of the angular velocity and the torque of the ex-

ternal forces. And with regard to the sustained efforts toward the solution of the prob-

lem, there is a case much in point, namely, the investigations that led to the two vo-

lumes of Scientia navalis (published in 1749 in San Petersburg; E110 and E111, OO II 

18, 19) and in which important concepts are introduced and some special problems of 

the dynamics of rigid bodies are solved. 

The discovery of the principal axes, that brought much simplification to the equations,  

was published in EULER-1765-b. 

Of the final treatise EULER-1965-a, it is worth reproducing the short assessment at the 

beginning of BLANC-1946: 

… est un traité de dynamique du solide; il s’agit d’un ouvrage complet, de caractère di-

dactique, exposant d’une façon systématique ce que l’auteur avait, dans les années 

1740 à 1760, publié a dans divers mémoires. L’établissement des équations différen-

tielles du mouvement d’un solide (celles que l’on appelle aujourd’hui les équations 

d’Euler) en constitue l’objet essentiel. 

Let us also say that the words in TRUESDELL-1954 concerning Euler’s works in fluid me-

chanics are also fitting for the case of the rigid body, and for Mechanics in general. The 

results of Euler are “not forged by a brief and isolated intuition” and 

… we shall learn how the most creative of all mathematicians searched, winnowed, 
and organized the works of his predecessors and contemporaries; shaping, polishing, 
and simplifying his ideas anew after repeated successes which any other geometer 
would have let stand as complete; ever seeking first principles, generality, order, and, 
above all, clarity. 

 

The works of Euler on Mechanics, and on rigid bodies in particular, have been the 
source of much of the subsequent texts, like the “classics” GOLDSTEIN-1950 and LANDAU-
1966, or in the recent GREGORY-2006. The latter, however, is (rightly) critical about the 
significance of Euler’s equations and points out two “deficiencies” (p. 548): The know-
ledge of the time variation of  does not give the position of the body, and the know-
ledge of  does not yield its principal components, as the orientation of the body is 
not known.  
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