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EULER AND THE DYNAMICS OF RIGID BODIES

Sebastià Xambó Descamps
Sebastia.xambo@upc.edu

0.- Notations and conventions.

The material in sections 0-6 of this paper is an adaptation of parts of the 
Mechanics chapter of XAMBÓ (2007). The mathematical language used is 
rather standard. The reader will need a basic knowledge of linear algebra, 
of Euclidean geometry (see, for example, XAMBÓ (2001)), and of basic cal-
culus.

0.1.- If we select an origin O  in Euclidean 3-space 3E , each point P  can be 
specified by a vector  , where 3V  is the Euclidean vector 
space associated with 3E . This sets up a one-to-one correspondence between 
points P  and vectors r. The inverse map is usually denoted r+= OP .

Usually we will speak of “the point r ”, instead of “the point P ”, implying 
that some point O  has been chosen as an origin. Only when conditions on 
this origin become relevant we will be more specific. From now on, as it is fit-
ting to a mechanics context, any origin considered will be called an observer.

When points are assumed to be moving with time, their movement will 
be assumed to be smooth. This includes observers O  for which we do not 
put any restriction on its movement (other than it be smooth). This generality, 
which we find necessary for our analysis, is not considered in the classical 
mechanics texts, where O  is allowed to have a uniform movement or to be 
some special point of a moving body. Another feature of our presentation is 
that it is coordinate-free. Coordinate axes are used only as an auxiliary means 
in cases where it makes possible a more accessibly proof of a coordinate free 
statement (for an example, see §4.2).

0.2.- The derivative  is the velocity, or speed, of P relative toO . 
Similarly, is the acceleration of P  relative to O . 

Let us see what happens to speeds and accelerations when they are 
referred to another observer, say s+= OO' , where s  is any (smooth) func-
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tion of t . If  (the position vector 
of P  with respect to 'O ), then  and 
hence s'rr  += . In other words, the velocity 
with respect to O  is the (vector) sum of the 
velocity with respect to 'O  and the velocity of 

'O  with respect to O . Taking derivative once 
more, we see that srr  += ' , which means that 
the acceleration with respect to O  is the (vector) sum of the acceleration with 
respect to 'O  and the acceleration of 'O  with respect to O . 

As a corollary we see that the velocity (acceleration) of P  with respect to 
O  is the same as the velocity (acceleration) of P  with respect 'O  if and only if

0=s  )0( =s . Note that the condition for 'O  to be at rest with respect to O  for 
some temporal interval is that 0≡s  in that interval. Similarly, 0≡s for some 
temporal interval if and only if su =  is constant on that interval, or pus += t , 
where p  is also constant. In other words, 0≡s  for a temporal interval means 
that the movement of 'O  relative to O  is uniform for that interval.

1.- The momentum principle.

Since we refer points to an observer O , velocities, accelerations and other 
vector quantities defined using them (like momentum, force and energy) will 
also be relative toO . Our approach is non-relativistic, as masses are assumed 
to be invariable and speeds are not bounded. 

1.1.- Consider a system Σ of point masses m1,...,mN located at the points r1,...,rN . 
The total mass of Σ is m = m1 + ... + mN . The velocity of mk is rk = drk /dt  and 
its (linear) momentum is pk = mkrk . The acceleration of mk is rk = d2rk /dt2. 
The force acting on mk is Fk = mkrk (all observers accept Newton’s second law). 
In particular we have that Fk ≡ 0 for some temporal interval if and only if 
the movement of mk relative to O is uniform on that interval (cf. §0.2). This is 
Galileo’s inertia principle, or Newton’s first law, relative to O.

The force with respect to the observer s+= PO'  is

as  .

1.2.- The centre of mass of Σ is the point GrOG +=  with

)...(1
1 N1G rrr Nmm

m
++=  .

The point G  is also called inertia centre or barycenter. It does not depend on 
the observerO , and hence it is a point intrinsically associated with Σ. Indeed, 
if s+= OO'  is another observer, then  is the position vector of km  
with respect to 'O , and

∑∑∑ −=−=
k

k
k

k
k

k m
m

m
m

m
m

srsr'r Gkk
111

 ,

which just says that

∑ =+=−++=+
k

k GOOrm
m

O GGk rsrs' )(1'

Note that the argument also shows that the position vector of G  with 
respect to 'O  is 

sr'r GG −= .

The velocity V  of G  is

)...(1
1 N1G rrrV  Nmm

m
++== .

The relation  implies that if  denotes the velocity of G  with 
respect to another origin 'O , then , with sv =  the velocity of 'O  with 
respect to O . 

1.3.- The (linear) momentum of Σ is  . By §1.2 we can write

VrP G mm ==  .

Note that if  denotes the momentum referred to another observer 
s+= OO' , and v  is the velocity of 'O  with respect to O , then 

.

Indeed,  .
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1.4.- If kF  denotes the force acting on km , the total or resultant force acting on 
Σ is defined as

∑=
k

kFF .

From the definitions it follows immediately that

FP = .

In fact, . 

Unfortunately the equation FP =  is not very useful, as we do not yet 
have information on F  other than the formal definition using Newton’s 
second law.

1.5.- In the analysis of the force, it is convenient to set i
k

e
kk FFF += , where 

e
kF  and i

kF  denote the external and internal forces acting on km , so that 
ie FFF += , with ∑=

k

e
k

e FF  and ∑=
k

i
k

i FF . 

The internal force is construed as due to some form of “interaction” 
between the masses, and is often represented as , with the

force “produced” by jm  on km  (with the convention ). Here we fur-
ther assume that  only depends on kj rr − , which implies that iF  does not 
depend on the observer. One example of interaction is the given by Newton’s 
law for the gravitation force, for which

 

.

The external force usually models interaction forces of km  with systems 
that are “external” to Σ, as, for example, the Earth gravitation force on the 
particle km .

Since the internal force is independent of the observer, the transformation 
law for the external force is the same as for the force and total force: 

sFF' e
k

e
k km−=  , sFF' ee m−= .

We may say that observer O  sees that the movement of 'O  is driven by 

the force sm  and therefore that 'O  will experience this force as an external 
force sm− . In particular we see that ee FF' =  at a given instant (or temporal 
interval) if and only if 0=s  ( 0≡s in that interval, which means that 'O  is 
moving uniformly with respect to O ).

1.6.- We will say that the system is Eulerian if 0=iF . It is thus clear that for 
Eulerian systems eFF = , and so they satisfy the law

eFP = .

This law is called the momentum principle. In particular we see that for 
Eulerian systems the momentum P  is constant if there are no external forces, and 
this is the principle of conservation of momentum. Notice, however, that external 
forces may vanish for an observer but not for another (cf. §1.5). 

1.7.- We will say that a discrete system is Newtonian if (cf. §1.5)

and , where  are real quantities such that  for any 
jk, . Note that this implies that  for all pairs },...,1{, Nkj ∈ , which 

is what we expect if  is thought as the force “produced” by jm  on km  and 
Newton’s third law is correct. 

The main point here is that Newtonian systems are Eulerian, for

.

1.8.- A (discrete) rigid body is a Newtonian system Σ in which the distances 
 are constant. The intuition for this model is provided by situa-

tions in which we imagine that the force of jm  on km  is produced by some 
sort of inextensible massless rod connecting the two masses. The inextensible 
rod ensures that the distance between km  and jm  is constant. The force  
has the form  because that force is parallel to the rod, and 
by Newton’s third law and the identity )( jkkj rrrr −−=− . For real rigid bod-
ies, atoms play the role of particles and inter-atomic electric forces the role 
of rods.

Since a rigid body is Newtonian, it is also Eulerian. Therefore a rigid body 
satisfies the momentum principle (cf. §1.6).
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2.- The angular momentum principle.

2.1.- With the same notations as in the Section 1, we define the angular 
momentum kL  of km  relative to O  by

kkkkk rrprL ×=×= km ,

and the angular momentum L  of Σ with respect to O by

∑ ∑∑ ×=×==
k k

k
k

m kkkkk rrprLL  .

If we choose another observer sOO +=' , the angular momentum  of 

km  with respect to 'O  is related to kL  as follows:

.

Summing with respect to k  we obtain that

.

Note that

][∗ 	 ssrsrsL'L GG  ×+×+×−= mmm . 

Note also that GrsL'L  ×−= m  if either 'O  has a uniform motion with 
respect to O  or else GO ='  (in this case Grs = ). 

2.2.- The moment or torque kN of the force kF  with respect to O is defined by

kkk FrN ×= ,

and the total (or resultant) moment or torque N of the forces by

∑ ∑ ×==
k k

kkk FrNN .

If we choose another observer s+= OO' , then 

.

Summing with respect to k , we get 

][∗ 	 .

Note that  if either 'O  has a uniform movement with 
respect to O  or if GO ='  (in this case Grs = ).

2.3.- We have the equation

NL = .

Indeed, since 0=× kk rr  ,

.

2.4.- Now ie NNN += , where eN  and iN  are the momenta of the external 
and internal forces, respectively. We will say that Σ is strongly Eulerian if it is 
Eulerian and 0=iN . For strongly Eulerian systems we have (§2.3) the equa-
tion

eNL = ,

which is called the angular momentum principle.
Newtonian systems, hence in particular rigid bodies, are strongly Eulerian. 

Indeed, since they are Eulerian, it is enough to see that 0=iN , and this can 
be shown as follows:

.

We have used that , with , for a Newtonian sys-
tem.
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Remark. If we consider the observer s+= OO' , then of course we have 
, and here we point out that this equation is, for an strongly Eulerian 

system, consistent with the relations ][∗  in §2.1 and §2.2. Since these relations 
are 

,

,

the consistency amounts to the relation e
G Fsrs ×=× m , which is true because 

an Eulerian system satisfies e
G FPr ==m  (momentum principle).

3.-  Energy.

3.1.-  Kinetic energy.

This is also a quantity that depends on the observer O and which can be 
defined for general systems Σ. The kinetic energy of Σ, as measured byO , is 

∑=
k

kmT 2
kr2

1 .

If sOO +='  is another observer, and 'T  is the kinetic energy of Σ as mea-
sured by 'O , then we have:

sPs2  ⋅−+= mTT
2
1' ,

where  ( m  times the speed of G  with respect to O ). Indeed, with the 
usual notations,

sr'r kk  −= , 2
k

2
k

2
k ssrr'r  +−= 2 , and

∑∑∑∑ ⋅−+==
k

k
k

k
k

k
k

k mmmmT srsr'r k
22

k
2
k 

2
1

2
1

2
1' , 

which yields the claim because the first summand is T , the second is 2sm21
and in the third ∑ ==

k
k mm Prr Gk  .

The power Π of the forces kF , as measured by O , is defined as∑ ⋅
k

kk Fr . 

If we define in an analogous way the power Πe of the external forces and the 
power Πi of the internal forces, then the instantaneous variation of T is given 
by

.

The proof is a short computation:

.

3.2.- Conservative systems.

The system Σ is said to be conservative if there is a smooth function 
),...,( N1 rrVV =  that depends only of the differences kj rr − and such that 

, where  denotes the gradient of V  as a function of kr . The 
function V  is independent of the observer and it is called the potential of Σ.

Example. The Newtonian gravitational forces

are conservative, with potential 

∑∑
≠< −

=
−

=
jk

jk

jk

jk mm
G

mm
GV

kjkj rrrr2
1 ,

as .

Conservative systems satisfy the relation

.

Indeed, (the latter equality is by the 
chain rule).

For a conservative system Σ, the sum VTE +=  is called the energy. As a 
corollary of §3.1 and §3.2, we have that 
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.

In particular E  is a conserved quantity if there are no external forces. 
This is the case, for example, for a system of particles with only gravitational 
interaction.

4.- Kinematics of rigid bodies.

To study the kinematics of a rigid body Σ, it is convenient to modify a little 
the notations of the previous sections. 

4.1.- Angular velocity.

We will let O denote an observer fixed 
in relation to the body (not necessarily 
a point of the body) and let pxx = be 
the position vector with respect to O  of 
any moving point P , so that x+= OP . 
If we fix a positively oriented orthonor-
mal basis (also called a Cartesian reference) 321 uuu ,, to the body at O , then 

321 uuux 321 xxx ++=

u
u
u
u

3

2

1

xxxx =















= ),,( 321 (matrix notation),

with )(txx ii = , 3,2,1=i . We define the velocity of x (or of P ) with respect to  
Σ as the vector

.

It is easy to see that does not depend on the Cartesian basis u  used 
to define it, or on the observerO fixed with respect to the body. Indeed, 
let v  be another Cartesian reference fixed to the body, and A  the matrix 
of v  with respect to u (defined so that uv A= ). Let be the 

components of x  with respect to v . Then , for , 
and . This shows that  does not depend on the 
Cartesian reference used. That it does not depend on the observer at rest with 
respect to the body is because two such observers differ by a vector that has 
constant components with respect to a Cartesian basis fixed to the body and 
so it disappears when we take derivatives.

Now a key fact is that there exists  = (t) such that

][∗ 	 .

To establish this, note first that 

.

Since u  is Cartesian, we have that (the identity matrix of order 
3), and on taking derivatives of both sides we get 

0=⋅+⋅ TT uuuu  .

Thus  is a skew-symmetric matrix, because . 
Therefore 

(the signs are chosen for later convenience), where . Since the 
rows of  are the components of 321 uuu  ,, with respect to u , we can write 

 and consequently

, 

with . Here we have used that the components of 
with respect to a Cartesian basis are .

The formula ][∗  says that the instantaneous variation of x  is the sum of 
the instantaneous variation of x  with respect to Σ and, assuming , the 
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velocity of x  under the rotation of angular velocity  (the modulus of ) 
about the axis  (this will be explained later in a different way). The 
vector  is called the rotation velocity of Σ and  , if , the rotation 
axis relative to O . The points P  that are at rest with respect to Σ (i.e. with 

) lie on the rotation axis (i.e. ) if and only if they are at instanta-
neous rest with respect toO , for .

If we let r  be the position vector of P  with respect to an unspecified 
observer (you may think about it as a worker in the lab), so that 

xrr 0 += ,

and set rv = , 00 rv = , we have

.

4.2.- The inertia tensor.

The inertia tensor of Σ with respect to O  is the linear map 33: VVI →  
defined with respect to any Cartesian basis 321 uuu ,,  by the matrix

∑
















+−−
−+−
−−+

2
2

2
12313

32
2

3
2
112

3121
2

3
2

2

kkkkkk

kkkkkk

kkkkkk

k

xxxxxx
xxxxxx
xxxxxx

m  ,

where ),,( 321 kkk xxx  are the components of the position vector kx  of km  with 
respect to 321 uuu ,, . This does not depend on the Cartesian basis 321 uuu ,, , 
because it is easy to check that the matrix in the expression is the matrix of 
the linear map 33 VV → such that kk

2
k xyxyxy )( ⋅− . Notice, for example, 

that for 1uy =  we get

),,()0,0,()( 3211
2

3
2

2
2
1 kkkkkkk xxxxxxx −++≡⋅− k1k1

2
k xuxux , 

which is the first row of the matrix. In particular we have a coordinate-free 
description of I , namely

∑ ⋅−=
k

kmI ))(()( kk
2
k xyxyxy .

The main reason for introducing the inertia tensor is that it relates the 
angular momentum relative to O , L , and :

.

Indeed, since kx  is fixed with respect to Σ (i.e., ), 

 
.

In the last step we have used the formula cbabcacba )()()( ⋅−⋅=××  for 
the double cross product.

4.3.- Kinetic energy.

The kinetic energy relative to O  is given by the formula

.

The proof is again a short computation: .

But  and hence

 ,

which establishes the claim because . 

Remark. If we let kd be the distance of km to the rotation axis , then 
. Indeed, , 

with , and the claim follows from Pythagoras’ theorem, as uxk ⋅  is 
the orthogonal projection of kx to the rotation axis. Note that this shows that 
T is indeed the rotation kinetic energy of the solid. 

The kinetic energy with respect to an observer L  for which 0r+= LO  is, 
according to the second formula in §3.1 (with 0r−= OL playing the role of 

'O )

 ,
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where 00 rv = , 0vP m= (the linear momentum of a point mass m  moving 
with O ), and Gx is the velocity of G  with respect to O . This formula can 
also be established directly, for the kinetic energy in question is

∑∑∑∑ ⋅++=+=
k

kk
k

kk
k

kk
k

kk mmmmm xvvxxvr 00  2
0

222

2
1

2
1)(

2
1

2
1 ,

and the first term of last expression is the kinetic energy relative to O and the 
third is G0 xv ⋅m .

As a corollary we get, taking GO = , that the kinetic energy with respect 
to L  is, setting GrV = ,

.

In other words, the kinetic energy of a rigid body is, for any observer, the sum 
of the kinetic energy 2Vm21  of a point particle of mass m  moving as the bray-
center of the body, and the rotation energy  of the rotation about the 
axis  with angular velocity .

4.4.- Moments of inertia.

Let O  be an observer that is stationary with respect to the solid Σ. Let u  
be a unit vector. If we let Σ turn with angular velocity  about the axis 

u+0 , the rotation kinetic energy is

,

where  is called the moment of inertia with respect to the axis 
u+0 .

4.5.- Inertia axes.

The inertia tensor I  is symmetric (i.e., its matrix with respect to a rect-
angular basis is symmetric), and hence there is an Cartesian basis 321 uuu ,,  
with respect to which I  has a diagonal matrix, say

.

The axes ju+0  are then called principal axes (of inertia) relative to O  
and the quantities jI , principal moments of inertia (note that jI  is the moment 
of inertia with respect to the corresponding principal axis). The axes are 
uniquely determined if the principal moments of inertia are distinct. In case 
two are equal, but the third is different, say 21 II = and 13 II ≠ , then the 3I
axis is uniquely determined but the other two may be any pair of axis through 
O  that are orthogonal and orthogonal to 3u . In this case we say that the solid 
is a gyroscope with axis 3u+0 . Finally, if 321 III == , then any orthonor-
mal basis gives principal axes through O  and we say that Σ is a spherical 
gyroscope.

Remark that if  in the principal axis, then

,

3

2
3

2

2
2

1

2
12

33
2
22

2
11 222

)(
2
1

I
L

I
L

I
LwIwIwITrot ++=++= .

5.- Dynamics of rigid bodies. 

5.1.- We have established the funda-
mental equations that rule the dynam-
ics of a rigid body Σ for any observer 
O : the momentum principle and the 
angular momentum principle. If F  
and N are the total external force and 
total external moment of Σ relative to 
O , and P  and L  are the linear and 
angular moments of Σ relative to O , 
those principles state that

Momentum principle (§1.6)

FP =

Angular momentum principle (§2.4)

NL =

We also have proved that 
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,

where E  and Π are the energy of Σ and the power of the external forces act-
ing of Σ. We may call this the “energy principle”.

5.2.- Euler’s equation.

Let O be an observer that is at rest with respect the solid Σ. Let I  and N be 
the inertia tensor and the total external moment of Σ relative to O . Then we 
have 

[ ]∗ 	 .

We know that LN =  (§5.1) and  (§4.2). Thus we have

Since I  is independent of the motion,  (note that , 
because  and ), and this completes the proof.

5.3.- As a corollary we have that in the absence of external forces the angular 
velocity can be constant only if it is parallel to a principal axis. Indeed, if  is 
constant and there are no external forces, then , and this relation is 
equivalent to say that  is an eigenvector of I .

As another corollary we obtain that

,

for 

(in the second step we have used that I is symmetric). 

5.4.- Euler’s equations.

Writing the equation [ ]∗  in the principal axes through O  we get the equa-
tions 

[ ]∗∗  	

6.- Continuous systems.

Let us indicate how one can proceed to extend the theory to continuous 
systems. Instead of a finite number of masses located at some points, we con-
sider a mass distribution  on a region R  in 3E , that is, a positive continuous 
function  . We will say that  is a material system (or a 
material body). 

6.1.- The total mass of Σ is , where  is the volume element of .

 More generally, if RR ⊆'  is a subregion of R (usually called a part of R ) we 
say that  is the mass of, or contained in, 'R . 

The intuition behind this model is that  represents the (infinitesimal) 
mass contained in the volume element  and so the mass contained in 'R  
is the “sum” of all the . But the “sum” of infinitesimal terms is just the 
integral.

6.2.- The center of mass G  of Σ is the point Gr+O  with

. 

The point G  does not depend on the observer O  used to calculate it. The 
proof is similar to the discrete case.

6.3.- The instantaneous motion of the material system is represented by a 
vector field u  defined on R . We will say that u  is the velocity field of the 
system, and that the velocity of the mass element  is . In general, 
both R  and u  are dependent on time.

6.4.- The momentum of  is  and the momentum of the region 'R  is

.
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The momentum principle states that the instantaneous variation with time 
of )'(RP , for any part 'R , is equal to the external force )'(RF  acting on 'R . 
The external forces include those that the exterior of 'R  in R  exert on 'R  
along the boundary of 'R .

6.5.- The angular momentum of  is  and the momentum 
of the region 'R  is 

.

The angular momentum principle states that the instantaneous variation 
with time of )'(RL , for any part 'R , is equal to the external torque )'(RN  
acting on 'R . The external torque includes that produced by the exterior of 

'R  in R  along the boundary of 'R .

6.6.- The inertia tensor of a rigid continuous body R  with respect to the 
observer O  is defined as

.

Here x  is the position vector of a point on the body relative to O , xx ⊗ˆ  
denotes the linear map xyxy )( ⋅  and the coordinates 321 ,, xxx  are 
Cartesian coordinates with origin O .

6.7.- Angular velocity is defined as in the discrete case, so that we still have, 
if the principles of momentum and angular momentum are true, all the rela-
tions that were established for discrete rigid bodies. In particular we have 
Euler’s equation

.

7.- Historical notes.

7.1.- Mechanica.

Euler published his treatise on Mechanics in 1736, in two volumes. They 
can be found through http://math.dartmouth.edu/~euler/, both in the original 
Latin and in English (translation by Ian Bruce). For our purposes, it is appeal-
ing to quote a few striking sentences of the translators preface to the English 
version:

“while Newton’s Principia was fundamental in giving us our under-
standing of at least a part of mechanics, it yet lacked in analytical sophis-
tication, so that the mathematics required to explain the physics lagged 
behind and was hidden or obscure, while with the emergence of Euler’s 
Mechanica a huge leap forwards was made to the extend that the physics 
that could now be understood lagged behind the mathematical apparatus 
available. A short description is set out by Euler of his plans for the future, 
which proved to be too optimistic. However, Euler was the person with the 
key into the magic garden of modern mathematics, and one can savour a 
little of his enthusiasm for the tasks that lay ahead : no one had ever been so 
well equipped for such an undertaking. Although the subject is mechanics, 
the methods employed are highly mathematical and full of new ideas.”

It is also interesting to reproduce, in Euler’s own words, what “his plans 
for the future” in the field of Mechanics were (vid. §98 of EULER (1936)):

“The different kinds of bodies will therefore supply the primary division 
of our work. First … we will consider infinitely small bodies... Then we 
will approach those bodies of finite magnitude which are rigid… Thirdly, 
we will consider flexible bodies. Fourthly, … those which allow extension 
and contraction. Fifthly, we will examine the motions of several separated 
bodies, some of which hinder each other from their own motions… Sixthly, 
at last, the motion of fluids…”

These words are preceded, however, by the acknowledgement that

“this hitherto … has not been possible … on account of the insuffi-
ciency of principles …”
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7.2.- Motion of rigid bodies.

Daniel Bernoulli states in a letter to Euler dated 12 December 1745 that the 
motion of a rigid bodies is “and extremely difficult problem that will not be 
easily solved by anybody…” (quotation extracted from TRUESDELL (1975)).

The prediction was not very sharp, as fifteen years later Euler had com-
pleted the masterpiece Euler (1965a) that collects a systematic account of 
his findings in the intervening years and which amount to a complete and 
detailed solution of the problem.

Euler’s earliest breakthrough was his landmark paper Euler (1752), 
which “has dominated the mechanics of extended bodies ever since”. This 
quotation, which is based in TRUESDELL (1954), is from the introduction to 
E177 in [1] and it is fitting that we reproduce it here:

“In this paper, Euler begins work on the general motion of a general 
rigid body. Among other things, he finds necessary and sufficient condi-
tions for permanent rotation, though he does not look for a solution. He 
also argues that a body cannot rotate freely unless the products of the in-
ertias vanish. As a result of his researches in hydraulics during the 1740s, 
Euler is able, in this paper, to present a fundamentally different approach 
to mechanics, and this paper has dominated the mechanics of extended 
bodies ever since. It is in this paper that the so-called Newton’s equations 

af m=  in rectangular coordinates appear, marking the first appearance 
of these equations in a general form since when they are expressed in terms 
of volume elements, they can be used for any type of body. Moreover, Euler 
discusses how to use this equation to solve the problem of finding dif-
ferential equations for the general motion of a rigid body (in particular, 
three-dimensional rigid bodies). For this application, he assumes that any 
internal forces that may be within the body can be ignored in the deter-
mination of torque since such forces cannot change the shape of the body. 
Thus, Euler arrives at “the Euler equations” of rigid dynamics, with the 
angular velocity vector and the tensor of inertia appearing as necessary 
incidentals.”

For example, on p. 213 (of the original version, or p. 104 in OO II 1) we 
find the equations

They can be decoded in terms of our presentation as follows:

 
 

, 

and in this way we get equations that are equivalent to Euler’s equation 
(§5.2) 

written in a reference tied to the body, but with general axis.

It will also be informative to the reader to summarize here the introduc-
tory sections of E177. Rigid bodies are defined in §1, and the problems of 
their kinematics and dynamics are compared with those of fluid dynamics 
and of elasticity. Then in §2 and §3 the two basic sorts of movements of a 
solid (translations and rotations) are explained. The “mixed” movements are 
also mentioned, with the Earth movement as an example. The main problem 
to which the memoir is devoted is introduced in §4: up to that time, only 
rotation axes fixed in direction had been considered, “faute de principles suf-
fisants”, and Euler suggests that this should be overcome. Then it is stated 
(§5) that any movement of a rigid body can be understood as the composition 
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of a translation and a rotation. The role of the barycenter is also stressed, and 
the fact that the translation movement plays no role in the solution of the 
rotation movement. The momentum principle is introduced in §6. It is used 
to split the problem in two separate problems:

“… on commencera par considérer … comme si toute la masse étoit 
réunie dans son centre de gravité, et alors on déterminera par les principes 
connues de la Mécanique le mouvement de ce point produit par les forces 
sollicitantes; ce sera le mouvement progressif du corps. Après cela on met-
tra ce mouvement … à part, et on considérera ce même corps, comme si le 
centre de gravité étoit immobile, pour déterminer le mouvement de rotation 
…”

The determination of the rotation movement for a rigid body with a fixed 
barycenter is outlined in §7. In particular, the instantaneous rotation axis is 
introduced and its key role explained 

“… quel que soit le mouvement d’un tel corps, ce sera pour chaque 
instant non seulement le centre de gravité qui demeure en repos, mais il 
y aura aussi toujours une infinité de points situés dans une ligne droite, 
qui passe par le centre de gravité, dont tous ce trouveront également sans 
mouvement. C’est à dire, quel que soit le mouvement du corps, il y aura en 
chaque instant un mouvement de rotation, qui se fait autour d’un axe, qui 
passe par le centre de gravité, et toute la diversité qui pourra avoir lieu dans 
ce mouvement, dépendra, outre la diversité de la vitesse, de la variabilité 
de cet axe …”

In §8 the main goal of the memoir is explained in detail:

“… je remarque que les principes de la Mécanique, qui ont été établis 
jusqu’à présent, ne sont suffisants, que pour le cas, où le mouvement de 
rotation se fait continuellement autour du même axe. … Or dès que l’axe 
de rotation ne demeure plus le même, … alors les principes de Mécanique 
connues jusqu’ici ne sont plus suffisants à déterminer ce mouvement. Il 
s’agit donc de trouver et d’établir de nouveaux principes, qui soient propres 
à ce dessin ; et cette recherche sera le sujet de ce Mémoire, dont je suis venu 
à bout après plusieurs essais inutiles, que j’ai fait depuis longtemps.“

The principle that is missing, and which is established in E177, is the 
angular momentum principle, and with it he can finally arrive at Euler’s 
equations that give the relation between the instantaneous variation of the 
angular velocity and the torque of the external forces. And with regard to the 
sustained efforts toward the solution of the problem, there is a case much in 
point, namely, the investigations that led to the two volumes of Scientia navalis 
(published in 1749 in San Petersburg) and in which some special problems of 
the dynamics of rigid bodies are solved.

The discovery of the principal axes, that brought much simplification to 
the equations, was published in EULER (1765b).

Of the final treatise EULER (1965a), it is worth reproducing the short 
assessment at the beginning of Blanc (1946):

“… est un traité de dynamique du solide; il s’agit d’un ouvrage com-
plet, de caractère didactique, exposant d’une façon systématique ce que 
l’auteur avait, dans les années 1740 à 1760, publié dans divers mémoires. 
L’établissement des équations différentielles du mouvement d’un solide (ce-
lles que l’on appelle aujourd’hui les équations d’Euler) en constitue l’objet 
essentiel.”

Let us also say that the words in TRUESDELL (1954) concerning Euler’s 
works in fluid mechanics are also fitting for the case of the rigid body and 
for Mechanics in general. The results of Euler are “not forged by a brief and 
isolated intuition” and

“… we shall learn how the most creative of all mathematicians sear-
ched, winnowed, and organized the works of his predecessors and contem-
poraries; shaping, polishing, and simplifying his ideas anew after repeated 
successes which any other geometer would have let stand as complete; ever 
seeking first principles, generality, order, and, above all, clarity.”

The works of Euler on Mechanics, and on rigid bodies in particular, 
have been the source of much of the subsequent texts, like the “classics” 
GOLDSTEIN (1950) and LANDAU; LIFCHITZ (1966), or in the recent 
GREGORY (2006). The latter, however, is (rightly) critical about the sig-
nificance of Euler’s equations and points out two “deficiencies” (p. 548): The 
knowledge of the time variation of does not give the position of the body, 
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and the knowledge of eN  does not yield its principal components, as the 
orientation of the body is not known. 
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