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Preface. Ever since the beginning of geometry, many interesting problems seek
to construct the figures that satisfy some given requirements. For examples: the
common tangents to two circles; the conics going through 3 points and touching
two lines; the lines meeting four lines in space; the twisted cubics contained in a
non-singular quadric and going through five general points on it; and so on without
end.

In all such kinds of problems, the question of how the solutions depend on the
data involved in the requirements has fascinated geometers of all times. According
to M. Kline [1972, p. 843], Leibniz had stated, as early as 1687, that when we move a
little the data of some construction, the solutions of the construction will also move
just a little, and so, in particular, its number will remain unchanged. Poncelet [1822]
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named a similar assertion the principle of continuity and later Schubert introduced
other flavors by the names of principle of special position (Schubert [1874a]) and
principle of conservation of number (“Prinzip der Erhaltung der Anzahl”, Schubert
[1876, 79]). As we shall see, the basic use of such principles was as a device to
get the number of solutions of geometrical problems without having to perform the
required construction, a rather magic sort of operation that was to be called geometric
elimination by Halphen [1885].

But the point is that without further qualification the principle of continuity was
plainly false: on moving just a little apart two tangent circles a transition from three
to four common tangents occurs, while on moving them so that the centers become
just a little closer, then the transition is to two common tangents. Thus there was
in the early nineteenth century a real conflict between the observed behavior of
configurations in Euclidean space, the mathematical structure that seems to embody
our primordial geometrical experience, and what the principle was stating. Since
the conflict continued for a long time, the question is: Why did Poncelet and his
successors insist on believing the principle?

With the benefit of hindsight we can say that faith in the principle played the role,
in the mathematical physicists terminology of recent decades, of an Ansatz: instead
of an axiom or a conjecture, as it has been considered sometimes, it is rather a bet
about how things, or our understanding of things, should be; in sum, a desirable
feature that geometrical theories should have built in. Thus the principle was a
guiding thread in the search for a better world in which the number of solutions of a
given construction does indeed remain the same when we jiggle just a little the data
out of which the construction is supposed to be done. Still more, it has been, to this
day, one of the shaping forces of projective algebraic geometry as we understand it
today: if the principle is to hold, where are the missing solutions in examples like
the common tangents to two circles, and what are they? Thus the quest has been
precisely to find the right conceptual frameworks in which the principle holds.

These roles for the principle of continuity have some resemblance with those played
by the principle of conservation of energy in physics, stated by Mayer in 1842 and
with no known exception so far. In fact the principle of conservation of energy can
be seen as a perpetual prompt to look for not yet observed forms of energy to explain
the energy losses or gains that take place in a process after having into account
all the already known ones. From this point of view, we see that the principle of
conservation of energy has driven physics along paths that guarantee the forging of
conceptual frameworks in which the principle holds. ()

In this essay we will delve into the historical development of the principle of conser-
vation of number from the time it was first formulated by Poncelet until today, paying
especial attention to Severi’s fundamental contribution of 1912 and its influence on
subsequent research.

(1) The reader is referred to chapter 4 of the first volume of The Feymann’s Lectures on Physics
(Addison-Wesley, 1963), for a few interesting and lively pages about the meaning of the principle of
conservation of energy from the point of view of a pure physicist.
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1 Early history (before circa 1870). In his Traité, Poncelet [1822] worded the
principle of continuity in a rather obscure and vague form (cf. Zeuthen-Pieri [1915],
§5; Struik [1967], p. 162). For our purposes, however, it will be enough to recall the
phrasing reported in Kline [1972], p. 843:

If one figure is derived from another by a continuous change and the latter is as
general as the former, then any property of the first figure can be asserted at once
for the second figure.

The principle was criticized by Cauchy for not having a sound logical foundation.
Cauchy’s judgment, according to Kleiman [1976], led to some prejudice, but the
fact is that it did not prevent the use of the principle to solve many problems (see
Zeuthen-Pieri [1915], §§ 5-7). Of course, Poncelet did not explain, as some unwritten
constitutions do with government principles, how “as general as the former” is to be
interpreted, nor what kinds of figures and processes are allowed for the principle to
hold.

Whatever it be, the continuity Ansatz led, guided by the special case of the so-
lutions of an algebraic univariate equation, (3) and by a great deal of examples that
can be reduced to that case through analytical geometry and algebraic elimination,
to the realization that:

(2) The fundamental theorem of algebra was proved by Gauss in 1799 and it asserts that the number
of solutions of a degree n univariate complex polynomial equation is exactly n, provided each solution
is counted with its multiplicity.
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1. The solutions have to be counted with suitable multiplicities when the data
take special positions;

2. Some elements, possibly all, of a solution have to be allowed to move to infinity,
and

3. Some elements, possibly all, of a solution have to be allowed to become
imaginary. (3)

The first point turned out to be a delicate matter, if not in most examples encoun-
tered in the day-to-day algebro-geometric practice, certainly from a theoretical point
of view. The fundamental theorem of algebra and its consequences in analytical ge-
ometry led Poncelet to say that the principle could be demonstrated easily by means
of algebra, although he never proposed such a demonstration. On the contrary, he
apparently was satisfied by expressing the view that one should refrain from such
a proof because the principle ought to be seen in a purely geometric light. We will
come to that point again later.

The second and third points were easier to understand, and so they were pro-
gressively in the period 1822-1870, in the sense that the leading geometers agreed
on complez projective space as the unifying ambient space. This space was, and is,
the result of complexifying the projective closure of real affine space, a process that
through the practice of years(!) was clarified when it was realized, especially after
the work of von Staudt,(®) that the synthetic and analytic methods in projective
geometry were two sides of the same coin. Indeed, in the final analysis, the addition
of points at infinity to the real affine space and of the imaginary points afterwards
depends on a clear understanding of how to use coordinates and how to recognize
what does not depend on coordinates (¢)

v

To illustrate the three points above, let us recall some very simple examples from
elementary projective geometry. All of them deal with problems that can be reduced,
by means of analytic geometry, to a suitable equation whose solutions and their
multiplicities are then interpreted as the solutions and corresponding multiplicities
to the problem. In practice this was not the cause of worry because a multiple
solution of multiplicity m often can be visualized to correspond to the coalescing
onto a degenerate figure of precisely m solutions to the general problem.

Plane conics are parameterized by the points of a P° and the conics through a
point form a hyperplane of that P°. The hyperplanes corresponding to five distinct
points turn out to be independent provided no four of them are collinear, in which

(3) Zeuthen-Pieri [1915], §5: “Les exemples donnés par J. V. Poncelet montrent bien qu’il ne
songait a appliquer son principe que dans le cas ol un simple renvoi & la représentation analytique,
sans aucune exécution de calculs, suffit pour obtenir une démonstration parfaite.” Here it is also to
be noted that many others used the principle in Poncelel’s fashion: Chasles, Steiner, Salmon, De
Jonquiéres, Cremona, Cayley, to name just a few.

(4) See, for example, Salmon’s Conic Sections (1848) and Higher plane curves (1852).

(5) Geometrie der Lage (1847) and Beitrige zur Geometrie der Lage (1856 and 1860).

(6) In present day terms, of how to use linear algebra to model projective geometry and how to
reconstruct back linear algebra from projective geometry.
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case we see that there is a unique conic going through the five points (it is still easjer
to analyze what happens when four of the points are collinear).

The construction of the conics through 4 points and tangent to a line can be reduced
to find the solutions of a quadratic equation and so there always are two such conics,
provided we allow that they may coincide or become imaginary according to whether
the equation has a double root or two conjugate imaginary roots. Here is an example
that they may become imaginary: the conics through the points of a projective
reference are of the form ary + byz + czr =0, a+ b+ ¢ = 0, and, as we learn after
some calculations, one such conic is tangent to the unit line z +y+ 2z = 0 if and only
if a2 + b + ¢ = 0, which leads to two imaginary, complex conjugate, solutions. On
the other hand the same conic is tangent to the line z = 0 if and only if ¢? = 0, in
which case the only solution is the conic zy — yz = 0, which is a pair of lines to be
counted, because of the exponent 2, as a double solution. By duality, there are two
conics that are tangent to four lines and go through a given point.

A similar analysis leads to the conclusion that there are four conics going through
three points and tangent to two lines (or tangent to three lines and going through two
points). But the solutions may coincide, or there can be one that is double, or two
may become imaginary, and so on. For example, there is only one conic through the
vertices of the reference triangle that is tangent to the lineszx =0 and z 4+ y+ 2z = 0,
namely z(y + z) = 0, and therefore this solution is to be assigned multiplicity 4.

Two conics meet at four points, again with all sorts of possibilities for coalescing or
becoming imaginary. This in particular applies to the intersection of two circles, and
since this intersection has at most two real points, it must have at least to imaginary
conjugate points. Actually any circle goes through two fixed imaginary points at
infinity (the cyclic points [1,+1,0] of Poncelet), which are therefore to be counted in
the intersection of any two circles. The other two intersection points may be real,
possibly coincident if the circles are tangent, or imaginary. When the circles become
concentric those two points coincide with the cyclic points, so that the intersection
consists only of the cyclic points, each counted twice. Incidentally, the construction
of the common tangents to two circles is equivalent, by taking the dual conics, to
the construction of the intersection of two conics, and this transformation explains
that there are always four common tangents, provided that we admit that a pair of
them, or all four, may become imaginary. When the circles are tangent, there is a
repeated real tangent, and when the circles are concentric there are two repeated
complex tangents (the tangents at the cyclic points, each counted twice).

Given four lines in P3, skew in pairs, there are two lines that meet the four, possibly
confounded or imaginary. Indeed, as learned in elementary projective geometry the
lines meeting three given lines, any two of them skew, is a ruled non-singular quadric
which is met by the fourth line in two points, possibly confounded or imaginary.

In contrast with Poncelet’s view according to which the continuity principle ought
to be seen in a purely geometric light, it is interesting to notice that one of the
applications of Gauss fundamental theorem is what ever since 1864 has been called
Chasles’ coincidence formula: (") the number of fixed points of an algebraic corre-

(7) C. Segre set up, in Segre [1892], a detailed and well documented case about the ‘inesattezza sto-
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spondence of type (m,n) between two copies of P! is m 4 n, if each is counted with
a suitable multiplicity. Indeed, such a correspondence is given by a non-zero polyno-
mial f(zo,71,%0,y;) which is homogeneous of degree m in [z¢, z;] and homogeneous
of degree n in [yo,y1] and its fixed points correspond to the homogeneous solutions
[rg. 1] of the homogeneous polynomial of degree m + n given by setting yo = z¢ and
y; = x;. Recall that to a point [ag,a;] on the first copy of P! there correspond on
the second copy the n points [yo, 1] that are solutions of the degree n homogeneous
equation f(ao,a;, Yo,y ) = 0. and similarly that to a point [bg, b;] on the second copy
of P! there correspond on the first the m points [z¢,z;] that are solutions of the
degree m homogeneous equation f(zg, x;, bo,b;) = 0.

To illustrate how Chasles’ coincidence formula was applied, let us consider the
Braikenridge problem, which was stated in 1733 and asks to find the locus described
by the vertex C of a triangle ABC when A and B are constrained to move on fixed
lines a and b, respectively, and the sides AB, BC and CA are constrained to go
through fixed points R, P and @, respectively. We shall see that the locus is a
conic. For that purpose, take a general line £ and set up a self-correspondence on
it as follows: if X lies on ¢, let X, be the intersection of X@Q with a, let X} be the
intersection of X, R with b, and let Y € ¢, the point corresponding to X, be the
intersection of X, P with £. It is clear that the correspondence is algebraic and of
type (1,1), hence it has 2 fixed points. But these two fixed points are precisely the
intersection of the locus we are seeking with £.

2 The Golden Age of Enumerative Geometry. One important and quite general
advance in enumerative geometry in the last century, in fact the one which is more
relevant for our story, was due to Schubert. His fundamental contributions were
published in the decade 1870-1880, culminating in the book Schubert [1879], which

doubtless is a major milestone in the history of algebraic geometry. (¢)

Schubert’s starting point is the work of Chasles and De Jonquiéres in the previous
decade, the 1860’s. Here it has to be said that Halphen also made deep contributions
to enumerative geometry around the same decade 1870-1880 and that the early ones,
like his formula aa’ + bb' for the number of lines in P? common to two congruences
(see Halphen [1869, 1871, 1872]), or his observation about the “factorization” of the
formula of Chasles expressing the number of conics that satisfy 5 conditions (see
Halphen [1873a,b]), were among the results that inspired the symbolic calculus of

rica’ of this attribution, the main fact being that ‘tre anni prima dello Chasles il sig. De Jonquiéres,
e seguendo il suo esempio il sig. Cremona, avevano pubblicate parecchie applicazioni [to those that
Chasles presented to the Academy on June 27, 1864] di quel prinzipio.

(8) His best enumerative work in the 1880’s and 90’s deals mainly with non-trivial applications
of his symbolic calculus. Aside from his work on triangles, one basic theme is the extension to
any projective space P" of concepts and results established previously for P? and P3, like the
determination of the intersection ring of a Grassmannian, a feat by which he is best known (Schubert
calculus), the research on the characteristic numbers of complete quadrics, or his theory of general
coincidence formulas.
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Schubert. (°} Halphen’s understanding of enumerative geometry and a description of
his main results can be found in Halphen [1885] (cf. also Xambé [1993]).

Let us go back to Schubert. In the first chapter of the Kalkiil, Schubert explains his
most basic ideas, and in particular the principle of conservation of number. He starts
with some kind of figures I' (Gebilde) and considers conditions K (Bedingungen)
imposed on those figures, paying attention to the number of parameters, or degrees of
freedom, of which the figures depend (Constantenzahl) and to the number of degrees
of freedom that are lost after imposing a condition (Dimension einer Bedingung).
Most conditions A arise from imposing some relation with another kind of figure
IV, (19) which here we will call the date of K. He also considers systems of figures
and the number of parameters on which the figures in the system depend (Stufe eines
Systems). With this terminology, the basic question of enumerative geometry is to
find the number N of figures in a system ¥ that satisfy a given condition K, provided
this number is finite.

The principle of conservation of number (Erhaltung der Anzahl) is stated in §4:

The number N 13 unaltered or becomes infinite when the datum I of the
condition K is moved or specialized. ')

That the number is unchanged when I' is moved 1s a phrasing of the principle of
continuity, but to say that it is also unchanged when I is specialized is a stronger
statement that Schubert called, in his early writings, the principle of special position
(see Schubert [1874a,b]). For a proof of the principle Schubert goes on to say that
interpreting the principle algebraically it just says that any change of the coefficients
of a polynomial equation does not affect the number of roots if the changes do not
make the polynomial identically zero. Let us mention in passing that Chasles and de
Jonquiéres suggested in 1866 that the principle of continuity is valid because of the
principle of analytic continuation.
v

Before we continue, here are a few examples to illustrate Schubert’s use of the
principle. Since a plane curve of degree n can be transformed continuously into a
figure consisting of n lines, the number of points of intersection of two plane curves
of degrees m and n, respectively, is an (Bezout’s theorem).

To get the number of lines that meet four lines in space, Schubert’s principle allows
to move one of the four lines until it meets another of the four, so that we may assume
that two of the four lines meet at a point P, and then it is clear that the solutions
are the line through P that meets the other two lines, and the line in the plane of the
two lines meeting at P which joins the points of intersection of the other two lines
with that plane.

(9) See the Literatur-Bemerkungen in Schubert [1879], especially the introduction to the Erster
Abschnitt and the note Lit. 3 on page 333.

(10) Such conditions are called rdumliche Bedingungen by Schubert and condizione variabile by
Severi (see Severi [1912]).

(11) Schubert in fact states the principle in four forms, but for our purposes the one adopted here
is enough inasmuch it captures the essence of them all.
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Another example is how Schubert deals with the number N of curves in a one-
dimensional system ¥ that are tangent to a curve C of degree n and class m: he
specializes C to a figure that point-wise is composed of a line L counted n times
and that tangent-wise is composed of m pencils of lines with foci on L, thus getting
N = nv 4 my, where y and v are the characteristics of £ (by definition y and v
arc the number of curves in the system that go through a point and are tangent to
a line, respectively). The fact that the preceding specialization exists can be seen
by quite elementary reasoning. Take, for example, the hyperbola y? — ez? = ¢ (say
for real ¢ > 0). As ¢ — 0, the point-wise limit is the conic y* = 0, that is, the
r-axis counted twice. To see what becomes in the limit of the tangent lines to the
hyperbola, introduce homogeneous coordinates X,Y,Z (so ¢ = X/Z and y = Y/Z)
and dual projective coordinates U, V,W. Then the conic dual to the projective conic
corresponding to our hyperbola is U? — ¢V? — W? = 0, and its limit as ¢ — 0 is
U? — W? = 0. So the dual conic degenerates into the pair of dual lines U £ W = 0,
which correspond by duality to the two pencils of lines with foci [£+1,0,1], or (£1,0)
in non-homogeneous coordinates.

Let us also show how to ‘solve’ the last problem in the first paragraph of the
Preface. If we specialize the points so that four of them become complanary, then a
cubic going through the five points breaks up into the conic section of the quadric
by the plane containing the four points and one of the two rulings of the quadric
through the fifth point. Hence there are ‘two’ solutions.

A

In the last two sections of the first chapter of the Kalkiil Schubert introduces the
symbolic calculus of conditions. Here is the description of it made by Kleiman in the
introduction to the 1979 Springer reprint:

A geometric condition is represented by an algebraic symbol. If two independent
conditions with symbols &, y are given, then the new condition of imposing one
or the other is represented by the sum z 4 y and the new condition of imposing
both simultaneously is represented by the product ry. Now, by a minor abuse of
notation, a symbol z representing a condition is also used to denote the number of
figures satisfying the condition, if finite. Then two symbols x, y are considered to be
equal if they represent conditions that are the same for enumerative purposes, that
is, if the numbers zw and yw are equal for every auxiliary condition w such that
both numbers are finite. In this way, the symbols form a torsion-free, commutative,
associative ring with 1.

The whole Kalkiil is the result, beyond the accepted practice at the time in the arts
of analytical projective geometry, of a skillful combined use of the symbolic calculus
and the principle of conservation of number. But it is to be noted that the absence
of suitable foundations for both aspects of the theory is not the only drawback, for
another unsatisfactory issue is that computations become soon rather cumbersome
and with apparently no incidence on the production of new ideas. Better times in
which Schubert’s quest could cast roots in a much richer soil and blossom in full were
still far ahead in the future.
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3 Crisis interlude. The symbolic calculus of conditions, together with the principle
of conservation of number, worked somehow amazingly well, but the mathematical
status of the calculus was unclear and no real proof had ever been proposed or found
for the principle. So while it continued to be used enthusiastically by many, it was
also criticized, rightly, by others. Hilbert, for example, who could not admit to rely on
geometric intuition nor on general principles whose validity conditions were scarcely
made precise, included this problem, as number 15, in his 1900 list:

To establish rigorously and with an exact determination of the limits of their validity
those geometrical numbers which Schubert especially has determined on the basis
of so-called principle of special posilion, or conservation of number, by means of the
enumerative calculus developed by him. [Hilbert 1900; italics are ours]

After 1900, some authors published a number of ‘counterexamples’ designed to
show that the principle of conservation of number was wrong (Kohn [1903], Study
[1905]), others proposed restrictions for the validity of the principle (Giambelli
[1904], 12) Brill [1905]), and yet others defended it by saying that the proposed coun-
terexamples were not really such, because the ‘dimension accounting’ of Schubert
ruled them out (Sturm [1907], mostly exposing Kohn's faulty understanding, under
a strangely gruff language, of Schubert’s theory).

Study objected about the way Schubert formulated the principle, about the lack of
precision in most of the applications, and was skeptical about some of the results. ()
Moreover, his main counterexample to the principle is easy to explain. Let the objects
on which we will impose conditions be homographies a of P!. Let the data for the
conditions be (unordered) tetrads of distinct points, 7, of P!. Given 7, let K, be the
condition that o permutes 7. Then it is well known (see, for example, Semple-Roth
[1949], § 6.5) that the number of homographies a satisfying K is 4, 8 or 12 according
to whether 7 is general, harmonic of equianharmonic. So the number is not preserved
when we vary continuously the data 7 of the condition.

We will not deal here with Kohn's ‘counterexamples’ of [1903], for they are quite
artificial as the already quoted paper of Sturm [1907] aptly pointed out (Kohn intro-
duces, for instance, conditions which are not algebraic, or that do not have the right
codimension, and so on; see also Severi [1912], §1.3). Instead we will recall a couple
of counterexamples that exhibit interesting phenomena which we will comment later
on.

v

The first is transcribed from Fulton [1984], example 10.2.4, and is close to a slightly
more complicated counterexample of Study that we will explain afterwards. Take the
cone Y in P3, with vertex at [1,0,0,0], defined by the equation 2 = 22 + 2. Let L
be the line z; = 0, z; = z3. Let T = A!, with coordinate ¢, and let X CY x T be
the family of Cartier divisors zo = tzy. Then X is, for t # 0, an irreducible conic

(12) For extensive information about Giambelli’s work and life, see D. Laksov’s paper in this volume.
(13) Here it is to be noted that no real errors have ever been found in Schubert’s book, although
a sizable part of it has not been vindicated yet. Already Severi [1912] said: “...nesun errore si ¢
riscontrato finora nelle applicazioni che non furon fatte con intento critico”.
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meeting L at just one point, but X is the union of two lines, each meeting L at P.
So by continuous variation we make a transition from one solution to two solutions.
Another example which we would like to explain is due to Zobel [1961] (cf. Fulton
[1984], example 10.2.5). Let ¥ C P* be the cone z,14 = z223 and let L C Y x Al
be the family of lines ; = 0,73 = 0,7, = tzg. Let M be the plane z; = 1,73 = z4.
Then, for general f, L, and M are disjoint, while Ly and M meet at the vertex of
the cone. So here a continuous transition is made from no solutions to one solution.
The counterexample of Study we referred to above deals with the number of inter-
section points of two twisted cubics on a quadric cone away from the vertex. This
number turns out to be 4. Moreover, one can show that it is possible to degenerate
algebraically one of the cubics into three rulings of the cone, whereupon the other
cubic meets the degenerated one at three points away from the vertex. According to
Study, this is another counterexample to the principle of conservation of number.

4 Severi’s era. At some point it was necessary to come to terms with questions
like the following: How does one deal with the figures one is interested in, and
with its degenerate forms? How does one deal with conditions imposed to figures?
What processes are to be allowed, and under what assumptions, for the principle of
conservation of number to hold?

In present day terms, which to a great extend are due to the Italian school of
algebraic geometry, and especially to Severi (cf. Severi [1912, 33, 40]), the figures
I' are parameterized by the points of some irreducible algebraic variety X, whose
dimension d is the number of degrees of freedom of the figures, and both the conditions
and the systems are subvarieties K and ¥ of X. The codimension of K corresponds
to the ‘Dimension’ of Schubert, the dimension of ¥ corresponds to the ‘Stuffe’, and
the number of figures of the system that satisfy the condition corresponds to the
number, N, of points in the intersection of K and ¥, assuming it is finite and, as
always, counting each point P with its intersection multiplicity : p(2, K'). Moreover, a
condition that depends on some data I'' gives rise to an algebraic family of subvarieties
Kr: of X, so that we can identify K with a subvariety of X x T (an algebraic
correspondence, to use Severi’s terminology), where T is the variety parameterizing
the figures I'. A condition K will be said to be irreducible if the corresponding
subvariety of X x T is irreducible.

The variety X is often non-singular and complete, and the ‘non-degenerate’ fig-
ures correspond to the points of some open set X, in X. The most favorable cases
for enumerative geometry occur when X = Xj,. This happens, for instance, if the
figures are linear spaces of a given dimension, or flags of linear spaces of some given
dimensions. When X — X, in non-empty, it often is the union of non-singular divisors
that meet transversely, or can be arranged to be that way without modifying Xj.
One lovely example of this is the variety of complete conics, or, more generally, of
complete quadrics in P™,

In general, the intersection of K and T will consist of a discrete set of points on
Xo () and of a variety on the boundary X — X, which often has components of

(14) This is usually proved by a suitable transversality criterion, such as the transversality theorem

10
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positive dimension, and the number one really is looking for is the number of discrete
solutions on Xg. The determination of such numbers usually involves an analysis of
the behavior of A" and £ along the boundary.

Now we can address the contributions of Severi toward the clarification of the
principle of conservation of number (cf. Severi {1912, 33, 40]) and those of later
workers to establish them on a firm basis (this is a long story: see Semple-Roth
[1949], §§6.6-6.7; B. Segre [1962], §I; Roth [1963], §II; van der Waerden [1970];
Fulton [1984], Notes and References to chapters 4, 11 and 12). We rely basically on
Severi’s formulation in his memoir of 1940, for in it assumptions that in the 1912
paper were tacit, like the non-singularity and completeness of the varieties involved,
are made explicit.

To explain the key facts discovered by Severi in relation to the principle of con-
servation of number let us use the contemporary language of algebraic geometry.
Assume X is a complete irreducible non-singular variety of dimension n, that T is
an irreducible non-singular variety, and that A C X x T is an irreducible subvariety
of codimension n such that A dominates T. For each closed point t € T, let K; be
the cycle on X defined as the image in X by the isomorphism X x {t} >~ X of the
intersection cycle (X x {t})- A on X x T, which consists of the set of isolated points
of (X x {t}) N K, each such point P being counted with the intersection multiplicity
ip(X x {t},K). With this terminology the key theorem of Severi (see Severi [1940],
§ 16, and the historical discussion in van der Waerden [1970]) can be stated as follows:

The t € T for which (X x {t}) N K has dimension 0, that is, it contains
only isolated points, 1s a non-emply open set Ty of T and the degree of K is
constant for t € Tj.

The generalization of this basic theorem to the case in which K is possibly reducible,
but with all its components of codimension n and dominating T, is straightforward
(such correspondences are called pure by Severi). Let us mention here that van der
Waerden [1927] gave an algebraic proof of Severi’s theorem under the assumption
that X is rational; that about five years later Severi was aware of the need to assume
X non-singular (see Severi [1932]); that van der Waerden [1934] gave an algebraic
proof of Severi’s theorem which surely influenced Severi [1940] and whose spirit was
embodied and refined by A. Weil [1946]; and that today’s intersection multiplici-
ties are understood through a lot of further work by, among many others, Samuel,
Chevalley, Northcott, Chow, Serre, Grothendieck and Fulton.

Severi claims that his theorem can be applied to justify all uses of the principle of
conservation of number done by Schubert, but our view is that this is not so because
it yields no theoretical results to deal with two kinds of common difficulties. (%) The
first difficulty is the evaluation of the multiplicities of the points in the support of
Ky, for a particular value of ¢y. For generic ¢ one can often use general principles, like

of generic translates (see Kleiman [1973)).

(15) The reader is invited to note that to this day the same difficulties remain in spite of repeated
claims that some theoretical construct has settled Hilbert’s 15th problem for good, be it some
intersection ring of cycle classes, as in Severi and others, or the homology ring, as in van der
Waerden [1930].
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some form of transversality, to infer, say, that all the points in A’y have multiplicity
one, but for special values t of ¢ all one knows is that the multiplicities of the points
in Ky, add up to the number of points in K, for generic t. The way Schubert
evaluated non-trivial multiplicities is not clear, because often results are quoted with
no indication of how they were obtained, but it seems likely that he used, at least for
some cases, a dynamic interpretation of the intersection multiplicities. In other cases
he seems to have determined them by writing enough independent relations involving
the sought multiplicity. For modern tools on this issue we refer to Fulton [1984].

The second difficulty, usually also the more serious, is that we often are not inter-
ested in all the points of Ay, but only on those that lie in some open set Xy of X,
that is, in K, N X, (as said before, X; usually is the subset of X parameterizing ‘non-
degenerate’ figures), but it is not the case that K, N X, and K;, N X, have the same
degree, and so the final accounting of what is going on with the points in K; when
we make the transition ¢ — to may be quite complicated. (!®) In fact the analysis of
such questions turns out to require a mixture of intersection theory and singularity
theory, and it is in this direction that we foresee interesting advances in enumera-
tive geometry. For a sample of examples in which difficulties of the kind alluded to
above are encountered the reader may consult Halphen [1873 a,b], Schubert [1879]
(especially the fourth chapter, devoted to the degeneration method), Casas-Xambé
[1986), Kleiman-Strgmme-Xambé [1987], Miret-Xambé [1988,1991], Procesi-Xambé
[1991] or Miret-Xambdé [1992]. For an historical perspective see Xambé [1993].

v

Let us illustrate the preceding ideas with some examples. As in Severi’s work, let

us first consider Study’s homography example. The homography of P! defined by the

matrix a = [i Z} (hence ad — bc # 0) can be mapped to the point [a, b, ¢, d] € P?,

and so we can identify the homographies with the open set X, of X = P? that is the
complement of the non-singular quadric ad — b¢ = 0. Since tetrads of distinct points
of P! can be identified with monic polynomials of degree four with distinct roots,
we can take as variety T the open set of the 4-dimensional affine space whose points
7 = (t1,...,t4) are those such that the polynomial Z* + ;23 + ;2% + #3Z + t4 has
non-zero discriminant. Then the condition considered by Study is a correspondence
K C Xy xT. Since X is not complete, Severi’s theorem cannot be applied, but this
is not all there is to say. To begin with, the projection of K to Xy, let us call it
S, is the union of three surfaces, S = S; U S3 U S4, where the points in S; are the
involutions, the points in S3 are the cyclic homographies of order 3, and the points in
Sy are the cyclic homographies of order 4. So K is reducible, for it is the union of the
three correspondences K; determined by the S;, K = K, U K3 U K. Still more, k)
is itself reducible: given an involution a, there are two kinds of 7 € T left invariant
by a, namely the tetrads formed by the two fixed points of o together with one pair
of mates of a, and the tetrads formed by two pairs of mates of a. From this one can
infer that A, has two irreducible components K’ and A" which correspond to the

(16) So to speak, some may remain in Xy, but others may run to the boundary X — X of ‘degenerate’
figures.
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two kinds of tetrads just described. Notice that the projection of K' to T is the 3-
dimensional subvariety H of T formed by the harmonic tetrads, while A" dominates
T; hence K’ has dimension 3 and A" has dimension 4 (in Severi’s terminology, K5
is impure).

As far as the other examples we have considered, of course they do not contradict
Severi’s theorem: a quadric cone, albeit complete, is singular, and if we take away the
singular point (the vertex) then the resulting surface i1s not complete anymore. On
the other hand we can make sense of what is going on, using Severi’s framework, by
blowing up the vertex of the cone. For instance, in Study’s example of the intersection
of two twisted cubics lying on a quadric cone, one finds that when we go onto the
degenerate cubic that consists of three lines then one of the four intersection points
moves onto the exceptional divisor.

A

Severi returned to enumerative geometry throughout his life and to a great extend
his equivalence theories (rational, algebraic and numerical) were introduced in the
quest for a suitable theoretical framework that would be useful to analyze such kinds
of problems (cf. the ‘Notes and references’ section of the first chapter of Fulton
[1984]). How highly he placed enumerative geometry can be realized on inspecting
the chapter on ‘Nozioni introduttorie’ in Severi [1926]: he was planning to devote the
eighth and last volume of the Trattato to that discipline. Incidentally, there we learn
that one aspect he included in enumerative geometry was to “valutare la molteplicita
delle singole soluzioni”.

As Semple and Roth [1949] put it, all this shows that

From the indications we have given it will be clear that any analysis of the methods
of enumerative geometry must involve deep questions of algebraic geometry.

5 The principle in modern intersection theory. The widespread accusations of
lack of rigor in the classical Italian school of algebraic geometry, and Severi’s forceful
defense of it, are well known (see Severi [1949], and also the discussions by Severi,
Problémes résolus et problémes nouveauz dans la théorie des systémes d’équivalence,
and van der Waerden, On the definition of rational equivalence cycles on a variety, in
the proceedings of the 1954 Amsterdam International Congress). Some acknowledged
their indebtedness to Severi, or to the Italian school in general. For instance, in van
der Waerden [1971] we find

The Italian school [...] erected an admirable structure, but its logical foundation was
shaky. The notions were not well-defined, the proofs were insufficient. And yet, as
Bernard Shaw puts it: “There is an Olympian ring in it. It must be true, for it is
fine art.”

And W.-L. Chow [1956], § 1, speaking about his ‘systematic treatment’ of equivalence
classes of cycles, says:

Just as the treatment in the book of Hodge and Pedoe, ') our theory is also based
on the ideas of Severi and van der Waerden, and in this sense we do not claim any

(17) Methods of Algebraic Geometry, vol. 11, Cambridge, 1952.
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greal originality; nevertheless, [...] a discerning reader will easily perceive that such
a syslematic treatment does involve substantially more than can be readily obtained
from the papers of Severi and van der Waerden.

But some went to the extreme of pretending to ignore the predecessors, as reminded
by the following authoritative paragraph from the “Notes and References” to the first
chapter in Fulton [1984]:

In 1958 Chevalley’s seminar focused on ratlional equivalence. In the notes [...] the
theory is developed from first principles, with no reference to, or even mention of,
previous work on the subject; there the ring of rational equivalence classes was
named “Chow ring”. [...] It would be unfortunate, however, if Severi’s pioneering
work in this area were forgotten; and if incompleteness or the presence of errors
are grounds for ignoring Severi’s work, few of the subsequent papers on rational
equivalence would survive.

Fortunately many others rooted their work in the Italian school of thought, adapt-
ing it to the new standards of rigor and deepening its results (see Fulton [1984], loc.
cit). The ideas of Severi about intersection multiplicities, about rational, algebraic
and numerical equivalence, and so on, were taken by workers such as van der Waer-
den, B. Segre, Todd, Hodge-Pedoe (see footnote 17), Weil (see Weil [1954]), Samuel
(see Samuel [1956]), Chow (loc. cit.), Chevalley, Grothendieck, and many others,
and were made available to an ever increasing number of workers in algebraic geom-
etry. The result is an intellectual landscape shaped to a great extent as Severi had
conceivably dreamed.

One point to make, which I hope will help some to appreciate this prized legacy,
is that some important matters that once were obscure, and the source of conflict
and bitter disputes, have become apparently trivial because they are now settled at
the level of existence theorems, like the existence and functorialities of the rational
or algebraic intersection rings of any non-singular quasi-projective variety.

Take, for example, the simplest form of the principle of conservation of number in
present day terms. The basic fact is that the push-forward by a proper map preserves
rational equivalence and from this it follows immediately that two zero-cycles that are
rationally equivalent on a complete (not necessarily smooth) variety have the same
degree. A stronger result is that two zero cycles on a complete variety have the same
degree if they are algebraically equivalent, and there are still more refined forms of
the principle which are valid on varieties that need not be complete and which follow
from the powerful intersection theory available today (see Fulton [1984]).

Another example that illustrates our point is Bezout’s theorem. Here one computes
by standard methods that the codimension &k group of rational equivalence classes of
P" is isomorphic to Z and that the integer corresponding to a variety of codimension
k is its degree. Now if V and V' intersect properly on P", then [V - V'] = [V] - [V],
which shows that the degree of a proper intersection is the product of the degrees of
its factors.

To finish let us say that the continuity Ansatz also played a role in the Fulton-
Macpherson intersection theory, in the following sense: the existence of a flat defor-
mation of a regular embedding to the zero section embedding of the corresponding
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normal cone suggested that it should be possible to define algebraic intersections by
a construction on the normal cone. And this turned out to work perfectly well, just
as it did, in the long run, Poncelet’s faith:

The existence of such a deformation, together with the “principle of continuity”,

helps explain the key role of normal cones in the construction of intersection products.
(Fulton [1984], p. 3)

Let us mention that one of the bonus features of this approach is that it requires
no previous foundation of the ‘intersection theory + moving lemma’ sort. But this
approach, if it only were because its spirit is close to B. Segre’s [1953], certainly
belongs to the main stream of Severi’s heritage.

A chronological list of geometers. J. Poncelet (1788-1867), M. Chasles (1793-
1880), J. Steiner (1796-1863), J. Plicker (1801-1868), G. Salmon (1819-1904), De
Jonquiéres (1820-1901), A. Cayley (1821-1895), L. Cremona (1830-1903), H. Zeuthen
(1839-1920), M. Nother (1841-1935), G. Halphen (1844-1889), H. Schubert (1848-
1911), C. Segre (1863-1924), G. Castelnuovo (1864-1952), F. Enriques (1871-1946),
F. Severi (1879-1961), O. Zariski (1899-1985), B. Segre (1903-1977), B. L. van
der Waerden (1903-), A. Weil (1906-), J. A. Todd (1908-), C. Chevalley (1909-1984),
W. Chow (1911-), P. Samuel (1921-), M. Eger (1922-1952), J. P. Serre (1926-), A.
Grothendieck (1928-).
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