Systems, patterns and data engineering with geometric calculi (GC&DL)

(Born in Campinas, Brazil, on the occasion of AGACSE 2018, which was an early satellite of AGACSE 2018)

First developed as a language for physics, recently there has been an explosion of applications of Geometric Calculus in a great variety of areas, like general relativity, cosmology, robotics, computer graphics, computer vision, molecular geometry, quantum computing, etc.

The goal of the mini-symposium is to overview the basic ideas of GC, to report on some relevant applications, and to explore the bearing of the formalism in novel approaches to deep learning.
Geometric Calculus Techniques in Science and Engineering
(Sebastià Xambó-Descamps)

Bringing New Perspectives to Robotics and Computer Science
(Isiah Zaplana)

Geometric Algebra and Distance Geometry
(Carlile Lavor)

Embedded Coprocessors for Native Execution of Geometric Algebra Operations
(Salvatore Vitabile)

Hypercomplex Algebras for Art Investigation
(Srđan Lazendić)

Conformal Geometric Algebra for Medical Imaging
(Salvatore Vitabile)

Bio-inspired geometric deep learning
(Eduardo U. Moya Sánchez)

Geometric calculus meets deep learning
(SXD)

https://mat-web.upc.edu/people/sebastia.xambo/
ICIAM2019/GC&DL.html (abstracts, references, and slides)
Geometric Calculus Techniques in Science and Engineering

S. Xambó-Descamps

UPC·BSC

16/07/2019
- Grassmann algebra
- Synopsis of Geometric algebra (GA)
- Versors, pinors, spinors and rotors
- The Dirac operator
- References
Grassmann algebra
E real vector space of finite dimension n.

$(\wedge E, \wedge)$ Grassmann’s *exterior algebra* of E.

It is *unital*, *associative* and *skew-commutative*:
\[x \wedge x' = -x' \wedge x \text{ for all } x, x' \in E. \]

In particular $x \wedge x = x \wedge^2 = 0$ for all $x \in E$.

$\wedge^k E \subset \wedge E$ (*k-th exterior power of E*):
subspace of $\wedge E$ generated by all *k-blades*, which are the non-zero exterior products $x_1 \wedge \cdots \wedge x_k$ ($x_1, \ldots, x_k \in E$).

By convention, $\wedge^0 E = \mathbb{R}$ and clearly $\wedge^1 E = E$.

The elements of $\wedge^k E$ are called *k-vectors*.

Special names: $k = 0$, *scalars*; $k = 1$, *vectors*; $k = 2$, *bivectors*; $k = n - 1$, *pseudovectors* (dim n); $k = n$, *pseudoscalars* (dim 1).
\[\bigwedge E = \bigoplus_{k=0}^{k=n} \bigwedge^k E \text{ (grading of } \bigwedge E) \]

The elements \(a \in \bigwedge E \) are called multivectors and we have a unique decomposition \(a = a_0 + a_1 + \cdots + a_n \), with \(a_k \in \bigwedge^k E \).

\(N = \{1, \ldots, n\} \) set of indices.

\(\mathcal{J} \) set of subsets of \(N \): Its elements are called multiindices.

\(\mathcal{J}_k \subset \mathcal{J} \) subset of multiindices of cardinal \(k \).

Let \(e = e_1, \ldots, e_n \) be a basis of \(E \).

If \(K = k_1, \ldots, k_m \) is a sequence of indices, we set \(e_K = e_{k_1} \wedge \cdots \wedge e_{k_m} \).

Note that \(e_K = 0 \) if \(K \) has repeated indices (it occurs when \(m > n \)).

\[\{e_I\}_{I \in \mathcal{J}_k} \text{ is a basis of } \bigwedge^k E. \]

Thus \(\dim \bigwedge^k E = \binom{n}{k} \) and \(\dim \bigwedge E = 2^n \).
Parity involution. The linear automorphism $E \rightarrow E$, $e \mapsto -e$, induces a linear automorphism of $\wedge E$ that is denoted $a \mapsto \hat{a}$.

- For $a \in \wedge E$, we have $\hat{a} = \sum_k (-1)^k a_k$.

- $a \wedge b = \hat{a} \wedge \hat{b}$ for all $a, b \in \wedge E$ (*algebra automorphism*).

Reverse involution. Exchanging the order of exterior products yields a linear *antiautomorphism* of $\wedge E$, $a \mapsto \tilde{a}$.

Since reversing a k-blade amounts to $\binom{k}{2}$ sign changes, and since this number has the same parity as $k/2$ (the integer quotient of k by 2), we have

- $\tilde{a} = \sum_k (-1)^{k/2} a_k$.

- $a \wedge b = \tilde{b} \wedge \tilde{a}$ for all $a, b \in \wedge E$ (*algebra antiautomorphism*).
Let \(q \) be a \textit{metric} on \(E \): a non-degenerate quadratic form of \(E \).

The metric is also regarded as a bilinear non-degenerate form:

\[
2q(x, x') = q(x + x') - q(x) - q(x'), \quad q(x) = q(x, x).
\]

A vector \(x \) is said to be \textit{positive}, \textit{negative} or \textit{null} (or \textit{isotropic}) according to whether \(q(x) > 0 \), \(q(x) < 0 \) or \(q(x) = 0 \).

The basis \(e \) is said to be \textit{orthogonal} if \(q(e_j, e_k) = 0 \) for \(j \neq k \).

The basis is \textit{orthonormal} if in addition \(q(e_i) = \pm 1 \).

The \textit{signature} \((r, s)\) of \(q \) is obtained by counting the numbers \(r \) and \(s \) of positive and negative vectors in any orthogonal basis.

\((E, q) = E_{r,s}: \text{orthogonal geometry}\) of signature \((r, s)\).

Fundamental goal: To understand the group \(O_{r,s} \) of \textit{isometries} of \(E_{r,s} \), the subgroup \(SO_{r,s} \) of \textit{proper isometries} (or \textit{rotations}), and the subgroup \(SO_{0,r,s} \) of \textit{rotations connected to the identity}.
Examples

Euclidean space: $E_n = E_{n,0}$ (signature $(n, 0)$).
E_2 (Euclidean plane), E_3 (ordinary Euclidean space).

Antieuclidean space $\bar{E}_n = E_{\bar{n}} = E_{0,n}$ (signature $(0, n)$).

Minkowski space: $(E, \eta) = E_{1,3}$. In this case a convenient notation for an orthonormal basis is e_0, e_1, e_2, e_3, where e_0 is positive and e_1, e_2, e_3 negative. $O_{1,3}$ is the group of Lorentz transformations.

$E^c_3 = E_{3+1,1}$: Conformal space. In this case, a convenient basis is formed by adding null vectors e_0 and e_∞ that are orthogonal to E_3, and such that $e_0 \cdot e_\infty = -1$, to an orthonormal basis e_1, e_2, e_3 of E_3. Note that the signature of the plane $\langle e_0, e_\infty \rangle$ is $(1, 1)$: the vectors $e^+ = (e_0 - e_\infty)/\sqrt{2}$ and $e^- = (e_0 + e_\infty)/\sqrt{2}$ are orthogonal and $q(e^+) = 1$, $q(e^-) = -1$.

There is a unique metric on ΛE, still denoted q, such that the spaces $\Lambda^k E$ are pairwise q-orthogonal and with

$$q(x_1 \wedge \cdots \wedge x_k, x'_1 \wedge \cdots \wedge x'_k) = \det((q(x_i, x'_j))) \quad (i, j = 1, \ldots, k).$$

If follows that the basis $\{e^\hat{i}\}_{i \in \mathcal{J}}$ is orthogonal (orthonormal) if the basis e is orthogonal (orthonormal).

Exercise. The signature of this metric is $(2^n, 0)$ if $s = 0$ (so $r = n$), and $(2^{n-1}, 2^{n-1})$ otherwise. In particular $(\Lambda E, q)$ is:

- non-degenerate when (E, q) is non-degenerate;
- Euclidean when (E, q) is Euclidean;
- has signature $(8, 8)$ for the Minkowski space;
- has signature $(16, 16)$ for the conformal space.
It is derived from the (left) contraction operator i_x ($x \in E$):

$$i_x(x_1 \wedge \cdots \wedge x_k) = \sum_j (-1)^{j-1} q(x, x_j)x_1 \wedge \cdots \wedge x_{j-1} \wedge x_{j+1} \wedge \cdots \wedge x_k.$$

The result is a bilinear product $a \cdot b$ ($a, b \in \wedge E$) uniquely determined by the following properties:

- $a \cdot b = 0$ if a or b is a scalar;
- $x \cdot b = i_x(b)$ if $x \in E$; so $x \cdot y = q(x, y)$ for $x, y \in E$.
- $a \cdot b = (-1)^{jk+m} b \cdot a$ ($m = \min(j, k)$) if $a \in \wedge^j E$, $b \in \wedge^k E$. In particular, $a \cdot x = (-1)^{j+1} i_x(a)$ if x is a vector and $j \geq 1$.
- $(x_1 \wedge \cdots \wedge x_{j-1} \wedge x_j) \cdot b = (x_1 \wedge \cdots \wedge x_{j-1}) \cdot (x_j \cdot b)$ if $b \in \wedge^k E$ and $2 \leq j \leq k$.
- If $a = x_1 \wedge \cdots \wedge x_k$ and $b = x'_1 \wedge \cdots \wedge x'_k$, $a \cdot b = (-1)^{k/2} q(a, b)$. In general, $a \cdot b = q(\tilde{a}, b)$ if $a, b \in \wedge^k E$, $k \geq 1$.

Grassmann algebra

Inner product

There is also a *Laplace formula* for the inner product $a \cdot b$ when $a = x_1 \wedge \cdots \wedge x_j$ and $b = x'_1 \wedge \cdots \wedge x'_k$. Its general expression can be easily guessed from the following example: $(x_1 \wedge x_2) \cdot (x'_1 \wedge x'_2 \wedge x'_3) = ((x_1 \wedge x_2) \cdot (x'_1 \wedge x'_2))x'_3 - ((x_1 \wedge x_2) \cdot (x'_1 \wedge x'_3))x'_2 + ((x_1 \wedge x_2) \cdot (x'_2 \wedge x'_3))x'_1$.

For all $a, b \in \wedge E$,\[\hat{a} \cdot \hat{b} = \hat{a} \cdot \hat{b} \quad \text{and} \quad \tilde{a} \cdot \tilde{b} = \tilde{b} \cdot \tilde{a} \]
Synopsis of GA
The GA of \((E, q) = E_{r,s}\), denoted \(\mathcal{G} = \mathcal{G}_q = \mathcal{G}_{r,s}\), can be constructed by enriching \(\wedge E\) with the geometric product \(ab\) (Clifford). It is unital, bilinear and associative. Moreover,

- For any vectors \(x, x' \in E\), \(xx' = x \cdot x' + x \wedge x'\) (Clifford relations).
- Thus \(xx' = -x'x\) iff \(x \cdot x' = 0\) (anticommuting property) and \(x^2 = q(x)\) (Clifford reduction).
- If \(q(x) \neq 0\) (non-isotropic, or non-null vector), \(x^{-1} = x/q(x)\).
- For \(x \in E\) and \(a \in \wedge E\),
 \[xa = x \cdot a + x \wedge a = (i_x + \mu_x)(a)\]
 \[ax = a \cdot x + a \wedge x\]
- If \(a \in \mathcal{G}^j\) and \(b \in \mathcal{G}^k\), then \((ab)_i\) is 0 unless \(i\) is in the range \(|j - k|, |j - k| + 2, \ldots, j + k - 2, j + k\), and
 \[(ab)_{j-k} = a \cdot b\] for \(j, k > 0\), and \((ab)_{j+k} = a \wedge b\).
- For any \(a, b \in G \), \(\hat{ab} = \hat{a}\hat{b} \) and \(\bar{ab} = \bar{b}\bar{a} \).
- Riesz formulas \(2x \wedge a = xa + \hat{a}x \), \(2x \cdot a = xa - \hat{a}x \)
- The metric in terms of the geometric product: For all \(a, b \in G \),
 \[
 q(a, b) = (\bar{ab})_0 = (\bar{b}\bar{a})_0.
 \]
- In particular we have
 \[
 q(a) = (\bar{a}a)_0 = (a\bar{a})_0
 \]
 for all \(a \in G \).
- If \(a \) is a \(k \)-blade, then \(\bar{a}a \) is already a scalar and
 \[
 q(a) = \bar{a}a = a\bar{a} = (-1)^{k/2}a^2
 \]
In particular we see that \(a \) is invertible if and only if \(a^2 \neq 0 \), or if and only if \(q(a) \neq 0 \), and if this is the case, then we have
\[
 a^{-1} = a/a^2 = \bar{a}/q(a).
\]
Let \(e = e_1, \ldots, e_n \) be a basis of \(E \) and \(N = \{1, \ldots, n\} \) the set of indices.

If \(K = k_1, \ldots, k_m \) is a sequence of indices, set

\[
e_K = e_{k_1} \cdots e_{k_m}.
\]

\(\{e_I\}_{I \in \mathcal{I}} \) is a basis of \(\mathcal{G} = \wedge E \).

Remark that if \(I \in \mathcal{J}_k \), then in general \(e_I = e_I^\wedge + \) lower grade terms, like \(e_{12} = e_1 e_2 = e_1 \wedge e_2 + e_1 \cdot e_2 = e_{12}^\wedge + e_1 \cdot e_2 \).

\(\bullet \) If \(e \) is orthogonal, then \(e_I = e_I^\wedge \), as

\[
x_1 \cdots x_k = x_1 \wedge \cdots \wedge x_k
\]

when \(x_1, \ldots, x_k \) are pair-wise orthogonal vectors.
Artin’s formula: If \(I, J \) are multiindices, then
\[
e_I e_J = (-1)^{t(I,J)} q_{I \cap J} e_{I \Delta J}
\]
where \(t(I,J) \) is the number of inversions in the sequence \(I, J \), \(I \Delta J \) is the symmetric difference of \(I \) and \(J \), and \(q_K = q(e_{k_1}) \cdots q(e_{k_m}) \).

In particular,
\[
e_j^2 = (-1)^{|J|/2} q_J
\]

Examples

- In \(E_2 \), \(e_{12}^2 = -1 \) (as \(2 \| 2 = 1 \) and \(q_{12} = 1 \)).
- In \(E_3 \), \(e_{123}^2 = -1 \) (as \(3 \| 2 = 1 \) and \(q_{123} = 1 \)).
- In \(E_{1,3} \), \(e_{0123}^2 = -1 \) (as \(4 \| 2 = 2 \) and \(q_{0123} = (-1)^3 = -1 \)).
- In \(\bar{E}_4 \), \(e_{1234}^2 = 1 \) (as \(4 \| 2 = 2 \) and \(q_{1234} = (-1)^4 = 1 \)).
Synopsis of GA

Examples: Gauss and Pauli

\[G_2 = \langle 1, e_1, e_2, e_{12} = i \rangle, \quad i^2 = -1 \text{ (Gauss algebra).}\]

\[G_2^+ = \langle 1, i \rangle \cong \mathbb{C}\]

\[P = G_3 = \langle 1, e_1, e_2, e_3, e_{23}, e_{31}, e_{12}, e_{123} = i \rangle, \quad i^2 = -1 \text{ (Pauli).}\]

\[e_{23} = ie_1 = e_1i, \quad e_{31} = ie_2 = e_2i, \quad e_{12} = ie_3 = e_3i.\]

General element: \((\alpha + \beta i) + (x + yi)\) \((\alpha, \beta \in \mathbb{R}, \ x, y \in E_3)\).

\[G_2^+ = \{\alpha + xi\} = \mathbb{H} \text{ (quaternion field).}\]

\[\diamond \quad q(\alpha + xi) = (\alpha + xi)(\alpha + xi)^\sim = \alpha^2 + x^2\]

Hamilton units: \(I = e_{12} = e_3i, \quad J = e_{31} = e_2i, \quad K = e_{23} = e_1i.\)

(Yes, in that order if we want that the Hamilton’s original relations \(I^2 = J^2 = K^2 = IJK = -1\) are satisfied).
$E_{1,3} = \langle e_0, e_1, e_2, e_3 \rangle$. In $D = G_{1,3}$ (Dirac algebra), set: $i = e_{0123}$, $\sigma_k = e_k e_0$. Then $i^2 = -1$, i anticommutes with vectors, and $D = \langle 1, e_0, e_1, e_2, e_3, \sigma_1, \sigma_2, \sigma_3, i \sigma_1, i \sigma_2, i \sigma_3, e_0 i, e_1 i, e_2 i, e_3 i, i \rangle$.

A general element has the form $(\alpha + \beta i) + (x + y i) + (E + i B)$, $(\alpha, \beta \in \mathbb{R}, x, y \in E_{1,3}, E, B \in \mathcal{E} = \langle \sigma_1, \sigma_2, \sigma_3 \rangle)$.

$D^+ = \langle 1, \sigma_1, \sigma_2, \sigma_3, i \sigma_1, i \sigma_2, i \sigma_3, i \rangle \simeq \mathcal{P}(\mathcal{E})$.

Its elements have the form $(\alpha + \beta i) + (E + i B)$.

$\diamond i = \sigma_1 \sigma_2 \sigma_3$.
Versors
Let E^\times be the set on non-isotropic vectors of E.

If $x \in E$, define the linear automorphism $x : G \to G$ by

$$x(a) = -xax^{-1} = \hat{x}ax^{-1}.$$

\[\Diamond \] For a vector y, $x(y)$ is the reflection of y along x (or across x^\perp).

Proof: $x(x) = -x$ and $x(y) = y$ if $y \in x^\perp$.

The map x is not an algebra automorphism, but satisfies:

$$x(ab) = -x(ab)x^{-1} = -xax^{-1}xbx^{-1} = -x(a)x(b).$$

It follows that x is grade-preserving. Moreover, it is an isometry:

$$q(x(a)) = ((-xax^{-1})^*(-xax^{-1}))_0$$

$$= (x^{-1}a^2a^{-1}x^{-1})_0 = (x^aax^{-1})_0 = q(a).$$
Let $x_1, \ldots, x_k \in E^\times$ and $\nu = x_1 \cdots x_k$. Then
\[
(x_1 \cdots x_k)(a) = \hat{x}_1 \cdots \hat{x}_k a x_k^{-1} \cdots x_1^{-1} = \hat{\nu} a \nu^{-1}.
\]

The expressions ν form a group under the geometric product. We denote it by $\mathcal{V} = \mathcal{V}_{r,s}$ and its elements are called versors.

Any isometry $f : E \to E$ has the form ν for some versor ν. Moreover, if $\nu = \nu'$, then $\nu' = \lambda \nu$ for some scalar λ.

A unit versor (also called a pinor) is a versor ν such that $\nu \hat{\nu} = \pm 1$.

Any unit versor is the product of unit vectors (and conversely).

Any isometry $f : E \to E$ has the form ν for some unit versor ν. Moreover, if $\nu = \nu'$ (ν' also a unit versor), then $\nu' = \pm \nu$.
The **even** unit versors are called *spinors*. They form a subgroup $S_{r,s}$ of $V_{r,s}$. The *rotors* are the spinors v such that $v\tilde{v} = 1$. They form a subgroup $R_{r,s}$ of $S_{r,s}$. In the Euclidean space, any spinor is a rotor, but this is not true in general.

◊ **Any proper isometry (also called rotation) has the form v for some spinor v. If the rotation is connected to the identity, then it has the form v for some rotor v.**
Example. Let u and u' to unit linearly independent vectors of E_n and $	heta = \angle(u, u')$. Then the rotation v produced by the rotor $v = u'u$ is the rotation in the plane $P = \langle u, u' \rangle$ of amplitude 2θ.

Indeed, since v is the identity on P^\perp, it amounts to a rotation in P. Let $i = i_P$ be the unit area of P. Then u and $u'^\perp = ui$ form an orthonormal basis of P and $u' = u \cos \theta + u'^\perp \sin \theta$. Hence $v = u'u = \cos \theta - i \sin \theta = e^{-i\theta}$. Finally, $v(u) = vu\tilde{v} = e^{-i\theta}ue^{i\theta} = ue^{2i\theta} = u \cos 2\theta + u'^\perp \sin 2\theta$.

◇ If $b \in G^2$, $R = e^b = \sum_{k \geq 0} \frac{1}{k!} b^k$ satisfies $R\tilde{R} = e^b e^{-b} = 1$. If $n \leq 5$, then R is a rotor.
The Hestenes embedding $E_3 \rightarrow E_{3,1}^0$, $x \mapsto X$:

$$X = e_0 + x + \kappa(x)e_\infty, \quad \kappa(x) = \frac{1}{2}x^2.$$

The isometry group $O_{4,1}$ acts on $E_{3,1}^0$ and hence on E_3. These actions are conformal and any conformal map of E_3 can be obtained in this way.

The similarities are induced by the isometries leaving e_∞ fixed.

Using the general construction of rotors, we can produce similarities (sufficient for robotics) tailored to our needs.

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Conformal rotor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation</td>
<td>$e^{-i\theta}$</td>
</tr>
<tr>
<td>Translation</td>
<td>$e^{-ve_\infty/2}$</td>
</tr>
<tr>
<td>Dilation</td>
<td>$e^{\alpha e_0 e_\infty/2}$</td>
</tr>
</tbody>
</table>
The Dirac operator
Let \(e_j \) be a basis of \(E \) and \(e^j \) its reciprocal, defined by the relations
\[
e^j \cdot e_k = \partial^j_k.
\]

Examples. For an orthonormal basis of \(E_n, \) \(e^j = e_j \) for all \(j. \) In the
Minkowski space, \(e^0 = e_0 \) and \(e^j = -e_j \) for \(j = 1, 2, 3. \)

The **Dirac operator** can be defined by the expression \(\partial = e^j \partial_j \) (sum
wrt \(j \) implied by Einstein’s convention), where \(\partial_j = \partial/\partial x^j, \) \(x^j \) the
coordinate functions wrt to \(e_j \) (so \(x = x^j e_j \) for \(x \in E. \))

There are three actions of \(\partial \) on a **multivector field** \(a = a^I(x) e_I: \)

- \(\partial a = \partial_j a^I e^j e_I \)
- \(\partial \cdot a = \partial_j a^I e^j \cdot e_I \)
- \(\partial \wedge a = \partial_j a^I e^j \wedge e_I. \)
- \(\partial a = \partial \cdot a + \partial \wedge a \) (as \(e^j e_I = e^j \cdot e_I + e^j \wedge e_I). \)
Let $a = a^i e_i$ be a \textit{vector field}. Then

- $\partial \cdot a = \partial_j a^j$ (\textit{divergence}).
- $\partial \wedge a = \sum_{i<j}(q_i \partial_i a^j - q_j \partial_j a^i)e_{ij}$.

In E_3, $\partial = \nabla = e_1 \partial_1 + e_2 \partial_2 + e_3 \partial_3$:

- $\nabla \cdot a = \partial_1 a^1 + \partial_2 a^2 + \partial_3 a^3 = \text{div}(a)$.
- $\nabla \wedge a = (\partial_1 a^2 - \partial_2 a^1)e_{12} + (\partial_1 a^3 - \partial_3 a^1)e_{13} + (\partial_2 a^3 - \partial_3 a^2)e_{23} = (\partial_2 a^3 - \partial_3 a^2)e_1 i + (\partial_3 a^1 - \partial_1 a^3)e_2 i + (\partial_1 a^2 - \partial_2 a^1)e_3 i = (\nabla \times a)i = \text{curl}(a)i$.
A bivector of \mathcal{D} has the form $F = E + iB$ ($E, B \in \mathcal{E}$) and can be used to encode the electromagnetic field (Faraday bivector).

Let $\rho = \rho(x, t)$ be the scalar function representing the charge density and $j \in \mathcal{E}$ the vector representing the current density. The $J = \rho e_0 + j$ is the current vector.

◊ The equation $\partial F = J$ is equivalent to the Maxwell equations for the electromagnetic field generated by ρ and j.

◊ If we multiply $\partial F = J$ by ∂ on the left, we obtain $\Box F = \partial \cdot J + \partial \wedge J$, where $\Box = \partial^2 = \partial_0^2 - (\partial_1^2 + \partial_2^2 + \partial_3^2)$ (d’alambertian).

Since the left side is a bivector (\Box preserves grades), the scalar part of the right-hand side expression must vanish: $\partial \cdot J = 0$. This is the charge conservation equation, as it is equivalent to the continuity equation $\partial_t \rho + \nabla \cdot j = 0$.
The original Dirac equations were written in terms of 4×4 complex matrices $\gamma_0, \gamma_1, \gamma_2, \gamma_3$ that provided a matrix representation of D determined by $e_i \mapsto \gamma_i$. The space on which these matrices act, \mathbb{C}^4, was the space of \textit{Dirac spinors}; the \textit{wave function} was map $\psi : E_{1,3} \to \mathbb{C}^4$; and the Dirac equation was derived as a “relativistic Schrödinger equation for the electron wave function” (Klein-Gordon equation).

It turns out, however, that GC shows that \textit{the complex matrices are superfluous, as the only crucial fact required is that they satisfy Clifford’s relations}. And after that, the analysis reveals that the role of \mathbb{C}^4 must be played by the space $D^+ (\simeq \mathcal{P})$, which has complex dimension 4, and hence that the wave function is to be thought as a \textit{spinor field}, the name for a function $\psi : E_{1,3} \to D^+$.

As is customary, instead of e_0, e_1, e_2, e_3 used so far, we will use $\gamma_0, \gamma_1, \gamma_2, \gamma_3$.
The final conclusion is that the *Dirac equation* is morphed into the following equation for the spinor field ψ:

$$\partial \psi i \hbar - \frac{e}{c} A \psi = m_e c \psi \gamma_0,$$

where c is the speed of light, e is the electron charge and m_e its mass. In this equation i is not $\sqrt{-1}$, but the bivector $i = \gamma_{21}$, and A is the *electromagnetic potential*, a vector field such that $\partial \wedge A = F$ and $\partial \cdot A = 0$.

As found and expressed by D. Hestenes, this equation “reveals geometric structure in the Dirac theory that is so deeply hidden [even inaccessible] in the matrix version that it remains unrecognized by QED experts to this day”.

See [?, §3.3], [116], [117, §6.2 and §6.3], which include a comprehensive survey of applications.
\[i = \gamma_2 \gamma_1 = i \gamma_3 \gamma_0 = i \sigma_3 = \sigma_1 \sigma_2. \]

This 2-area element is a geometric imaginary unit that replaces the (ungeometric) imaginary unit \(\sqrt{-1} \) in the original Dirac equation.

The first important advantage of the GC formulation of the Dirac equation is that \(\psi(x) \) admits a decomposition of the form

\[
\psi = \rho^{1/2} e^{i\beta/2} R,
\]

where \(\rho = \rho(x) \) is a positive real number, \(\beta = \beta(x) \in [0, 2\pi) \) and \(R = R(x) \) is a rotor (that is, \(R \tilde{R} = 1 \)). Note that this expression has eight degrees of freedom: \(1 + 1 + 6 \).
Define $e_\mu = e_\mu(x) = R \gamma_\mu \tilde{R}$ (comoving frame). Since R is a rotor, this is an orthonormal frame field in $E_{1,3}$ with the same orientation and temporal orientation as the reference frame γ_μ.

Note that $\psi \gamma_\mu \tilde{\psi} = \rho e_\mu$, because i anticommutes with vectors and $\tilde{i} = i$:

$$\psi \gamma_\mu \tilde{\psi} = \rho e^{i\beta/2} R \gamma_\mu \tilde{R} e^{i\beta/2} = \rho e^{i\beta/2} e^{-i\beta/2} R \gamma_\mu \tilde{R} = \rho e_\mu.$$

In particular, $\psi \gamma_0 \tilde{\psi} = \rho v$, where $v = e_0$, is the Dirac current.

The vector

$$s = \frac{\hbar}{2} R \gamma_3 \tilde{R} = \frac{\hbar}{2} e_3$$

(1)

is the spin vector.
The rotor R transforms the unit i to $\iota = R\tilde{R}$, which is the (comoving) space-like plane quantity e_2e_1 and $S = \frac{\hbar}{2}\iota$ can be called the \textit{spin bivector}. The relation to the spin vector is as follows:

$$S = i sv.$$

\textbf{Proof} $i sv = \frac{\hbar}{2} i R\gamma_3 \tilde{R} R\gamma_0 \tilde{R} = \frac{\hbar}{2} R i\gamma_3 \gamma_0 \tilde{R} = \frac{\hbar}{2} R i\tilde{R} = \frac{\hbar}{2} \iota = S$. \qed
With \(R = e^{i(k \cdot x)} \), we have a ‘monochromatic spinor’ (yes, \(i \) and \(i \))

\[
\psi = \rho^{1/2} e^{i\beta/2} e^{i(k \cdot x)}.
\]

A straightforward computation shows that the condition for this wave to satisfy the real Dirac equation is that

\[
\hbar k = m_e c v e^{-i\beta}
\]

This implies that \(\cos(\beta) = \pm 1 \). As for monochromatic electromagnetic waves, the condition for constant phase in the moving frame is \(v \cdot x = c \tau \), and so

\[
\hbar k \cdot x = \pm m_e c (v \cdot x) = \pm m_e c^2 \tau
\]

which yields the de Broglie frequency \(m_e c^2 / \hbar \) of the electron.

A closer analysis shows that the vector \(e_1 \) turns in the plane \(\iota \) with frequency \(2m_e c^2 / \hbar \), which is the zitterbewegung frequency of Schrödinger, with period \(4.0466 \times 10^{-21} \text{s} \).

Tensorflow: Large-scale machine learning on heterogeneous distributed systems.

Conformal geometric algebra method for detection of geometric primitives.

Deep reinforcement learning for robotic manipulation—the state of the art.

From Neuron to Cognition via Computational Neuroscience.

Vision, brain, and cooperative computation.

in four parts: Visual neurophysiology, Visual psicophysics, Machine vision and robotics, and Connectionism and cooperative computation.

Build intelligent computer vision applications using TensorFlow and Keras.
Geometric computing: for wavelet transforms, robot vision, learning, control and action.

Geometric algebra computing: in engineering and computer science.

Geometric bioinspired networks for recognition of 2-D and 3-D low-level structures and transformations.

Applications of conformal geometric algebra in mesh deformation, 2013.

Redes neuronales & deep learning.

Author, 2019.

Vision with direction.

[16] Nick Bostrom.

Superintelligence: paths, dangers, strategies.

Oxford University Press, 2014.
Learning algebraic varieties from samples.

Geometric deep learning: going beyond Euclidean data.

Superhuman AI for multiplayer poker.

Deep learning with python.

Develop deep learning models on theano and tensorflow using keras.

A mathematical motivation for complex-valued convolutional networks.

[22] Joan Bruna and Stéphane Mallat.

Invariant scattering convolution networks.

[23] Sven Buchholz.

A theory of neural computation with Clifford algebras.

Coordinate independent update formulas for versor Clifford neurons, 2008.

On Clifford neurons and Clifford multi-layer perceptrons.

Neural Networks, 21(7):925–935, 2008.
[26] Sven Buchholz, Kanta Tachibana, and Eckhard Hitzer.
International conference on artificial neural networks (Springer), 864-873.

[27] Andriy Burkov.
The Hundred-Page Machine Learning Book.
Andriy Burkov, 2019.

Quaternion wavelets for image analysis and processing.
[29] Adam S. Charles.

Neural ordinary differential differential equations.

Convolutional networks for spherical signals.
Group equivariant convolutional networks.

Introduction to robotics: Mechanics and control (third edition).

[34] Yuwei Cui, Subutai Ahmad, and Jeff Hawkins.
The HTM spatial pooler—A neocortical algorithm for online sparse distributed coding.
Todo es más sencillo con los hipercomplejos.

[37] Sander Dieleman, Jeffrey De Fauw, and Koray Kavukcuoglu.

[38] Samuel Dodge and Lina Karam.
Understanding how image quality affects deep neural networks.
In *Quality of Multimedia Experience (QoMEX), 2016 Eighth International Conference on*, pages 1–6. IEEE, 2016.

The master algorithm.

How the quest for the ultimate learning machine will remake our world.

[40] Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis.

Learning $so(3)$ equivariant representations with spherical CNNS.

[41] Carlos Esteves, Avneesh Sud, Zhengyi Luo, Kostas Daniilidis, and Ameesh Makadia.
Cross-Domain 3D Equivariant Image Embeddings.

Application of Quaternion Neural Network to EMG-Based Estimation of Forearm Motion.

Deep quaternion networks.

In *2018 International Joint Conference on Neural Networks (IJCNN)*, pages 1–8. IEEE, 2018.

Hands-on machine learning with Scikit-Learn and TensorFlow: Concepts, tools, and techniques to build intelligent systems.

O’Reilly, 2017.

[46] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

Deep learning.

Signal processing for computer vision.

[48] Jeff Hawkins and Sandra Blakeslee.

On intelligence: How a new understanding of the brain will lead to the creation of truly intelligent machines.

Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.

[51] Mikael Henaff, Joan Bruna, and Yann LeCun.

[52] David Hestenes.

[53] David Hestenes and Garrett Sobczyk.
Clifford Algebra to Geometric Calculus.
Transforming auto-encoders, 2011.
International Conference on Artificial Neural Networks (Springer, 2011), 44-51.

Matrix capsules with EM routing.
15 pages.

[56] Akira Hirose.
Complex-valued neural networks (second edition).
[57] Akira (editor) Hirose.

[58] Eckhard Hitzer and Stephen J Sangwine.

Quaternion and Clifford Fourier transforms and wavelets.

[59] Lester Ingber.

Computational algorithms derived from multiple scales of neocortical processing.

Paper #1 is *Pattern theory: a unifying perspective*, by D. Mumford.

Reinforcement learning in robotics: A survey.

Statistical learning theory: a tutorial.
[66] LISA lab.
Release 0.1. Theano Development Team.

[67] Anthony Lasenby.
Geometric algebra, gravity and gravitational waves.

[68] Carlile Lavor, Sebastià Xambó-Descamps, and Isiah Zaplana.
A Geometric Algebra Invitation to Space-Time Physics, Robotics and Molecular Geometry.
[69] Y Le Cunn and Y Bengio.

Deep learning.

[71] Karel Lenc and Andrea Vedaldi.
Understanding image representations by measuring their equivariance and equivalence.
[72] Ian Lenz.
Deep learning for robotics.

[73] Henry W. Lin, Max abd Tegmark, and David Rolnick.
Why does deep and cheap learning work so well?

[74] Pertti Lounesto and Esko Latvamaa.
Conformal transformations and Clifford algebras.
Modern Robotics: Mechanics, Planning, and Control.
Authors, 2017.

[76] Stéphane Mallat.
Understanding deep convolutional networks.

[77] Diego Marcos, Michele Volpi, Nikos Komodakis, and Devis Tuia.
Rotation equivariant vector field networks.

[78] Hrushikesh Mhaskar, Qianli Liao, and Tomaso Poggio.
Learning functions: when is deep better than shallow.
Clifford wavelets, singular integrals, and Hardy spaces.

[80] Shariq Mobin and Joan Bruna.

Learn Keras for Deep Neural Networks.
A fast track approach to modern deep learning with python.

Neural networks and deep learning, volume 25.

[86] Sofia Olhede and Patrick Wolfe.

http://discovery.ucl.ac.uk/10051919/1/AIspringv5.pdf, 3 pages. Authors discuss the implications as nations race for AI dominance.

A survey of machine learning approaches to robotic path-planning.

A survey of machine learning approaches to robotic path-planning.

[89] Titouan Parcollet, Ying Zhang, Mohamed Morchid, Chiheb Trabelsi, Georges Linarès, Renato De Mori, and Yoshua Bengio.
Quaternion convolutional neural networks for end-to-end automatic speech recognition.

A probabilistic theory of deep learning.

[91] Donald Perlis.
Hawkins on intelligence: fascination and frustration.

[92] Minh Tuan Pham and Kanta Tachibana.
A conformal geometric algebra based clustering method and its applications.

[93] Tuan M. Pham, Danh C. Doan, and Eckhard Hitzer.
Feature extraction using conformal geometric algebra for AdaBoost algorithm based inplane rotated face detection.
[94] Tao Qian, Mang I. Vai, and Yuesheng Xu (editors).

Wavelet analysis and applications.

Includes: *Clifford analysis and the continuous spherical wavelet transform* (P. Cerejeiras, M. Ferreira, U. Kähler).

[95] David Rolnick and Max Tegmark.

The power of deeper networks for expressing natural functions, 2018.

arXiv:1705.05502, v2.

A survey on deep learning methods for robot vision.

Dynamic routing between capsules.

[98] Jürgen Schmidhuber.

[99] Jahanzaib Shabbir and Tarique Anwer.
A survey of deep learning techniques for mobile robot applications.
[100] Shai Shalev-Shwartz and Shai Ben-David.

Understanding machine learning: From theory to algorithms.

[101] Gerald Sommer (ed.).

Geometric computing with Clifford algebras: theoretical foundations and applications in computer vision and robotics.

[102] GS Staples.

Reinforcement learning: An introduction.

[104] Lei Tai, Jingwei Zhang, Ming Liu, Joschka Boedecker, and Wolfram Burgard.

A survey of deep network solutions for learning control in robotics: From reinforcement to imitation.

Deep learning using linear support vector machines.

[106] Max Tegmark.
Life 3.0: Being human in the age of artificial intelligence.

[107] Tijmen Tieleman.
Optimizing neural networks that generate images.
University of Toronto (Canada), 2014.
PhD thesis.

Playing Smart: On Games, Intelligence, and Artificial Intelligence.
The Dirac operator

Monochromatic solutions

A high-level model of neocortical feedback based on an event window segmentation algorithm.

[110] Ivan Vasiliev, Daniel Slater, Gienmario Scapagna, Peter Roelants, and Valentino Zocca.

Python Deep Learning (second edition).

Packt, 2019.

Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow.

Paravectors and the geometry of 3D euclidean space.

From Leibniz’ *characteristica geometrica* to contemporary geometric algebra.

Quaderns d’Història de l’Enginyeria, 16 (Special issue dedicated to commemorate Leibniz (1646-1716)):103–134, 2018.

pdf.

[117] Sebastià Xambó-Descamps.

Real spinorial groups—a short mathematical introduction.

[118] Ding-Xuan Zhou.

