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Zeitgeist Buzzwords and Prophecies

Lifelong learning (a need), learning to learn (a mood), continuous learning (a
pedagogical principle), ...

The ability to learn is arguably the most fascinating aspect of general
intelligence (tegmark-2017 [1], Life 3.0, page 71).

On intelligence: How a new understanding of the brain will lead to the
creation of truly intelligent machines (hawkins-blakeslee-2004 [2])

How to create a mind: The secret of human thought revealed (kurzweil-2012
[3])

The AI Spring of 2018 (olhede-wolfe-2018 [4]; racing for AI dominance).

AI superpowers: China, Silicon Valley, and the new world order (lee-2018 [5])

Traffic Signs for AI (garciagasulla-atiacortes-ulisescortes-2020 [6]).

artificial intelligence (AI): Non-biological intelligence.

intelligence: Ability to accomplish complex goals.

narrow intelligence: Ability to accomplish a narrow set of goals.
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Zeitgeist Life 3.0, Fig. 2.1 (Narrow advances)
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Zeitgeist Life 3.0, Fig. 2.2 (Moravec’s landscape: Tide advances)

brown-sandholm-2019 [7] (Superhuman AI for multiplayer poker)
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Abstract

Abstract
First, the frameworks that provide theoretical support to the main
flavors of automatic learning (AL = ML) will be sketched. Then
the focus will turn to algebro-geometric neural networks (their
nature depends on the kind of inputs-outputs processed by their
neurons) and the extensions of those frameworks to this kind of
nets. The talk will finish by pointing out some challenges and
opportunities for further research.

DL ⊂ ML = AL ⊂ AI
ML: “aims to understand computational mechanisms by which
experience can lead to improved performance. [...] draws on ideas
from many other fields, including , cognitive psychology,
information theory, logic, complexity theory, and operations
research, but always with the goal of understanding the
computational character of learning” (dietterich-langley-2003 [8]).
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Abstract

“The foundations and four pillars of machine learning” (Figure 1.1 in
Mathematics for machine learning, deisenroth-faisal-soon-2020 [9])
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Topics

Everlasting jewels

Inductive learning

Bayesian technologies

Neurons

Neuron Nets

Outlooks
Neglect of mathematics works injury to all knowledge, since he who is
ignorant of it cannot know the other sciences or the things of the world
(Roger Bacon, 1214-1292).

This presentation can be downloaded from

https://web.mat.upc.edu/sebastia.xambo/icca12/s-icca12.pdf
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Everlasting jewels
Bayes-Laplace formula

Pattern Theory
Principal Component Analysis
Singular Vector Decomposition
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Everlasting jewels Bayes formula

Let X ,Y be events. Then

P(X ,Y ) =
{

P(X ) · P(Y |X )
P(Y ) · P(X |Y )

This is equivalent to

P(X |Y )
P(X ) = P(Y |X )

P(Y ) = P(X ,Y )
P(X ) · P(Y ) .

This quantity, which is symmetrical in X and Y , will be denoted L(Y |X ), and so

P(Y |X ) = P(Y )L(Y |X ),

which is the Bayes-Laplace rule. We see that L(Y |X ) is the factor that scales
the prior probability P(Y ) of Y to the posterior probability P(Y |X ) (the
probability of Y on having observed the occurrence of X ). In other words,
L(Y |X ) measures the learning about Y acquired by the evidence that X has
occurred.

Readings for distressed times: mcgrayne-2011 [10] (The theory that would not
die). Modern Bayes revival: Alan Turing! (and all that followed).
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Everlasting jewels Maximum a Porteriori (MAP) rule

If an event X occurs, and it can be assigned to disjoint hypothesis Y1, · · · ,Yr ,
the MAP rule selects the hypothesis Yj such that P(Yj |X ) is maximum. The
Bayes-Laplace formula tels us that this is the same as selecting the Yj such that
P(X |Yj )P(Yj ) is maximum.

In the special case in which the Yj have the same probability, this amounts to
select the Yj such that P(X |Yj ) is maximum.

Readings: stone-1975 [11] (Theory of optimal search) [1966, Palomares, lost
bomb; 1968, Scorpion sub lost; ...]

mumford-desolneux-2010 [12] (Pattern theory: the stochastic analysis of
real-world signals). Motto: Using Pattern Theory to create mathematical
structures both in the natural and the man-made world (Ulf Grenander,
1923-2016).

silver-2012 [13] (The signal and the noise)

“Bayes’s theorem [...] implies that we must think differently about our ideas —
and how to test them. We must become more comfortable with probability and
uncertainty. We must think more carefully about the assumptions and beliefs
that we bring to a problem” (page 15).
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Everlasting jewels Pattern Theory (illustrations)
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Everlasting jewels Digression: Probability and Statistics

Statistics is concerned with estimating the parameters θ (causes) of the
probability distribution that governs the generation of observations x (effects).

In generating data, we have the conditional probability, P(x |θ), where θ is fixed,
and usually unknown. On the other hand, if we have data, then we can regard
P(x |θ) as a function of θ, which is usually expressed by a likelihood function
L(θ|x), which leads to the principle of likelihood maximization: To find the θ that
maximizes L(θ|x) = P(x |θ) given a set of observations x .

A Bayesian statistical model is made of a parametric statistical model, f (x |θ),
and a prior distribution on the parameters, π(θ).

Probability distributions: robert-2007 [14] (The Bayesian choice, App. A).
[...] the range of possible applications of statistics is enormously
widened so that we can deal with phenomena other than those of a
repeatable nature (from D. V. Lindly’s Foreword to de Finetti’s land-
mark book [15]).
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Everlasting jewels Data science: Principal Component Analysis

Let X a data matrix of size m × n. We regard the rows X i of X as observations
on n objects, X i = (x i

1, . . . , x i
n), for m features (i = 1, . . . ,m). Denote the mean

value of X i , E (X i ), by µi .

Let σij = Cov(X i ,X j ) = E [(X i − µi )(X j − µj )] = E [X i X j ]− µiµj and
Σ = (σij )16i,j6n. This is the covariance matrix of X , Σ = Cov(X ). Notice that
σii = σ2

i , where σi is the standard deviation of X i .

Given a unit m-vector u, it turns out that Var(uT X ) = uT Σu, and that this is
maximum precisely when u is an eigenvector of Σ with the highest eigenvalue.
This vector is the principal component of X , that is, the unit eigenvector u = u1
of Σ whose eigenvalue λ1 is largest (the eigenvalues of Σ are real). It accounts
for the greatest variance of the data along a direction.

The second principal component of X is the eigenvector u2 corresponding to the
second eigenvector λ2. It maximizes Var(uT X ) = uT Σu for unit vectors u
perpendicular to u1. And so on.

This frames an (unsupervised) approach to dimension reduction by means of the
spectral decomposition Σ = UΛUT , where Λ is the diagonal matrix with the
eigenvalues of Σ, ordered in non-increasing order, and U is the orthonormal
matrix formed with the unit eigenvectors of Σ.
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Everlasting jewels Data science: Singular Value Decomposition

Let X be an m × n data matrix as in the preceding slide, and let r be its rank.
Then XX T and X T X have rank r and they have the same non-zero eigenvalues
λ2

1, . . . , λ
2
r , where λ1 > λ2 > · · · > λr > 0. Moreover, if we let U and V denote

the orthonormal matrices of eigenvectors of XX T and X T X , then X = UΛV T

where Λjj = λj for j = 1, . . . , r are the only non-zero values of Λ.

Note that XX T = U(ΛΛT )UT and X T X = V (ΛT Λ)V T , where the first r values
of the diagonals of ΛΛT and ΛT Λ are λ2

1, . . . , λ
2
r and all others 0 in both matrices

(of sizes m ×m and n × n, respectively).

Since UΛ = (λ1u1, . . . , λr ur ), we get the singular value decomposition of X :

X = λ1u1v T
1 + · · ·+ λr ur v T

r .

Actually it turns out (Eckart-Young theorem) that for k = 1, . . . , r the matrix

Mk = λ1u1v T
1 + · · ·+ λr uk v T

k

is the closest to X among the matrices of rank k.

Remark. The least-squares solution to Xa = b is a = X †b, where X † = V Σ†UT

(Moore-Penrose pseudo-inverse of X ), Σ† = diag(λ−1
1 , . . . , λ−1

r , 0, . . . , 0).
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Everlasting jewels Data science: Singular Value Decomposition

Readings:

Latent semantic analysis, particularly Ch. 2
(landauer-mcnamara-dennis-kintsch-2007 [16])

Image processing, analysis, and machine vision (sonka-hlavac-boyle-2015 [17])

Linear algebra and learning from data (strang-2019 [18])

Introduction to machine learning (alpaydin-2020 [19])

Mathematics for ML (deisenroth-faisal-soon-2020 [9])

https://en.wikipedia.org/wiki/Eigenface (inspected August 1st,
2020)

Sebastià Xambó-Descamps (UPC/BSC) Resources for DL 2020.8.04 17 / 81

https://en.wikipedia.org/wiki/Eigenface


Inductive Learning
Ingredients

The learning problem
Fundamental theorem of IL

After the LN of Joan Bruna at the MSRI, 2019
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Inductive Learning Outline of aims

In general terms, a rough idea of supervised machine learning is to
produce algorithms that output a function that

F Gives good approximations of given values y i for a set of given
inputs x i (i = 1, . . . , N);
G Has good generalization capacity, which means that for any x
(of a kind similar to that of the x i ) the value y ′ = f (x) is a good
approximation of the expected value y corresponding to x .
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Inductive Learning Formal ingredients

Data source: Data are drawn from a space X, which may be assumed to be a
subset of RN . Usually the dimension of X is very large.

Data generation: Elements of X are drawn according to a (usually unknown)
probability density P. In symbols, x ∼ P.

Hypotheses: A family F = {fw}w∈W of functions fw : X→ Y (Inductive bias).
The elements of W are called parameters or weights. Example: For a polynomial,
we can take its coefficients as parameters.

Complexity: The complexity of hypotheses is gauged by a map γ : F → R+. A
common choice is the norm ||fw ||.

For δ ∈ R+, we set Fδ = {f ∈ F : γ(f ) 6 δ} (the set of hypotheses with
complexity bounded by δ).

For a polynomial, it could be bounding the absolute value of its coefficients.

Expert or supervisor: A fixed map f ∗ : X→ Y (not necessarily in F). For each
x ∈ X, it produces an example: the pair (x , y), y = f ∗(x).
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Inductive Learning Formal ingredients

Training dataset: D = {(xi , yi = f ∗(xi )) : xi ∈ X)}i=1,...,m, where xi ∈ X are
drawn according to P independently, xi ∼ P in symbols.

Loss: The closeness of y , y ′ ∈ Y is given by a loss function `(y , y ′) > 0.

If Y = R (regression learning), use `(y , y ′) = |y − y ′|2 or `(y , y ′) = |y − y ′|.

If Y is finite (classificacion learning), the natural loss is `(y , y ′) = δ(y , y ′), which
is 1 when y = y ′ and 0 otherwise.

The loss of f ∈ F, denoted L(f ), it is a measure of how close the values f (x) and
f ∗(x) are on the average:

L(f ) = EP [`(f (x), f ∗(x))] =
∫
X
`(f (x), f ∗(x))P(x)dx .

In classification, L(f ) = P(f (x) = f ∗(x)).

The loss is also called risc or error in some contexts.
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Inductive Learning Formal ingredients

Goal of a LA: To find f ∈ F, using only D, such that L(f ) is a good
approximation of the minimum loss LF = minh∈F L(h) achievable with F.

Empirical risk: For h ∈ F, the quantity RD(h) = 1
m
∑m

i=1 `(h(xi ), yi ).

Empirical risk minimization: Let RD,F = minh∈F RD(h), i.e. the minimum of
the empirical risks achievable with F.

Variant: RD,F,λ = minh∈F RD(h) + λγ(h), λ > 0 fixed, is the λ-regularized, or
λ-penalized, empirical risk minimum.

Problem: to find f̂ ∈ F such that RD(f̂ ) = RD,F, and f̂δ ∈ Fδ such that
RD(f̂δ) = RD,Fδ

. With similar notations for the penalized versions.

Approximation error: Defined as the difference Aδ = LFδ
− LF. It is

non-negative and decreases on increasing δ. It measures how close we can get to
the minimum loss LF with functions from Fδ.

Statistical error: Given f ∈ Fδ, |L(f )− RD(f )| is the error undergone on
replacing the loss L(f ) by the empirical loss RD(f ). It is clearly bounded above
by SD,δ = suph∈Fδ |L(h)− RD(h)|, which will be called statistical error.
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Inductive Learning Fundamental theorem of IL

Let f̂ ∈ Fδ be such that RD(f̂ ) 6 ε+ RD,Fδ
. This means that the empirical

risk of f̂ differs in not more than ε from the minimum RD,Fδ
of the empirical

risks of functions of Fδ (ε is called optimization error). Then

L(f̂ )− LF 6 Aδ + 2SD,δ + ε.

The approximation, statistical and optimization errors give an upper bound to the
error produced on replacing the minimum loss LF by the empirical loss L(f̂ ).

Tradeoffs. (1) Decreasing ε may entail that we have to increase δ in order to
guarantee that f̂ exists. (2) On incresing δ, Aδ decreases (or at least does not
increase), but SD,δ increases. (3) In general, the statistical error decreases on
increasing the dataset.
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Inductive Learning Example: Linear regression

Let w be an unknown vector of weights (one weight for each of the n
components of the x vectors) and fw (x) = w · x = w1x1 + · · ·+ wnxn (a weighted
sum of the components of x). Let F = {fw}.

A way of fulfilling condition F is to pick a w that achieves
minw

∑N
i=1
(
w · x i − y i)2 (least squares optimization). This can be obtained by

standard procedures.

Regularized linear regression (improves generalization capacity):

minw
∑

i
(
w · x i − y i)2 + λ||w ||22

“where λ is a scalar ... discovered by experimenting with the data” (arora-2018
[20]).

This is related to the phenomena of overfitting and underfitting while learning.
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Inductive Learning The algorithmic side

The general steps followed by a supervised learning algorithm are as follows:

Givens: D, F = {fw}w∈W , a loss function `.

1. Split D in two sets: D′ (training dataset) and D′′ (testing dataset).

2. Find w ∈W such that the empirical risk of fw on D′, RD′ (fw ), is minimum
(this is usually accomplished by an optimization iterative procedure, and each
step in the loop is called a training epoch).

3. Return fw together with accuracy measures of how often fw (x j ) ' y j for the
training and testing sets.
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Inductive Learning Sources

The Nature of Statistical Learning Theory, summarized in vapnik-1999 [21]
(vapnik-1995 [?])

Learning theory: an approximation theory viewpoint (cucker-zhou-2007 [22])

An elementary introduction to statistical learning theory, summarized in [23]
(kulkarni-harman-2011-SLT [24])

Optimization for ML, especially Chapter 13, The tradeoffs of large-scale
learning, by L. Bottou and O. Bousquet (sra-nowozin-wright-2012 [25]).

Mathematical foundations of supervised learning (wolf-2018 [26])

Mathematics for machine learning: Ch. 9, Regression; Ch. 10, Dimensionality
reduction; Ch. 12, Classification; Ch. 11, Density estimation.
(deisenroth-faisal-soon-2020 [9])

Foundations of Data Science (blum-hopcroft-kannan-2020 [27])
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Bayesian technologies
Gibbs lemma and the KL divergence

Sources, with emphasis on causal learning-reasoning
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Bayesian technologies Gibbs lemma and the KL divergence

Suppose p = p1, . . . , pn and q = q1, . . . , qn are probability distributions. Then
−
∑

j pj log2(pj ) 6 −
∑

j pj log2(qj ), with equality if and only if q = p.

It follows that
∑

j pj log2(pj/qj ) > 0, with equality precisely when q = p.

This expression is usualluy called the Kullback-Leibler divergence (KL) of p and
q, and denoted KL(p, q).

To recap, KL(p, q) > 0 with equality if and only if p = q. Note, however, that in
general KL(q, p) 6= KL(p, q).

The KL divergence is an important tool the theory of Bayesian networks for
compaparing the network probabililty distributions at successive times.

Since H(p) = −
∑

j pj log2(pj ) is the entropy of the distribution p, which is the
average information provided by a trial of p, it is only natural that KL is also
significant in information theory.
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Bayesian technologies Sources, with emphasis on causal leaning-reasoning

Probabilistic reasoning in intelligent systems: Networks of plausible inference
(pearl-1988 [28])

Perception as Bayesian Inference (knill-richards-1996 [29])

The art and science of cause and effect (pearl-1996 [30])

Probability theory: The logic of science (jaynes-2003 [31])

Learning Bayesian networks (neapolitan-2004 [32])

Data analysis: a Bayesian tutorial (sivia-skilling-2006 [33])

Pattern recognition and machine learning, Ch. 5 (bishop-2006 [34])

Causality. Models, Reasoning, and Inference (pearl-2009 [35])

Probabilistic Graphical Models–Principles and Techniques
(koller-friedman-2009 [36]*)

Modeling and Reasoning with Bayesian Networks (darwiche-2009 [37]*)

Learning Hidden Markov Models using Non-Negative Matrix Factorization.
(cybenko-crespi-2011 [38]). A nice application of SVD.
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Bayesian technologies Sources, with emphasis on causal leaning-reasoning

Markov random fields for vision and image processing (blake-kohli-rother-2011
[39])

Causality and Statistical Learning, a review (gelman-2011 [40])

“All becomes more difficult when we shift our focus from What to What-if and
Why”
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Bayesian technologies Sources, with emphasis on causal leaning-reasoning

Bayesian reasoning and machine learning (barber-2012 [41])

Causes of effects and effects of causes (pearl-2015 [42])

Trygve Haavelmo and the emergence of causal calculus (pearl-2015-Haavelmo
[43])

Efficient Algorithms for Bayesian Network Parameter Learning from
Incomplete Data (vandenbroeck-mohan-choi-pearl-2015 [44])

“In contrast to textbook approaches such as EM and the gradient method, our
approach is non-iterative, yields closed form parameter estimates, and eliminates
the need for inference in a Bayesian network.”

Causal inference and the data-fusion problem (bareinboim-pearl-2016 [45])

Elements of causal inference. Foundations of learning algorithms
(peters-janzing-sholkopf-2017 [46]*)
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Bayesian technologies Sources, with emphasis on causal leaning-reasoning

Elements of causal inference. Foundations of learning algorithms
(peters-janzing-sholkopf-2017 [46]*)
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Bayesian technologies Sources, with emphasis on causal leaning-reasoning

Theoretical impediments to machine learning with seven sparks from the
causal revolution (pearl-2018 [47])

The book of why: The new science of cause and effect
(pearl-mackenzie-2018 [48])

Probability Theory And Statistical Inference: Empirical Modeling With
Observational Data; for a shorter account, see [49] (spanos-2019 [50])

Graphical models for processing missing data (mohan-pearl-2019 [51])

Markov blankets in the brain
(hipolito-ramstead-convertino-bhat-friston-parr-2020 [52])

“ ‘Markov blanket’: a statistical boundary that mediates the interactions between
what is inside of and outside of a system.”
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Neurons
Biological neurons (in homage to S. Ramon y Cajal)

Artificial neurons
A-neurons
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Neurons Biological neurons (in homage to Santiago Ramón y Cajal)

Every man can be, if he wants to, a sculptor of his own brain.

Nothing inspires me more reverence and awe than an old man who is willing
to change his mind.

The car of Spanish culture lacks the wheel of science.
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Neurons Biological neurons (in homage to Santiago Ramón y Cajal)

Hundreds of his drawings illustrating the delicate arborizations of brain cells
are still in use for educational purposes.

He conjectured that learning is related to variations of the synaptic
connections.
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Neurons Artificial neurons and early neuron nets

A logical calculus of the ideas immanent in nervous activity
(mcculloch-pitts-1943 [53])

The perceptron: a probabilistic model for information storage and
organization in the brain (rosenblatt-1958 [54])

Adaptive switching circuits (widrow-1960 [55])

Principles of neurodynamics: Perceptrons and the theory of brain mechanisms
(rosenblatt-1962 [56])

Perceptrons (minsky-papert-1969 [57])

Learning representations by back-propagating errors
(rumelhart-hinton-williams-1986 [58])

Encyclopedia of Cognitive Science (nadel-2003 [59])
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Neurons A-neurons

Ordinarily, the quantities x and w are real numbers, but instead we can envision
various natural generalizations.

The components of x and w could belong to a given algebra A, as the expression
x · w = x1w1 + · · ·+ xnwn ∈ A is well defined.

For this to work, we need an activation function σ : A→ A, which in principle
(an in practice) can be implemented by applying an ordindary σ : R→ R
‘component-wise’ to elements of A.

For example, beyond the real numbers R, A could be C (complex numbers), H
(quaternions), CH (commutative quaternions), 2H (biquaternions), O
(octonions), a matrix algebra R(n), or a geometric algebra G = Gr ,s .
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Neurons A-neurons

Another generalization direction is replacing x and w by more general data
structures, as for example A-arrays, and x · w by a suitable operation x ? w .

Among these operations, the most common are cross-correlations or convolutions
(in this case the w are often called filters) or max-pooling operations. In sum, we
arrive at a general notion of a neuron, that we may call A-neuron, by specifying:

The algebra A;

The shapes of the A-arrays x (input) and w (weights or filters);

The operation ?;

The activation function σ.

The shape of the output array x ′ is determined by the above elements, and the
map fw : x 7→ x ′ is the functional signature of the A-neuron.

A-neurons can learn by modifying w is suitable ways.
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Neuron nets
Standard NNs

A-NNs
R-, C-, Q-, O-, G-, ... -NNs
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Neuron nets Standard

A NN can be thought of a composition of neurons according to some architecture
(a graph of connections).

Standard NNs are layered and their functional signature is like this:

N : Input→ L1 → L2 → · · · → Lm → Output

A layer takes an input x and yields an output x ′.

The map f : x 7→ x ′ depends on parameters (or weights) associated to the
layer and whose nature depends on the kind of layer.

The input to the first layer is the signal to be processed.

The last layer is the output layer, and its output is the result produced by the
net on the input signal.

The net is shallow if m = 1 and deep if m > 1.
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Neuron nets The array model

In practice, x , x ′, and the layer parameters are multidimensional arrays (or
tensors) whose nature is chosen according to the processing that has to be
achieved.

Write [n1, n2, . . . , nd ] to denote the type of a d-dimensional (real) array with axis
dimensions n1, . . . , nd .

Thus [n] is the type of n-dimensional vectors and [n1, n2] the type of matrices
with n1 rows and n2 columns. Matrices are useful to represent monochrome
images, but for RGB images we need arrays of type [n1, n2, 3] , or [n1, n2, n3] if it
is required that the image be represented by n3 channels, as for example n3 = 6
for a pair of color stereoscopic images.
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Neuron nets The array model

The parameters associated to convolutional and fully connected layers are
represented by an array of weights, W , and a bias array, b. In these cases, the
expression of f has the form

f πW ,b(x) = σ (x ?π W + b) (1)

where ?π is a pairing specific of the layer and σ is an activation function that is
applied component-wise to arrays (e.g. ReLU(t) = max(t − β, 0)).

For convolutional layers, ?π = ? is array cross-correlation, while for fully
connected layers, ?π is matrix product, which is denoted by juxtoposition of its
factors, xW .
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Neuron nets The array model

Given weight arrays and biases Wk and bk (k = 1, ...m), the net N computes
the function

f = f πm
Wm,bm

◦ · · · ◦ f π1
W1,b1

that is continuous and pice-wise affine.

There exist training algorithms of N, particularly those of back-propagation
type, achieving trained weights and biases for which f is ‘optimal’ in the sense
of the conditions F and G.

Approximation superpositions of a sigmoidal function (cybenko-1989 [60])
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Neuron nets The array model

For a max pooling layer, the parameters are represented by a triple of positive
integers (w1,w2, s = 1) , where (w1,w2) is the shape of the pooling window and
s is the stride (1 by default). In this case ?π = ? mp is given by the rule

(x ?mp W ) [i , j , k] = max (x [is : is + w1 − 1, js : js + w2 − 1, k]) (2)

where we use the standard slicing conventions for arrays. The shape of the array
x ?mp W is [n′1, n′2, n3] , where n′1 and n′2 are the greatest integers such that
n′1 ≤ (n1 − w1) /s and n′2 ≤ (n2 − w2) /s.
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Neuron nets The array model

In the cross-correlation product y = x ?W , x is an array of type [n1, n2, n3] and
W (the filter) is an array of type [w1,w2, n3,m3] . The pair (n1, n2) is the shape
of the space dimensions of x and n3 the number of channels. The pair (w1,w2)
denotes the window dimensions of the filter and m3 the number of channels of
the array y. The definition is given by the following formula:

y [i , j , k] =
w1−1∑
m=0

w2−1∑
n=0

n3−1∑
r=0

x [i + m, j + n, r ]W [m, n, r , k] (3)

which can be expressed more compactly as

y [i , j , k] =
n3−1∑
r=0

x [i : i + w1 − 1, j : j + w2 − 1, r ] ∗W [:; r , k] (4)

where ∗ denotes the ordinary scalar product of matrices. Notice that the shape of
y is [n1 − w1 + 1, n2 − w2 + 1,m3] .
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Neuron nets The array model

There is also a downsampled cross-correlation y = x ?s W by a stride s :

y [i , j , l ] =
∑

k,m,n
x [is + m, js + n, k]W [m, n, k, l ]

=
∑

k
x [is : is + w1 − 1, js : js + w2 − 1, k]

∗W [:; k, l ]

(5)

The shape of the array x ?s W is [n′1, n′2, n3] , where n′1 and n′2 are the greatest
integers such that n′1 ≤ (n1 − w1) /s and n′2 ≤ (n2 − w2) /s.
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Neuron nets Selected references: NNs

Neural networks and learning machines (haykin-2009 [61])

ImageNet classification with deep convolutional neural networks
(krizhevsky-sutskever-hinton-2012 [62])

Deep learning (lecun-bengio-hinton-2015 [63])

Neural networks and deep learning (nielsen-2015 [64])

Deep learning in neural networks: an overview (schmidhuber-2015 [65]; 54
pages of references)

Deep learning (goodfellow-bengio-courville-2016 [66])

Understanding deep convolutional networks (mallat-2016 [67])

Neural networks and deep learning (aggarwal-2018 [68])

Universality of deep convolutional neural networks (zhou-2019 [69])

A Survey of Convolutional Neural Networks: Analysis, Applications, and
Prospects (li-yang-peng-liu-2020 [70])

Deep Learning architectures applied to wind time series multi-step forecasting
(manero-2020 [71], PhD thesis)
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Neuron nets C-NN

Complex-valued neural networks: Theories and applications (hirose-2003 [72])

Complex-valued neural networks: The merits and their origins (hirose-2009
[73])

Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters
(nitta-2009 [74])

Complex-valued neural networks with multi-valued neurons (aizenberg-2011
[75])

Complex-valued neural networks (hirose-2012 [76]; second edition of [77]).

Complex-valued neural networks: Advances and applications (Hirose-2013
[78]) An interesting collection of ten papers of which the first four are about
C-NN’s. The most outstanding is the first, by Hirose (the editor of the
volume): Application fields and fundamental merits of complex-valued neural
networks.

A mathematical motivation for complex-valued convolutional networks
(bruna-chintala-lecun-piantino-szlam-tygert-2015 [79])
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Neuron nets C-NN

On complex valued convolutional neural networks (guberman-2016 [80])

Complex-valued convolutional neural networks for real-valued image
classification (popa-2017 [81])

Deep complex networks (trabelsi-2017 [82])

Evaluation of complex-valued neural networks on real-valued classification
tasks (monning-nils-manandhar-suresh-2018 [83])
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Neuron nets Q-NN

Quaternionic Gabor filters for local structure classification
(bulow-sommer-1998 [84])

Quaternionic spinor MLP (buchholz-sommer-2000 [85])

Quaternion wavelets for image analysis and processing
(chan-choi-baraniuk-2004 [86])

Quaternionic neural networks: Fundamental properties and applications
(isokawa-matsui-nishimura-2009 [87])

Quaternion atomic function wavelet for applications in image processing
(moya-bayro-2010 [88])

Quaternionic multilayer perceptron with local analyticity
(isokawa-nishimura-matsui-2012 [89])

Quaternion and Clifford Fourier transforms and wavelets
(hitzer-sangwine-2013 [90])

Rotational invariance of quaternionic Hopfield neural networks
(kobayashi-2016 [91])
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Neuron nets Q-NN

Quaternion neural networks for spoken language understanding
(parcollet-titouan-et-10-2016 [92])

Design of quaternion-neural-network-based self-tuning control systems
(takahashi-hasegawa-hashimoto-2017 [93])

Quaternion convolutional neural networks for end-to-end automatic speech
recognition (parcollet-et-6-2018 [94])

Deep quaternion networks (gaudet-maida-2018 [95])

Quaternion convolutional neural networks (zhu-xu-xu-chen-2018 [96])

Neural ordinary differential equations
(chen-rubanova-bettencourt-duvenaud-2018 [97])

Quaternion Equivariant Capsule Networks for 3D Point Clouds
(zhao-birdal-lenssen-menegatti-guibas-tombari-2020 [98])

A bio-inspired quaternion local phase CNN layer with contrast invariance and
linear sensitivity to rotation angles
(moya-xambo-perez-salazar-mzortega-cortes-2020 [99])
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Neuron nets G-NN

Neural networks in the Clifford domain (pearson-bisset-1994 [100])

Geometric computing with Clifford algebras: theoretical foundations and
applications in computer vision and robotics (sommer-2001 [101])

Clifford algebra multilayer perceptrons (buchholz-sommer-2001 [102], a
chapter in the preceding reference)

The monogenic signal (felsberg-sommer-2001 [103])

Hypercomplex signals – a novel extension of the analytic signal to the
multidimensional case (bulow-sommer-2001 [104])

Clifford convolution and pattern matching on vector fields
(ebling-scheurmann-2003 [105])

Design of kernels for support multivector machines involving the Clifford
geometric product and the conformal geometric neuron
(bayro-arana-vallejo-2003 [106])

A theory of neural computation with Clifford algebras (buchholz-2005 [107],
PhD thesis)
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Neuron nets G-NN

Clifford Fourier transform on vector fields (ebling-scheurmann-2005 [108])

Medical image segmentation using a self-organizing neural network and
Clifford geometric algebra (rivera-bayro-2006 [109])

On Clifford neurons and Clifford multi-layer perceptrons
(buchholz-sommer-2008 [110])

Coordinate independent update formulas for versor Clifford neurons
(buchholz-hitzer-tachibana-2008 [111])

Clifford support vector machines for classification, regression, and recurrence
(bayro-arana-2010 [112])

Geometric computing: for wavelet transforms, robot vision, learning, control
and action (bayro-2010 [113])

Geometric algebra computing: in engineering and computer science
(bayro-scheuermann-2010 [114])

Clifford algebra based edge detector for color images
(franchini-gentili-sorbello-vassallo-vitabile-2012 [115])

The Clifford Fourier transform in real Clifford algebras (hitzer-2013 [116])
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Neuron nets G-NN

A specialized architecture for color image edge detection based on Clifford
algebra (franchini-gentile-vassallo-sorbello-vitabile-2013 [117])

Overviews of optimization techniques for geometric estimation (kanatani-2013
[118])

Understanding geometric algebra: Hamilton, Grassmann, and Clifford for
computer vision and graphics (kanatani-2015 [119])

A geometric algebra co-processor for color edge detection
(mishra-wilson-wilcock-2015 [120])

A conformal geometric algebra based clustering method and its applications
(pham-tachibana-2016 [121])

Outlook for Clifford algebra based feature and deep learning AI architectures
(yin-hadjiloucas-zhang-2017 [122])

Geometric Algebra Applications Vol. I: Computer Vision, Graphics and
Neurocomputing (bayro-2018 [123])

Feature extraction using conformal geometric algebra for AdaBoost algorithm
based inplane rotated face detection (pham-doan-hitzer-2019 [124])
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Neuron nets G-NN

GA-ORB: A new efficient feature extraction algorithm for multispectral
images based on geometric algebra (wang-zhang-shi-wang-cao-2019 [125])

GA-SURF: A new speeded-up robust feature extraction algorithm for
multispectral images based on geometric algebra (wang-shi-cao-2019 [126])

Geometric-algebra adaptive filters (lopes-lopes-2019 [127])

Generalizing convolutional neural networks for equivariance to Lie groups on
arbitrary continuous data (finzi-stanton-izmailov-wilson-2020 [128])
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Neuron nets R(n)-NN, O-NN,...

AlgebraNets (hoffmann-schmitt-osindero-simonyan-elsen-2020 [129])

“... our results demonstrate that there are alternative algebras which deliver
better parameter and computational efficiency compared with R. We consider
C,H,M2(R), M2(C),M3(R),M4(R), dual numbers and the R3 cross product.
Additionally, we note that multiplication in these algebras has higher has higher
compute density than real multiplication, a useful property in situations with
inherently limited parameter reuse such as auto-regressive inference and sparse
neural networks. We therefore investigate how to induce sparsity within
AlgebraNets. We hope that our strong results on large-scale, practical
benchmarks will spur further exploration of these unconventional architectures
which challenge the default choice of using real numbers for neural network
weights and activations.” (from the Abstract)

Deep octonion networks (wu-xu-wu-kong-senhadji-shu-2020 [130])

“This paper constructs a general framework of deep octonion networks [...] and
provides the main building blocks [...] such as octonion convolution, octonion
batch normalization and octonion weight initialization [...] used in image
classification tasks for CIFAR-10 and CIFAR-100 data sets. [...] have better
convergence and higher classification accuracy.” (from the Abstract)
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Outlooks
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Outlooks Geometric DL

Geometric deep learning: going beyond Euclidean data
(bronstein-bruna-lecun-szlam-vandergheynst-2017 [131])

“Geometric deep learning is an umbrella term for emerging techniques attempting
to generalize (structured) deep neural models to non-Euclidean domains such as
graphs and manifolds. The purpose of this paper is to overview different
examples of geometric deep learning problems and present available solutions, key
difficulties, applications, and future research directions in this nascent field.”

Geometric deep learning: A Quick Tour (kosasih-2020 [132])
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Outlooks XAI

Explainability and interpretability in ML models

Explainable and Interpretable Models in Computer Vision and Machine
Learning (escalante-escalera-guyon-baro-et-3-2018 [133]*).

GNNExplainer: Generating explanations for graph neural networks
(ying-bourgeios-you-zitnik-lescovec-2019 [134])

One explanation does not fit all: A toolkit and taxonomy of AI explainability
techniques (arya-bellamy-chen-et-17-2019 [135])

Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities
and challenges toward responsible AI (arrieta-et-11-2020 [136])
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Outlooks DL on mathematically generated datasets

Learning algebraic structures: preliminary investigations (he-kim-2019 [137])

Machine learning meets number theory: The data science of
Birch-Swinnerton-Dyer (alessandretti-baronchelli-he-2019 [138])

Deep learning for symbolic mathematics (lample-charton-2019 [139])

“Neural networks have a reputation for being better at solving statistical or
approximate problems than at performing calculations or working with symbolic
data. In this paper, we show that they can be surprisingly good at more
elaborated tasks in mathematics, such as symbolic integration and solving
differential equations. We propose a syntax for representing mathematical
problems, and methods for generating large datasets that can be used to train
sequence-to-sequence models. We achieve results that outperform commercial
Computer Algebra Systems such as Matlab or Mathematica.”

Machine learning and the physical sciences
(carleo-cirac-cranmer-daudet-schuld-tishby-vogtmaranto-zdeborova-2019
[140])

Graph Laplacians, Riemannian Manifolds and their Machine-Learning
(he-yau-2020 [141])
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Outlooks DL on mathematically generated datasets

Discovering Symbolic Models from Deep Learning with Inductive Biases
(cranmer-et-5-2020 [142])

Graph Neural Networks Meet Neural-Symbolic Computing: A Survey and
Perspective (lamb-garcez-gori-prates-avelar-vardi-2020 [143])
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Outlooks Miscellanea

The Quantum internet

From Long-distance Entanglement to Building a Nationwide Quantum
Internet: Report of the DOE Quantum Internet Blueprint Workshop
(osti-2020 [144])

Philosophy, Ethics

Human-level intelligence or animal-like abilities? (darwiche-2018 [145])

On the relative expressiveness of Bayesian and neural networks
(choi-wang-darwiche-2019 [146])

Dimensionality reduction

Visualizing data using t-SNE (vdmaaten-hinton-2008 [147])

Accelerating t-SNE using tree-based algorithms (vdmaaten-2014 [148])

Studying the impact of the full-network embedding on multimodal pipelines
(vilalta-garciagasulla-et-5-2019 [149])

Overview and comparative study of dimensionality reduction techniques for
high dimensional data (ayesha-hanif-talib-2020 [150])
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Outlooks Miscellanea

CapsNets

Dynamic routing between capsules (sabour-frosst-hinton-2017 [151])

Matrix capsules with EM routing (hinton-sabour-frosst-2018 [152])

Examining the Benefits of Capsule Neural Networks
(punjabi-schmid-katsaggelos-2020 [153])

Neuroscience

Backpropagation and the brain (lillicrap-et-4-2020 [154])

Invariance and covariance

Group equivariant convolutional networks (cohen-welling-2016 [155])

Physics

Toward an AI physicist for unsupervised learnig (wu-tegmark-2018 [156])

Discovering physical concepts with neural networks
(iten-metger-wilming-delrio-renner-2020 [157])
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Sebastià Xambó-Descamps (UPC/BSC) Resources for DL 2020.8.04 74 / 81

 https://arxiv.org/pdf/1901.09342
arXiv:1806.07789


References XI
[98] Y. Zhao, T. Birdal, J. E. Lenssen, E. Menegatti, L. Guibas, and F. Tombari, “Quaternion Equivariant Capsule Networks

for 3D Point Clouds,” 2019.
http://arxiv.org/abs/1912.12098, v2.
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Sebastià Xambó-Descamps (UPC/BSC) Resources for DL 2020.8.04 81 / 81

http://arxiv.org/abs/2001.10964
arXiv:1810.10525

	
	

	Zeitgeist
	Buzzwords and Prophecies
	Life 3.0, Fig. 2.1 (Narrow advances)
	Life 3.0, Fig. 2.2 (Moravec's landscape: Tide advances)

	Abstract
	

	Topics
	
	

	Everlasting jewels
	Bayes formula
	Maximum a Porteriori (MAP) rule
	Pattern Theory (illustrations)
	Digression: Probability and Statistics
	Data science: Principal Component Analysis
	Data science: Singular Value Decomposition

	
	

	Inductive Learning
	Outline of aims
	Formal ingredients
	Fundamental theorem of IL
	Example: Linear regression
	The algorithmic side
	Sources

	
	

	Bayesian technologies
	Gibbs lemma and the KL divergence
	Sources, with emphasis on causal leaning-reasoning

	
	

	Neurons
	Biological neurons (in homage to Santiago Ramón y Cajal)
	Artificial neurons and early neuron nets
	A-neurons

	
	

	Neuron nets
	Neuron nets
	Standard
	The array model
	Selected references: NNs
	C-NN
	Q-NN
	G-NN
	R(n)-NN, O-NN,...

	
	

	Outlooks
	Geometric DL
	XAI
	DL on mathematically generated datasets
	Miscellanea

	
	


