Testing for perfect powers

Sebastià Xambó-Descamps

Abstract

In this note we study D. Bernstein's algorithm [1] for testing whether an odd integer $n>1$ is a perfect power and explain its PYECC implementation in detail.

1 Basic routines

1.1 (The arithmetical routines mult (n, k, b), quot (n, k, b) and $\operatorname{pow}(n . k, b))$. If n, k, b are positive integers, these functions evaluate $n k, n / k$ (assuming k odd), and n^{k} modulo 2^{b}. Their PYECCdefinition is as follows:

```
def mult(n,k,b):
    Z = Zn(2**b)
    n = n>>Z; k = k>>Z
    return lift(n*k)
def div(n,k,b):
    Z = Zn(2**b)
    n = n>>Z; k = k>>Z
    return lift(n/k)
def pow(n,k,b):
    return power(n,k,2**b)
```

The latter function is just a special case of power (n, k, m), which is defined as $(n \bmod m)^{k}$. For example, $73^{5} \bmod 10=3^{5} \bmod 10=3\left(3^{2}\right)^{2} \bmod 10=3 \bmod 10$.
1.2 (Main lemma for nroot). Let n, k, b be positive integers, n and k odd, $b>1$. Let $b^{\prime}=$ $\lceil b / 2\rceil$ and assume that we have constructed an integer r^{\prime} such that $r^{\prime k} n \equiv 1 \bmod 2^{b^{\prime}}$. Let $r_{0}=\operatorname{mult}\left(r^{\prime}, k+1, b\right), r_{1}=\operatorname{mult}\left(n, \operatorname{pow}\left(r^{\prime}, k+1, b\right), b\right), r=\operatorname{quot}\left(r_{0}-r_{1}, k, b\right)$. Then $r^{k} n \equiv 1 \bmod 2^{b}$.

Proof. We have $r^{\prime k} n=1 \bmod 2^{b^{\prime}} j$, for some integer j. Since $2 b^{\prime} \geqslant b$, we also have $2^{2 b^{\prime}} \equiv$ $0 \bmod 2^{b}$. Now the binomial theorem allows us to write $\left(k-2^{b^{\prime}} j\right)^{k} \equiv k^{k}-k 2^{b^{\prime}} j k^{k-1}=$ $k^{k}\left(1-2^{b^{\prime} j}\right) \bmod 2^{b}$. On the other hand, $r_{0} \equiv(k+1) r^{\prime} \bmod 2^{b}, r_{1} \equiv n r^{\prime k+1} \bmod 2^{b}$ and $r k \equiv r_{0}-r_{1} \equiv r^{\prime}\left(k+1-n{r^{\prime}}^{k}\right) \equiv r^{\prime}\left(k-2^{b^{\prime}} j\right) \bmod 2^{b}$. It follows that $k^{k} r^{k} n \equiv$ ${r^{\prime}}^{k} n\left(k-2^{b^{\prime}} j\right)^{k} \equiv\left(1+2^{b^{\prime}} j\right) k^{k}\left(1-2^{b^{\prime}} j\right) \equiv k^{k}\left(1-2^{2 b^{\prime}} j^{2}\right) \equiv k^{k} \bmod 2^{b} . \operatorname{Sin} k^{k}$ is odd, we get $r^{k} n \equiv 1 \bmod 2^{b}$, as claimed.
1.3 (The function nroot). For odd positive integers n and k, and a positive integer b, the function $\operatorname{nroot}(n, k, b)$ computes an integer $r<2^{b}$ such that $r^{k} n \equiv 1 \bmod 2^{b}$. By the lemma above, this function can be defined as follows:

```
def nroot(n,k,b):
    # Assumes that n and k are odd
    if b==1: return 1
    B = []
    while b>1:
        B = [b]+B
        if b%2: b+=1
        b = b//2
    r = 1
    for b in B:
        r0 = mult (r,k+1,b)
        r1 = mult(n, pow (r,k+1,b),b)
        r = quot(r0-r1,k,b)
    return r
```

1.4 (The function sqroot). If n is an odd integer and b a positive integer, $r=\operatorname{sqroot}(n, b)$ is 0 if there is no odd integer i such that $i^{2} n \equiv 1 \bmod 2^{b+1}$ and otherwise it satisfies $r^{2} n \equiv$ $1 \bmod 2^{b+1}$.

The way to write code for such a function is similar to the one followed in the case of $\operatorname{nroot}(n, k, b)$, but with some additional subtleties. After listing the resulting code, we will study the mathematics that justifies it.

```
def sqroot(n,b):
    # Assumes that n is odd
    if b==1:
        if (n%4)==1: return 1
        else: return 0
    if b==2:
        if (n%8)==1: return 1
        else: return 0
    B = []
    while b>2:
        B = [b]+B
        if b%2: b = (b+1)//2
        else: b = 1+b//2
    r = 1
    for b in B:
        r0 = mult (r,3,b+1)
        r1 = mult (n, pow (r, 3,b+1),b+1)
        r = ((r0-r1)//2)% (2**b)
        if r==0: return 0
    return r
```

To prove that this code yields what has been declared in the statement, let us first deal with the cases $b=1$ and $b=2$ in turn, which will justify the lines preceding the assignment $\mathrm{B}=[$] and hence that it can be assumed, from there on, that $b>2$.

If $b=1$, then $2^{b+1}=4$ and the congruence $r^{2} n \equiv 1 \bmod 4$ has the solution $r=1$ if $n \equiv 1 \bmod 4$ and no solution if $n \equiv 3 \bmod 4$.

Similarly, if $b=2$, then $2^{b+1}=8$ and the congruence $r^{2} n \equiv 1 \bmod 8$ has the solution $r=1$ if $n \equiv 1 \bmod 4$ and no solution if $n \equiv 3,5,7 \bmod 8$, for $r^{2} \equiv 1 \bmod 8$ for $r=1,3,5,7$.

Now the way to proceed in the case $b>2$ will turn out to be a straightforward application of next result.
1.5 (Main lemma for sqroot). Let n and b be positive integers, n odd and $b>2$, and define $b^{\prime}=\lceil(b+1) / 2\rceil$. Assume that we have constructed an integer r^{\prime} such that

$$
{r^{\prime}}^{2} n \equiv 1 \bmod 2^{b^{\prime}+1}
$$

or $r^{\prime}=0$ if the there is no integer j such that $j^{2} n \equiv 1 \bmod 2^{b^{\prime}+1}$. Let $r_{0}=\operatorname{mult}\left(r^{\prime}, 3, b+1\right)$, $\left.r_{1}=\operatorname{mult}\left(n, \operatorname{pow}\left(r^{\prime}, 3, b+1\right), b+1\right), r=\left(r_{0}-r_{1}\right) / 2 \bmod 2^{b}\right)$. Then $r=0$ if there is no integer j such that $j^{2} n \equiv 1 \bmod 2^{b+1}$ and otherwise $r^{2} n \equiv 1 \bmod 2^{b+1}$.

Proof. If $r^{\prime}=0$, then $r=0$ and we claim that there is no integer j such that $j^{2} n \equiv$ $1 \bmod 2^{b+1}$, for this congruence would imply, using that $b^{\prime}<b$, that $j^{2} n \equiv 1 \bmod 2^{b^{\prime}+1}$ that cannot happen if $r^{\prime}=0$.

So suppose $r^{\prime} \neq 0$ and hence that ${r^{\prime}}^{2} n \equiv 1 \bmod 2^{b^{\prime}+1}$. The proof will be complete if we show that then we have $r^{2} n \equiv 1 \bmod 2^{b+1}$. Indeed, the assumption implies that ${r^{\prime}}^{2} n=1+2^{b^{\prime}+1} j$ for some integer j. Note also that $\left(1-2^{b^{\prime}} j\right)^{2} \equiv 1-2^{b^{\prime}+1} j \bmod 2^{b+1}$, as $\left(1-2^{b^{\prime}} j\right)^{2}=1-2^{b^{\prime}+1} j+2^{2 b^{\prime}} j^{2}$ and $2 b^{\prime} \geqslant b+1$. Now we have (letting \equiv mean $\left.\equiv \bmod 2^{b+1}\right)$

$$
r_{0} \equiv 3 r^{\prime}, \quad r_{1} \equiv r^{\prime 3} n, \quad 2 r \equiv r_{0}-r_{1} \equiv r^{\prime}\left(3-r^{\prime 2} n\right) \equiv r^{\prime}\left(2-2^{b^{\prime}+1} j\right) \equiv 2 r^{\prime}\left(1-2^{b^{\prime}} j\right)
$$

Since $2 i \equiv 2 j$ implies that $i^{2} \equiv j^{2}$ (see the Remark below), we also have

$$
r^{2} \equiv{r^{\prime}}^{2}\left(\left(1-2^{b^{\prime}} j\right)\right)^{2} \equiv{r^{\prime}}^{2}\left(1-2^{b^{\prime}+1} j\right)
$$

Therefore

$$
r^{2} n \equiv{r^{\prime}}^{2} n\left(1-2^{b^{\prime}+1} j\right) \equiv\left(1+2^{b^{\prime}+1} j\right)\left(1-2^{b^{\prime}+1} j\right) \equiv 1-2^{2 b^{\prime}+2} j \equiv 1
$$

Remark. Indeed, $i-j$ is divisible by 2^{b}, so $i^{2}-j^{2}=(i+j)(i-j)$ is divisible by 2^{b}. But i and j have the same parity, because $b \geqslant 1$, so $i+j$ is even and hence $i^{2}-j^{2}$ is divisible by 2^{b+1}.
1.6 (To test whether an odd integer n is a k-th power for a given $k \geqslant 2$). The following listing displays the code of the function is_power(n, k) that tests whether the odd integer n is a k th power, where $k \geqslant 2$ is odd or 2 .

```
def is_power(n,k):
    # Assumes that n is odd and either k=2 or k>2 and odd.
    f = blen(2*n)
    (q,r)=(f//k,fok)
    if r==0: b=q
    else: b=q+1
    y = inverse(n, 2**(b+1))
    if k==2:
            r = sqroot (y,b)
            if r==0: return 0
    else:
            r = nroot (y,k,b)
```

```
if power_check(n,r,k):
    return r
if k==2 and power_check(n,2**b-r,k):
    return 2**b-r
return 0
```

1.7 (To test whether an odd integer $n>1$ is a perfect power). For an odd integer $n>1$, the function is_perfect_power(n) produces a pair of integers (x, p). If n is not a perfect power, this pair is equal to $(n, 1)$. Otherwise, p is prime and $n=x^{p}$.

```
def is_perfect_power(n):
    # assume n>1 and odd
    f = blen(2*n)
    b = qceiling(f,2)
    y = nroot(n,1,b+1)
    P = primes_less_than(f)
    for p in P:
        x = is_power(n,p)
        if x>0: return (x,p)
    return (n,1)
```


References

[1] D. J. Bernstein, "Detecting perfect powers in essentially linear time," Mathematics of Computation, vol. 67, no. 223, pp. 1253-1283, 1998.

