
Mathematical Notes
2018-06-30

Testing for perfect powers
Sebastià Xambó-Descamps

Abstract

In this note we study D. Bernstein’s algorithm [1] for testing whether an odd integer
n > 1 is a perfect power and explain its PYECC implementation in detail.

1 Basic routines
1.1 (The arithmetical routines mult(n, k, b), quot(n, k, b) and pow(n.k, b)). If n, k, b are pos-
itive integers, these functions evaluate nk, n/k (assuming k odd), and nk modulo 2b. Their
PYECCdefinition is as follows:

def mult(n,k,b):
Z = Zn(2**b)
n = n>>Z; k = k>>Z
return lift(n*k)

def div(n,k,b):
Z = Zn(2**b)
n = n>>Z; k = k>>Z
return lift(n/k)

def pow(n,k,b):
return power(n,k,2**b)

The latter function is just a special case of power(n, k,m), which is defined as (n mod m)k.
For example, 735 mod 10 = 35 mod 10 = 3(32)2 mod 10 = 3 mod 10.

1.2 (Main lemma for nroot). Let n, k, b be positive integers, n and k odd, b > 1. Let b′ =
db/2e and assume that we have constructed an integer r′ such that r′kn ≡ 1 mod 2b

′
. Let

r0 = mult(r′, k + 1, b), r1 = mult(n, pow(r′, k + 1, b), b), r = quot(r0 − r1, k, b). Then
rkn ≡ 1 mod 2b.

Proof. We have r′
k
n = 1 mod 2b

′
j, for some integer j. Since 2b′ > b, we also have 22b

′ ≡
0 mod 2b. Now the binomial theorem allows us to write (k − 2b

′
j)k ≡ kk − k2b

′
jkk−1 =

kk(1 − 2b
′j) mod 2b. On the other hand, r0 ≡ (k + 1)r′ mod 2b, r1 ≡ nr′

k+1 mod 2b

and rk ≡ r0 − r1 ≡ r′(k + 1 − nr′
k
) ≡ r′(k − 2b

′
j) mod 2b. It follows that kkrkn ≡

r′
k
n(k − 2b

′
j)k ≡ (1 + 2b

′
j)kk(1 − 2b

′
j) ≡ kk(1 − 22b

′
j2) ≡ kk mod 2b. Sin kk is odd,

we get rkn ≡ 1 mod 2b, as claimed.

1.3 (The function nroot). For odd positive integers n and k, and a positive integer b, the
function nroot(n, k, b) computes an integer r < 2b such that rkn ≡ 1 mod 2b. By the lemma
above, this function can be defined as follows:

def nroot(n,k,b):
Assumes that n and k are odd
if b==1: return 1
B = []
while b>1:

B = [b]+B
if b%2: b+=1
b = b//2

r = 1
for b in B:

r0 = mult(r,k+1,b)
r1 = mult(n,pow(r,k+1,b),b)
r = quot(r0-r1,k,b)

return r

1.4 (The function sqroot). If n is an odd integer and b a positive integer, r = sqroot(n, b) is
0 if there is no odd integer i such that i2n ≡ 1 mod 2b+1 and otherwise it satisfies r2n ≡
1 mod 2b+1.

The way to write code for such a function is similar to the one followed in the case of
nroot(n, k, b), but with some additional subtleties. After listing the resulting code, we will
study the mathematics that justifies it.

def sqroot(n,b):
Assumes that n is odd
if b==1:

if (n%4)==1: return 1
else: return 0

if b==2:
if (n%8)==1: return 1
else: return 0

B = []
while b>2:

B = [b]+B
if b%2: b = (b+1)//2
else: b = 1+b//2

r = 1
for b in B:

r0 = mult(r,3,b+1)
r1 = mult(n,pow(r,3,b+1),b+1)
r = ((r0-r1)//2)%(2**b)
if r==0: return 0

return r

To prove that this code yields what has been declared in the statement, let us first deal with
the cases b = 1 and b = 2 in turn, which will justify the lines preceding the assignment B = []
and hence that it can be assumed, from there on, that b > 2.

If b = 1, then 2b+1 = 4 and the congruence r2n ≡ 1 mod 4 has the solution r = 1 if
n ≡ 1 mod 4 and no solution if n ≡ 3 mod 4.

Similarly, if b = 2, then 2b+1 = 8 and the congruence r2n ≡ 1 mod 8 has the solution
r = 1 if n ≡ 1 mod 4 and no solution if n ≡ 3, 5, 7 mod 8, for r2 ≡ 1 mod 8 for r = 1, 3, 5, 7.

Now the way to proceed in the case b > 2 will turn out to be a straightforward application
of next result.

1.5 (Main lemma for sqroot). Let n and b be positive integers, n odd and b > 2, and define
b′ = d(b+ 1)/2e. Assume that we have constructed an integer r′ such that

r′
2
n ≡ 1 mod 2b

′+1,

or r′ = 0 if the there is no integer j such that j2n ≡ 1 mod 2b
′+1. Let r0 = mult(r′, 3, b+1),

r1 = mult(n, pow(r′, 3, b + 1), b + 1), r = (r0 − r1)/2 mod 2b). Then r = 0 if there is no
integer j such that j2n ≡ 1 mod 2b+1 and otherwise r2n ≡ 1 mod 2b+1.

Proof. If r′ = 0, then r = 0 and we claim that there is no integer j such that j2n ≡
1 mod 2b+1, for this congruence would imply, using that b′ < b, that j2n ≡ 1 mod 2b

′+1 that
cannot happen if r′ = 0.

So suppose r′ 6= 0 and hence that r′2n ≡ 1 mod 2b
′+1. The proof will be complete

if we show that then we have r2n ≡ 1 mod 2b+1. Indeed, the assumption implies that
r′

2
n = 1 + 2b

′+1j for some integer j. Note also that (1 − 2b
′
j)2 ≡ 1 − 2b

′+1j mod 2b+1,
as (1 − 2b

′
j)2 = 1 − 2b

′+1j + 22b
′
j2 and 2b′ > b + 1. Now we have (letting ≡ mean

≡ mod 2b+1)

r0 ≡ 3r′, r1 ≡ r′
3
n, 2r ≡ r0 − r1 ≡ r′(3− r′

2
n) ≡ r′(2− 2b

′+1j) ≡ 2r′(1− 2b
′
j).

Since 2i ≡ 2j implies that i2 ≡ j2 (see the Remark below), we also have

r2 ≡ r′
2
((1− 2b

′
j))2 ≡ r′

2
(1− 2b

′+1j).

Therefore

r2n ≡ r′
2
n(1− 2b

′+1j) ≡ (1 + 2b
′+1j)(1− 2b

′+1j) ≡ 1− 22b
′+2j ≡ 1.

Remark. Indeed, i− j is divisible by 2b, so i2 − j2 = (i+ j)(i− j) is divisible by 2b. But i
and j have the same parity, because b > 1, so i+ j is even and hence i2 − j2 is divisible by
2b+1.

1.6 (To test whether an odd integer n is a k-th power for a given k > 2). The following listing
displays the code of the function is_power(n,k) that tests whether the odd integer n is a kth
power, where k > 2 is odd or 2.

def is_power(n,k):
Assumes that n is odd and either k=2 or k>2 and odd.
f = blen(2*n)
(q,r)=(f//k,f%k)
if r==0: b=q
else: b=q+1
y = inverse(n,2**(b+1))
if k==2:

r = sqroot(y,b)
if r==0: return 0

else:
r = nroot(y,k,b)

if power_check(n,r,k):
return r

if k==2 and power_check(n,2**b-r,k):
return 2**b-r

return 0

1.7 (To test whether an odd integer n > 1 is a perfect power). For an odd integer n > 1, the
function is_perfect_power(n) produces a pair of integers (x, p). If n is not a perfect power,
this pair is equal to (n, 1). Otherwise, p is prime and n = xp.

def is_perfect_power(n):
assume n>1 and odd
f = blen(2*n)
b = qceiling(f,2)
y = nroot(n,1,b+1)
P = primes_less_than(f)
for p in P:

x = is_power(n,p)
if x>0: return (x,p)

return (n,1)

References
[1] D. J. Bernstein, “Detecting perfect powers in essentially linear time,” Mathematics of Computation,

vol. 67, no. 223, pp. 1253–1283, 1998.

	Basic routines
	Bibliography

