Mathematical Essentials of Quantum Computing

JUANJO RUE* AND SEBASTIAN XAMBÓ-DESCAMPS**

*Instituto de Ciencias Matemáticas-CSIC (juanjo.rue@icmat.es)
**Universitat Politècnica de Catalunya (sebastian.xambo@upc.edu, http://www.ma2.upc.edu/sxd/)

This poster is a pointer to an expository article aimed at presenting the essential notions of quantum computing in purely mathematical terms. It is aimed at mathematicians looking for an accessible approach to the subject in familiar terms, but also to physicists, chemists and engineers wishing a map of the mathematics involved.

SUMMARY

We provide mathematical definitions of notions such as q-computation, q-measurement, q-procedure, q-computer and q-algorithm, and each of them is illustrated with several examples.

In addition to some low level q-algorithms, we discuss a good sample of the most relevant that were discovered in the last years, including Q-Fourier transform and q-algorithms of Deutsch, Grover, Kitaev and Shor for finding the multiplicative order of an integer modulo another integer and for factoring an integer.

The possible physical realizations of the model, and its potential use to obtain gains with respect to classical algorithms (sometimes even exponential gains), are analyzed in terms of a standard axiomatic formulation of (finite-dimensional) quantum theory. Some lines for future work are also indicated.

INTRODUCTION

The mathematical side of quantum processing, which we call q-computation, is presented as a suitable rephrasing of mathematical notions, most notably complex linear algebra and basic notions of elementary probability theory. Our aim is to cover from the most basic concepts up to the expression and analysis of a good sample of the remarkable q-algorithms discovered in the last twenty-five years.

Since the link to physics is not addressed until a late section, our approach might be judged as a vanguard game by scientists and technologists, and perhaps even as an inconsequential story by mathematicians. Yet in our experience the approach turns out to be surprisingly powerful and illuminating, and we much hope that this appreciation will be shared by other people as well. Actually, the phrasing of our scheme is crafted in such a way that the tacit physical meaning will be apparent and, we expect, a reliable basis for mathematicians to appreciate the key physical ideas with minimal effort.

At the earliest stages, the most visible reason for the robustness of the paradigm, and perhaps also for its esthetical appeal, is its close relation with Florentine algebra, the mathematical side of classical computing. This relation is rooted in the fact that the basic playground of q-processing is the complex space \mathbb{C}^n generated by the set \mathbb{B} of binary vectors of length n, which is the basic arena of classical computation.

Later, when the q of q-processing is interpreted as quantum feature, the scheme delivers its full meaning as a mathematical model of interfering physical phenomena that are being intensively explored in science, together with all the various enabling technologies that hold a broad range of scientific and technological possibilities for the years to come.

It may be worth reflecting that if computing with classical bits has brought about the ‘digital era’, dominated by information theory and computer science, together with all the various enabling technologies that hold a broad range of scientific and technological possibilities for the years to come, the q of quantum computing is likely to be even more felt right away and certainly not less interesting.

1 Preliminaries

The main point is that there is an isomorphism $B^n \rightarrow \mathbb{B} \otimes \cdots \otimes \mathbb{B}$ such that $(|j\rangle) = |j\rangle_0 |0\rangle_1 |0\rangle_2 \cdots |0\rangle_{n-1}$.

A q-vector of order n is the form $|a\rangle \otimes |0\rangle \otimes |0\rangle \cdots |0\rangle$, and $|a\rangle = \sum |i\rangle a_{ij}$ is a decomposable vector.

2 Computations

They are defined as complex unitary matrices of dimension 2^n (order n), which form a group (denoted $B(2^n)$).

The standard use of graphical representations is rooted in the fact that the basis vectors $|i\rangle = |0\rangle^i |1\rangle^{n-i}$ are examples of decomposable vectors. In general, however, q-vectors are not decomposable, and in this case they are said to be entangled. A simple example is the q-vector $|00\rangle + |11\rangle = |0\rangle |0\rangle + |1\rangle |1\rangle$.

3 q-Measurements and q-Proofs

They are defined in purely mathematical terms using elementary linear algebra and probability theory. We write $M_k(a_k)$ to denote the measuring of the q-bits $B = (\ldots, a_k, \ldots)$ assuming the memory is in the state a_k.

4 q-Computers and q-Algorithms

Basic operations: q-Memory, One-qubit rotations $(R_b(U), U \in B(2^1))$, $U \in B(2^n)$), Controlled negations U_x and Measurements $M_B(a)$. The standard use of graphical representations is also considered, as for example for the Toffoli gate.

5 Deutsch’s and Grover’s q-Algorithms

Analysis of Deutsch q-algorithm that determines if $f : B^n \rightarrow B$ is balanced or constant (knowing it must be one of the two) and of Grover’s search q-algorithm.

6 Phase estimation

Analysis of Kitaev’s q-algorithm for approximating the phase θ of an unknown eigenvalue $e^{i\theta}$ of a known eigenvector u of a q-computation.

7 Modular Order of an Integer

And Shor’s Factorizing q-Algorithm

The analysis of Shor’s q-algorithm for finding the modular order of an integer is done by means of Kitaev’s q-algorithm. Then the Shor’s q-algorithm for factoring integers follows from well-known techniques factoring theory.

8 Physical Interpretations

A quick presentation of the basic axioms, in mathematical terms, for (finite-dimensional) quantum mechanics, and its relation to basic mathematical notions, such as the projective space $P(\mathbb{C})$, which is the space of quantum states of a quantum system associated to a Hilbert vector space E. Special emphasis is devoted to the (physical) qubit, including the fundamental role played by the Bloch sphere (called Bloch space in quantum computing), we can write $E = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$, and consider the point $P = P(E)$ of

Selected References

